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,e treatment options in multiple myeloma (MM) has changed dramatically over the past decade with the development of novel
agents such as proteasome inhibitors (PIs); bortezomib and immunomodulatory drugs (IMiDs); thalidomide, and lenalidomide
which revealed high efficacy and improvement of overall survival (OS) in MM patients. However, despite these progresses, most
patients relapse and become eventually refractory to these therapies. ,us, the development of novel, targeted immunotherapies
has been pursued aggressively. Recently, next-generation PIs; carfilzomib and ixazomib, IMiD; pomalidomide, histone deacetylase
inhibitor (HDADi); panobinostat and monoclonal antibodies (MoAbs); and elotuzumab and daratumumab have emerged, and
especially, combination of mAbs plus novel agents has led to dramatic improvements in the outcome of MM patients. ,e field of
immune therapies has been accelerating in the treatment of hematological malignancies and has also taken center stage in MM.
,is review focuses on an overview of current status of novel MoAb therapy including bispecific T-cell engager (BiTE) antibody
(BsAb), antibody-drug conjugate (ADC), and chimeric antigen receptor (CAR) T cells, in relapsed or refractory MM (RRMM).
Lastly, investigational novel MoAb-based therapy to overcome immunotherapy resistance in MM is shown.

1. Introduction

,e treatment options inMMhas changed dramatically over
the past decade with the emergence of novel agents including
proteasome inhibitors (PIs, bortezomib) and immuno-
modulatory drugs (IMiDs, thalidomide and lenalidomide)
and exerts a remarkable impact on the outcome of MM
patients [1–3]. However, most patients who achieve a
prolonged response following initial therapy may ultimately
relapse or become refractory. ,us, the development of
novel, targeted immunotherapies has been pursued ag-
gressively. Recently, next-generation PIs (carfilzomib and
ixazomib) [4–9], IMiDs (pomalidomide) [10–12], histone
deacetylase inhibitor (HDACi, panobinostat) [13–15], and
the monoclonal antibodies (MoAbs, elotuzumab and dar-
atumumab) have emerged and further improved the clinical
outcome in MM patients who are refractory to prior
treatments [12, 16–36]. Importantly, MM remains a chronic

disease, so in order to overcome the disease relapse, ongoing
challenges to pursue novel therapeutic strategies as well as
predictive biomarkers for response or resistance to immu-
notherapies are required. Furthermore, these novel therapies
are expected to be potentially useful in the treatment options
for patients who are ineligible for autologous stem cell
transplantation (SCT) followed by high-dose chemotherapy
[37].

Monoclonal antibody (MoAb) therapies have been ac-
celerating and shown to be able to improve the outcome of
cancers [38]. In hematological malignancies, rituximab, a
chimeric murine/human anti-CD20 monoclonal IgG1κ an-
tibody or of atumumab, a humanized anti-CD20 mono-
clonal IgG1κ antibody, targeting CD20 on B cells, is currently
indicated for the treatment of B-cell non-Hodgkin’s lym-
phoma (NHL) and chronic lymphocytic leukemia (CLL). It
exerts significant activity in combination with cytotoxic
anticancer drugs [38, 39].
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Although these progresses in immune therapies and
their application for the treatment of MM have not suc-
ceeded until recently, these therapeutic strategies have finally
attained a breakthrough with the development of the MoAb
therapies targeting surface molecules, expressed inMMcells,
such as elotuzumab, a humanized anti-CS1/SLAMF7
monoclonal antibody, and daratumumab, a humanized anti-
CD38 monoclonal antibody, both of which have been ap-
proved in the treatment of relapsed or refractory MM
(RRMM) patients who received at least three prior therapies
including PIs and iMiDs [40–43]. Herein, we review an
overview of the current status of MoAb therapies in RRMM.
In addition, we introduce investigational novel MoAb
therapies in RRMM and show future direction toward
immunotherapy resistance in MM.

2. Monoclonal Antibodies (MoAbs) in MM

Potential MoAbs target various kinds of antigens including
growth factors, signaling molecules, cell surface proteins,
and molecule of adhesion. Ideally, these MoAb-therapeutic
targets should be predominantly expressed on a majority of
MM cells, but not on normal hematopoietic cells or non-
hematopoietic tissues. MoAb therapies involve several
mechanisms including direct cytotoxic effects, antibody-
dependent cellular cytotoxicity (ADCC), complement-de-
pendent cellular cytotoxicity (CDC), and interference with
cell-to-cell interactions [40–43]. Other mechanisms include
the use of intracellular toxins or radioactive isotopes con-
jugated to MoAbs after its internalization into tumor cells,
which reveal cytotoxicity against tumor cells beyond those
bearing MoAb target antigens [40–43].

2.1. CD20 and Rituximab. CD20 is a transmembrane
phosphoprotein expressed on committed B lymphoid cells
through the all stages of their development, but its ex-
pression is reduced in plasma cells. Rituximab, a chimeric
murine/human anti-CD20 monoclonal IgG1κ antibody
targeting CD20 on B cells, is currently indicated for the
treatment of B-cell non-Hodgkin’s lymphoma (NHL) and
chronic lymphocytic leukemia (CLL) [39]. It exerts signif-
icant activity in combination with cytotoxic anticancer
drugs. However, CD20 is present only in a few plasma cells
and is absent in most of plasma cells in MM. ,erefore, few
selected MM patients achieved only minimal responses
(MD) [44–46]. Moreover, MM cells express increased levels
of complement-inhibitory proteins which result in the re-
duction of CDC via rituximab against tumor cells.

2.2. CS1/SLAMF7 and Elotuzumab. Elotuzumab is a hu-
manized IgG1 monoclonal antibody which targets SLAMF7,
known as CS1, a glycoprotein, intensely expressed on
MMcells and normal plasma cells as well as natural killer
(NK) cells. It induces cytotoxicity against MM cells via NK
cell-associated ADCC, NK cell activation, and inhibition of
the interaction between MM cells and bone marrow stromal
cells (BMSCs). Elotuzumab revealed intensive anti-MM
efficacy and safety profiles when combined with IMiDs or

PIs in previously treated RRMM [12, 16–21] (Table 1). ,e
phase II results demonstrated that elotuzumab in combi-
nation with lenalidomide plus dexamethasone (Rd) in pa-
tients with RRMM showed safety and efficacy which was
better than previously noted with Rd [17, 18]. Moreover,
results of the phase III trial ELOQUENT-2 clearly proved the
benefit of adding elotuzumab to Rd for the treatment of
RRMM [18].,e overall response rates (ORRs) were 79% for
the elotuzumab group and 66% for the control group; the
PFS rate was 68 vs. 57% for the elotuzumab and control
groups at 1 year and 41 vs. 27% at 2 years; the median PFS
was 19.4 vs. 14.9 months for the elotuzumab and control
groups [19]. Based on the results of these trials, elotuzumab
attained food and drug administration (FDA) approval in
2015 in combination with Rd for the treatment of RRMM
patients, who previously received two or three prior ther-
apies. A phase III randomized study of Rd with or without
elotuzumab in previously treated MM patients is currently
ongoing. Phase II trials of elotuzumab plus pomalidomide
and dexamethasone (EPd) vs Pd in 117 patients who re-
ceived >2 prior therapies revealed that after a follow-up
period of 9 months, EPd had a longer median PFS (10.3 vs
4.7 month) and a better ORR (53 vs 26%) [12]. Phase II trials
of elotuzumab plus bortezomib and dexamethasone (EBd)
vs Bd in 77 patients who had received one to three prior
therapies showed that EBd had a longer median PFS (9.7 vs
6.9 months). However, there was no deference in ORR
between EBd group and Bd group (66% vs 63%) [20, 21].

2.3. CD38 and Daratumumab. Daratumumab is a human-
ized IgG1-kappa monoclonal antibody targeting CD38,
which is 46-kDa type II transmembrane glycoprotein,
broadly expressed on plasma cells as well as lymphoid cells,
myeloid cells, and nonhematopoietic tissues. It is also
expressed in OCs. CD38 retains multiple functions including
ectoenzymatic activity, signal transduction, and receptor-
mediated regulation of cell adhesion [22, 23]. In preclinical
studies, daratumumab revealed anti-MM cytotoxicity
through multiple mechanisms including ADCC, ADCP,
CDC, and direct apoptosis via FcR-mediated cross linking of
daratumumab in vitro [24–26] (Table 2). Of note, no dif-
ference was revealed in daratumumab-associated ADCC or
CDC between newly diagnosed and RRMM patients. ,e
level of CD38 expression in MM cells was reported to be
related to daratumumab-associated ADCC and CDC [24–
26]. Moreover, daratumumab has several effects on the
immune system. It increases CD8+/CD4+ and CD8+ Treg
ratios as well as memory T cells, while decreasing naı̈ve
T cells, which enhance the overall immune response to MM
cells [27].

Daratumumab revealed anti-MM efficacy as mono-
therapy as well as in combination with novel agents in
heavily pretreated RRMM patients, which resulted in FDA
approval in 2015. ,e GEN501 and SIRIUS trials demon-
strated that daratumumab is active as monotherapy in
RRMM patients [28, 29]. It showed improved ORRs re-
gardless of refractoriness to prior therapies including PIs
and IMiDs (31%). [30]. Phase III Castor trials revealed that
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daratumumab significantly improved ORR, PFS, and time to
progression (TTP) in combination with Bd, ORR (83% vs
63%), the 12-month rate of PFS (61% vs 27%), and TTP at
12months (65% vs 29%) [31]. Another phase III Castor
study also revealed a significant benefit of D-Bd over Bd
regardless of treatment history or cytogenetic risk [32].
Phase III POLLUX trials demonstrated remarkable efficacy
of daratumumab in combination with lenalidomide plus
dexamethasone (DRd) in patients with RRMM [33, 34]. ,e
ORR was 92.9% in DRd group versus 72.9% in Rd group.
DRd improved PFS compared with Rd with 12-month PFS
rates of 83.2% in DRd group versus 60.1% in Rd group and
24-month PFS rate of 68.0% versus 40.9%, restrictively
[33, 34]. ,e EQUULEUS study led to the FDA approval of
daratumumab in combination with Pd in 2017 for RRMM
patients who have received 2 or more prior line of therapy
including lenalidomide and a PI. ,e median PFS was 8.8
months, the 12-month PFS rate was 42%, the median OS was
17.5 months, and the median 12-month survival rate was
66% [35].

3. Novel Target Antigens in MoAb
Therapies in MM

3.1. CD38 and Isatuximab. Isatuximab is a chimeric IgG1-
kappa anti-CD38 monoclonal antibody which selectively
binds to a unique epitope on human CD38 receptor and
elicits anti-MM activity by direct apoptosis, ADCC, and
ADCP [47]. CDC was triggered in less than half of MM
patients with high levels of CD38 in MM cells. A phase 1b
open-label, dose escalation study showed that 57 patients
who had received at least one prior line of therapy attained
ORR of 52% by isatuximab plus Rd in 42 evaluable lena-
lidomide-refractory patients, and overall median PFS was

8.5 months [48]. Another phase 1b study of isatuximab plus
Pd in patients with RRMM who had received more than 2
prior therapies also revealed that ORR was 62%; median
duration of response was 18.7 months; and PFS was 17.6
months [49].

3.2. Interleukin-6 (IL6) and Siltuximab. Interleukin-6 is an
important cytokine for the growth and survival of MMcells.
It is chiefly produced by BMSCs and increased by several
cytokines. A chimeric anti-IL-6 antibody, siltuximab,
revealed cytotoxicity in MM patients who was refractory to
dexamethasone [50]. In addition, it increased cytotoxicity
with Bd in combination, whereas in a phase 2 randomized
study of siltuximab plus bortezomib, the addition of sil-
tuximab to bortezomib did not appear to improve PFS or OS
in refractory MM patients [51]. ,e other study showed that
there were no responses to siltuximab but combination
therapy with dexamethasone yielded a partial or minimal
response rate of 23%, in dexamethasone-refractoryMM [51].

3.3. PD-1/PD-L1 Inhibitors. Programmed cell death protein
1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway
is a negative regulator of immune activation [52]. Recently,
there are discrepancies concerning programmed death PD-
L1 expression on plasma cells in MM. Several data dem-
onstrated that PD-L1 is overexpressed on MM plasma cells
but not on normal plasma cells [53–56]. It was reported that
PD-L1 expression on plasma cells was associated with in-
creased risk of progression from smoldering MM (SMM)
into MM [57], whereas other reports showed that no dif-
ference was detected in PD-L1 expression on plasma cells
between MM, SMM, monoclonal gammopathy of un-
determined significance (MGUS), and healthy individuals

Table 1: Summary of clinical trials in anti-CS1/SLAMF7 antibody in relapsed/refractory MM.

References Phase Regimen ORR (%) PFS (mo) OS
Richardson et al. [17] 2 Elo +Rd 84.00% NA NA
Lonial et al. [18] ELOAUENT2 3 Rd± Elo 79% vs 66% 19.4mo vs 14.9mo NA
Dimopoulos et al. [12] 2 Pd±Elo 53% vs 26% 10.3mo vs 4.7mo NA
Jakubowiak et al. [20] Elo-Bd 2 Bd±Elo 66% vs 63% 9.7mo vs 6.9mo 1 yr 85% vs 74%
Zonder et al. [16] Phase1 Elo 1 Elo Dose Escalation MTD not identified NA NA
Jakubowiak, et al. [21] Elo-Bd 1 Elo + Bd 48.00% 9.5mo NA
Lonial, et al. [19] Elo-Rd 1 Elo +Rd 82.00% NA NA
MM, multiple myeloma; Elo, elotuzumab; Rd, lenalidomide plus dexamethasone; Pd, pomalidomide plus dexamethasone; Bd, bortezomib plus dexa-
methasone, NA, not available; MTD, maximum tolerated dose.

Table 2: Summary of clinical trials in anti-CD38 antibody in relapse/refractory MM.

References Phase Regimen ORR (%) PFS (mo) OS
Lokhorst et al. [28] GEN501 1/2 Dara monotherapy 36% 5.6mo 1 yr 77%
Lonial et al. [29] SIRIUS 2 Dara monotherapy 17% 3.7mo 1 yr 65%
Spencer et al. [32] CASTOR 3 Bd±Dara 83% vs 63% 1.5 yr 48% vs 8% NA
Palumbo et al. [31] CASTOR 3 Bd±Dara 83% vs 63% 1 yr 61% vs 27% NA
Dimopoulos et al. [33] POLLUX 3 Rd±Dara 93% vs 76% 1 yr 83% vs 60% NA
Dimopoulos et al. [34] POLLUX Rd±Dara 93% vs76% 2 yr 68% vs 41% NA
Chari et al. [35] EQULLEUS 1b Pd±Dara 60% 1 yr 42% 1 yr 89%
MM, multiple myeloma; Dara; daratumumab, Rd, lenalidomide plus dexamethasone; Bd, bortezomib plus dexamethasone; Pd, pomalidomide plus
dexamethasone; NA, not available; MTD, maximum tolerated dose.
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[58, 59]. Similarly, discordant results were reported re-
garding PD-1 expression on immune cells, including T cells
and NK cells in MM. Paiva et al. showed that PD-1 was
overexpressed on CD4+ and CD8+ T cells in MM patients
[58]. Benson et al. demonstrated that PD-1 expression was
increased on NK cells from MM patients, compared with
normal NK cells, whereas Paiva et al. demonstrated there
was no difference between these cells [58, 60].

Among hematological malignancies, antibody blockade
of the PD-1/PD-L1 pathway is a highly effective therapeutic
approach for patients with classical Hodgkin lymphoma,
97% of which typically exhibits an overexpression of PD-L1
due to the alteration in chromosome 9p24.1 (54). ,erefore,
the PD-1/PD-L1 axis is a good target for MoAbs, leading
immune cells to kill tumor cells. ,e use of nivolumab, a
human IgG4MoAbwhich blocks the interaction with PD-L1
and PD-L2 by binding to the PD-1 receptor on activated
immune cells, was approved by FDA in 2016 for the
treatment of relapsed or progressed Hodgkin lymphoma
[52]. However, the outcome of checkpoint blockade by
monotherapy with PD-1/PD-L1 inhibitors is unsatisfactory
in MM, compared with solid tumors due to the reduced
immune dysfunction in MM [58, 59]. In contrast, lenali-
domide enhances the effect of PD-1/PD-L1 blockade on both
T cell- and NK cell-mediated cytotoxicity. ,e combination
therapy of lenalidomide plus PD-1/PD-L1 inhibitors in-
creased interferon c by BM-derived effector cells in MM and
was associated with increased apoptosis of MM cells, sug-
gesting synergistic cytotoxic effects [56, 61, 62]. ,ere are
only limited data from clinical trials of PD1/PDL1MoAbs in
MM patients. ,e phase Ib trial of nivolumab monotherapy
in 27 RRMM patients showed the stabilization of disease
status in 17 patients, lasting a median of 11.4 weeks [63]. A
phase I study of pembrolizumab with Rd in RRMM patients
revealed a partial response rate of 50% [61, 62, 64, 65]. A
phase 3 study of the combination of Rd with or without
pembrolizumab was performed in transplant ineligible
newly diagnosed MM patients (KEYNOTE-185 trial)
[61, 62, 64]. A Phase 3 study of the combination of Pd with or
without pembrolizumab was conducted in the KEYNOTE-
183 trial, and it led FDA to discontinue the trial, due to
increased risk of death of patients [61, 62, 65].

3.4. Bispecific T-Cell Engager (BiTE) Antibodies (BsAb).
Bispecific T-cell engager (BiTE) antibodies (BsAbs) are
constructs, composed of 2 linked MoAbs which target 2
epitopes. One arm of antibody, scFvs, binds to CD3 on
tumor-specific T cells, while the other arm binds to tumor-
specific antigen on tumor cells [66, 67]. Cross linkage of
T cells to the tumor cells causes T cells to release cytotoxic
molecules such as perforin, which creates transmembrane
pores in tumor cells, and granzyme B, which initiates ap-
optosis toward tumor cells. In addition, cytokine production
from T cells activates its proliferation to kill tumor cells.
BsAbs are characterized by small size (5 kDa), which induces
high efficacy toward tumor cells, but its serum half-life is
short [66, 67]. B-cell maturation antigen (BCMA) belongs to
tumor necrosis factor superfamily member 17, also named

“TNFRSF17 or CD269,” which is uniformly expressed in
malignant plasma cells but not in normal essential non-
hematopoietic tissues, and only restricted expression is
detected in normal hematopoietic cells including normal
plasma cells and mature B lymphocytes. ,us, it is a highly
plasma cell specific antigen and has a central role in regu-
lating B-cell maturation and differentiation into plasma cells
by engaging a proliferation-inducing ligand (APRIL) cells.
,is expression pattern leads to the development of BCMA-
specific mAbs, BsAbs, antibody-drug conjugates (ADCs),
and chimeric Tcell receptor (CAR) Tcells [68–70]. BsAb, BI-
836909 (AMG420), the first bispecific scFv, simultaneously
binds to CD3+ T cells and BCMA+MM cells which make a
cross linking between both cells to induce cytolytic synapse,
activate T cells, and lyse BCMA+MM cells. In phase I study
in RRMM patients, it exhibited potent and high efficacy by
depleting BCMA+MM cells [68–70]. CD3xCD38 BsAb,
engineered to direct Tcells to CD38 on tumor cells, was also
developed. ,e phase 1 multicenter study of GBR1342 is
underway [71].

3.5. Antibody-Drug Conjugates (ADCs). Antibody-drug
conjugate is composed of recombinant MoAbs, bound to
cytotoxic chemical agents through synthetic chemical
linkers. MoAbs bind to the cell surface antigen on tumor
cells and are internalized with the chemicals. ,us, the
cytotoxic chemicals are released and transported from ly-
sosome into cytosol to kill tumor cells [72]. GSK2857916 is a
humanized and IgG1MoAb with high affinity to BCMAwith
afucosylated Fc linked to auristatin F noncleavable linker,
maleimidocaproyl. In preclinical study, it binds to
BCMA+MM cells and induces G2/M arrest and apoptosis
by the activation of caspase 3/7 and 8. ,e naked form of
ADC augmented effector-mediated cytotoxicity including
ADCC and ADCP against patient MM cells [72]. In MM
xenograft models, GSK2857916 depletes MM cells but
surrounding BCMA-BM accessory cells remain unharmed.
Its cytotoxicity is further increased by GSK2857916 plus
lenalidomide in combination. In phase 1 study of
GSK2857916 in RRMM patients, GAK2857916 mono-
therapy revealed a 60% response rate and median PFS of 7.9
months [73, 74]. Anti-BCMA approaches, alone or in
combination with iMIDs or immune checkpoint inhibitors,
will be evaluated in clinical trials in MM [70].

3.6. Chimeric Antigen Receptor (CAR) T Cells. CARs are
fusion proteins incorporating an antigen-recognition do-
main and T-cell signaling domain. T cells are genetically
modified to express CARs, which specifically recognize
target antigens on tumor cells [75–77]. CAR T-cell therapy
has already approved by FDA and European Medicine
Agency (EMA) for the treatment of relapsed of refractory B-
acute lymphoblastic leukemia (ALL) and diffuse large B cell
lymphoma (DLBCL) [75–77]. CAR-expressing T cells tar-
geting CD19 revealed efficacy in patients with acute lym-
phoblastic leukemia (ALL) or B-cell NHL. ,is success of
CAR-T cells against leukemia or lymphoma has encouraged
the development of CAR-T therapies for MM. In the first
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human clinical trials, Carpenter et al. designed the first novel
CAR targeting BCMA in MM and demonstrated CAR-
BCMA T cells had powerful activity against MM that was
resistant to standard therapies [78, 79]. Moreover, bb2121
was produced by transducing autologous T cells with a
lentiviral vector encoding a second-generation CAR in-
corporating an anti-BCMA single-chain variable fragment,
CD137 costimulatory motif, and a CD3-zeta signaling

domain [80]. A phase 1 clinical study of bb2121 in heavily
pretreated RRMM patients revealed that 85% of the patients
had a clinical response lasting a median of 10.9 months
without any ongoing MM therapies [80]. Currently, CAR-
T cell therapy for MM remains experimental. CAR-T cell
therapy is a potentially life-threatening therapeutic ap-
proach, which needs to be administrated in experience
hospitals. Now, phase 3 trials are just starting for RRMM in

Table 3: Investigational monoclonal antibodies in MM.

Target molecule mAb Type Clinical trials
CD138 Indatuximab ravtansine ADC Inda ± Rena ORR 78% vs 4%
CD56 Lorvotuzumab ADC Lorv+/Rd ORR 56% vs 7%
CD40 Dacetuzumab, lucatumumab Humanized Luc; 4% attained prolonged PR
CD74 Milatuzumab Humanized No objective responses
BAFF Tabalumab Humanized Bd +Taba; ORR 44%
BCMA GSK2857916 ADC MTD not determined
GRP78 PAT-SM6 Humanized MTD not determined
IGF-1R AVE1642 Humanized No objective responses
ICAM-1 BI-505 Humanized No objective responses
CD26 YS110 (huCD26mAb) Humanized Best responses 50%
ADC, antibody-drug conjugate; Lena, lenalidomide; Inda, indatuximab ravatansine, Rd, lenalidomide plus dexamethasone; Lorv, lorvotuzumab; Luc,
lucatumumab; PR, partial response; Bd, bortezomib + dexamethasone; Taba, tabalumab; MTD, maximum tolerated doses.
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2019. In addition, novel CARs targeting alternative plasma
cell antigens including CD38, CD44v6, and SLAMF7(CS)
are being developed [81, 82].

4. Experimental Research in Novel MoAb
Therapy in RRMM

4.1. Investigational MoAbs. Target antigens for MoAb are
either cell surface membrane proteins or soluble factors
including cytokines or chemokines expressed or secreted
in MM cells. ,eir functions include MM cell growth,
cellular adhesion, angiogenesis, apoptosis, and cell-to-cell
contact between MM cells microenvironmental cells. In-
vestigational mAbs targeting CD138, CD56, CD40, CD74,
BAFF, BCMA, GRP78, IGF-1R, and ICAM-1 are pre-
clinically developed, and several of them are in clinical
trials [83–92] (Table 3).

4.2. Humanized Anti-CD26 Monoclonal Antibody
(huCD26mAb). CD26 is a 110 kDa transmembrane glyco-
protein with dipeptidyl peptidase (DPPIV) activity, which is
widely expressed in various normal cells such as
T lymphocytes, natural killer (NK) cells, basophils, eosin-
ophils, endothelial cells, and epithelial cells [93–96]. In
addition, CD26 is expressed in several tumor cells including
malignant lymphoma, mesothelioma, renal cell carcinoma,
and hepatocellular carcinoma and is involved in T-cell ac-
tivation and tumorigenesis [97, 98]. We have recently
characterized CD26 as a potential therapeutic target for the
treatment of MM [99]. We identified CD26 expression in
human osteoclasts (OCs) in healthy individuals (Figure 1).
Its expression is further increased in osteoclasts in osteolytic
bone tumors including MM, adenocarcinoma, lung cancer,
and osteosarcoma. huCD26mAb, a humanized IgG1
monoclonal antibody that directly targets CD26, inhibits
human OC differentiation in vitro and in vivo analysis [99].
In the bone marrow tissue of MM patients, we found that
CD26 was present in plasma cells around OCs or endothelial
cells. In vitro immunostaining or flow cytometry studies
revealed that although CD26 expression was low or absent
on MM cell lines cultured alone, it was intensely and uni-
formly expressed on MM cell lines cocultured with OCs
[100]. ,e augmented CD26 expression in MM cells was
exploited to enhance cytotoxicity of huCD26mAb chiefly via
a substantial increase in antibody-dependent cytotoxicity
(ADCC) against MM cells, direct effects or inhibition of the
adhesion between MM cells and BM stromal cells (BMSCs)
(Figure 2). Moreover, huCD26mAb in combination with the
existing standards of care including bortezomib and lena-
lidomide synergistically enhanced huCD26mAb-induced
ADCC activity against CD26 +MM cells compared with
each agent alone [100]. Lastly, therapeutic effect of
huCD26mAb against MM cell growth and its related
osteolytic lesion was also validated in vivo, using a xenograft
model: an intrabone tumor model of MM. Our preclinical
results demonstrated that huCD26mAb elicited significant
anti-MM efficacy by impairing both CD26 +MM cells and

OCs in vivo, suggesting that CD26 could be an ideal ther-
apeutic target of antibody-based therapy in RRMM [100].

5. Conclusion

During the last decades, therapeutic strategies in MM have
dramatically changed. MoAbs act synergistically with
backbone regimens including iMIDs, PIs, or HDACi and
have benefits to overcome resistance to prior therapies. ,e
future treatment options of MM to overcome resistance are
promising by combination with MoAbs plus these novel
agents, check point inhibitors or CAR T-cell therapy.
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