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Abstract

Objectives: We aimed to construct novel prognostic models based on RNA-binding proteins

(RBPs) in breast cancer (BRCA) and explore their roles in this disease and their effects on tumor-

infiltrating immune cells (TIICs).

Methods: Datasets were downloaded from the Gene Expression Omnibus (GEO) database.

Functions and prognostic values of RBPs were systematically investigated using a series of

bioinformatics analysis methods. TIICs were assessed using CIBERSORT.

Results: Overall, 138 differentially expressed RBPs were identified, of which 86 were upregu-

lated and 52 were downregulated. Of these, 13 RBPs were identified as prognosis-related and

adopted to construct an overall survival (OS) model, while 12 RBPs were used for the relapse-

free survival (RFS) model. High-risk patients had poorer OS and RFS rates than low-risk patients.

The results indicate that the OS and RFS models are good prognostic models with reliable

predictive abilities. In addition, the proportions of CD8, CD4 naı̈ve, and CD4 memory resting

T cells, as well as resting dendritic cells, were significantly different between the low-risk and

high-risk groups in the OS model.

Conclusions: OS and RFS signatures can be used as reliable BRCA prognostic biomarkers. This

work will help understand the prognostic roles and functions of RBPs in BRCA.
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Introduction

Currently, there is no satisfactory treatment

for patients with aggressive or relapsed

breast cancer (BRCA).1,2

Studies have demonstrated that abnor-

mal expression of RNA-binding proteins

(RBPs) is closely associated with human

cancer progression.3–6 Wang et al.7 explored

the prognostic value and function of RBPs

in BRCA, but prognostic models were not

developed and validated, nor were the effects

on immune-infiltrating cells explored. Thus,

in this study, we developed and validated

novel prognostic models based on RBPs

and explored the relationship between risk

models and tumor-infiltrating immune

cells (TIICs).

Materials and methods

Data processing

RNA sequencing and clinical datasets for

BRCA were downloaded from the Gene

Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). The

GSE42568 dataset included gene expression

data from 17 normal breast tissues and 107

tumor tissues obtained using the Affymetrix

Human Genome U133 Plus 2.0 Array plat-

form. In addition, the names of 1542 RBPs

were extracted from a previous study.8 The

differentially expressed genes (DEGs)

between tumor tissues and normal breast

tissues were identified using the limma

package in R software.9 DEGs were defined

when P< 0.05 and log2|fold change| values

were >1. The validation BRCA dataset,

including the transcription profile based

on the GPL15048 platform (Rosetta/

Merck Human RSTA Custom Affymetrix

2.0) and clinical information, was obtained

from the GSE86166 GEO dataset.

Construction and validation of

prognostic models

Univariate Cox regression analysis was per-

formed on all differentially expressed RBPs

in the GSE42568 dataset using the survival

R package. The significance of the candi-

date genes was verified. Subsequently, a

least absolute shrinkage and selection oper-

ator (LASSO) regression model was con-

structed based on the above significant

candidate genes, and the risk score (RS)

was calculated to assess patient prognosis

outcomes. The RS formula for each sample

was as follows: RS¼ b1�Expgene1þ b
2�Expgene2þb i�Expgenei, where b rep-

resents the coefficient value and Exp repre-

sents the gene expression level. According to

median RS survival analysis, BRCA patients

were divided into low- and high-risk groups.

The overall survival (OS) and relapse-free

survival (RFS) of the two subgroups were

compared using log-rank tests. The predic-

tive capability of the prognostic model was

evaluated using the survival R package.10

The GSE86166 dataset was used as a valida-

tion cohort to confirm the predictive capa-

bility of the prognostic models. Finally, a

nomogram was constructed using the R

package (www.r-project.org) to forecast the

likelihood of OS and RFS.
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Gene ontology (GO) enrichment analysis
and biology network

DEGs were classified using the clusterProfiler
package11 in R software with hypergeometric
distributions that were significant when
P< 0.05. Functional enrichment analyses
were performed for GO enrichment. A pro-
tein–protein interaction (PPI) network was
established via Cytoscape3.7.2 and the
STRING 11.5 database (https://string-db.
org/). Candidate hub genes were identified
using the degree topology method.12

Transcription factor (TF)–gene interaction
and microRNA (miRNA)–gene interaction
networks of prognosis-related RBPs were
established via Cytoscape3.7.2 based on the
data from NetworkAnalyst 3.0 (https://www.
networkanalyst.ca/).

TIIC analysis based on CIBERSORT

The TIICs used in the GSE42568 dataset were
assessed using the CIBERSORT analytical
tool (https://cibersort.stanford.edu/).13 The
abundance ratio matrix for the 22 immune
cell types was determined at P< 0.05.

Statistical analysis

R software was used for most bioinformat-
ics and statistical analyses in this study,
including RNA-seq data normalization
and transformation, CIBERSORT, DEG
analysis, survival analyses, receiver operat-
ing characteristic (ROC) curve analysis, and
Spearman rank correlation analysis.
Univariate and multivariate Cox regression
analyses were performed using the “coxph”
command of the survival package.
Statistical significance was set at P< 0.05.

Results

Differentially expressed RBPs in BRCA

Differentially expressed RBPs in BRCA
were identified using the limma package

for R software. Among the 1542 RBPs

(Table S1), 138 genes were differentially

expressed, with 86 upregulated and 52

downregulated genes in the GSE42568

dataset (Figure 1, Table S2).

Development and validation of

prognostic models

To analyze the effects of RBPs on the prog-

nosis of BRCA patients, we assessed the

relationship between the differentially

expressed RBPs and OS using univariate

Cox regression analysis and the Kaplan–

Meier method in the training cohort

(GSE42568 dataset). The results showed a

significant association between 34 candi-

date RBPs and OS (Table S3). Similarly,

19 candidate RBPs were significantly asso-

ciated with RFS (Table S4).
LASSO regression analysis was per-

formed to select reliable RBPs for predict-

ing OS in the GSE42568 dataset (Figure 2a

and 2b). Subsequently, we selected the com-

position of the final gene signature and used

it to generate the RS.

Figure 1. Volcano plot of differentially expressed
RNA-binding proteins (RBPs) in the GSE42568
dataset.
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Figure 2. Least absolute shrinkage and selection operator (LASSO) regression analysis based on
RNA-binding proteins (RBPs) and overall survival (OS) prediction in the GSE42568 dataset. (a) Confidence
interval of each lambda. (b) Changing trajectory of each independent variable. (c) Survival curves for the
low- and high-risk subgroups. (d) Receiver operating characteristic (ROC) curves for forecasting OS based
on risk score and (e–g) Expression heat map, risk score, and survival status.
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RS ¼ 0:479 � ExpDDX39Að Þ
þ �0:025 � ExpPAPD4ð Þ

þ �0:104 � ExpSRSF6ð Þ
þ 0:005 � ExpNOP2ð Þ
þ �0:138 � ExpZCCHC24ð Þ
þ �0:032 � ExpSIDT1ð Þ
þ �0:118 � ExpEIF4E3ð Þ
þ �0:239 � ExpDIS3Lð Þ
þ �0:732 � ExpSFPQð Þ
þ �0:356 � ExpSETD1Bð Þ
þ 0:012 � ExpCTIFð Þ
þ 0:158 � ExpUBAP2Lð Þ
þ 0:419 � ExpCSTF3ð Þ

According to the median RS, 104
patients from the GSE42568 dataset were
assigned to the low- and high-risk groups.
Survival analysis demonstrated that
patients in the high-risk group had signifi-
cantly poorer OS than those in the
low-risk group (P< 0.001, Figure 2c).
Time-dependent ROC analysis was per-
formed to further evaluate the prognostic
capability of the 13 identified RBPs. The
area under the ROC curve (AUC) was
0.904, 0.85, and 0.828 at 1-, 3-, and 5-years,

respectively (Figure 2d), indicating a mod-
erate diagnostic performance for this model.
The survival status of patients, RS, and
expression heat map of the signature consist-
ing of the 13 RBPs in the low- and high-risk
subgroups are shown in Figure 2e–g.

To verify the validity of the OS predic-
tive model, the GSE86166 dataset was ana-
lyzed. The results showed that patients with
a high-risk score had significantly worse OS
than those with a low-risk score (P< 0.001,
Figure 3a). The AUCs of the GSE86166
dataset were 0.552, 0.683, and 0.673 at 1-,
3-, and 5-years, respectively (Figure 3b),
which suggests good sensitivity and specif-
icity of the predictive model. The survival
status of patients, RS, and the expression
heat map of the signature consisting of the
13 RBPs in the GSE86166 dataset are dis-
played in Figure 3c–e.

Using the same method, 12 gene signa-
tures were selected, and a predictive RFS
model was generated for the GSE86166
dataset (Figure 4a and 4b).

RS ¼ 0:498 � ExpDDX39Að Þ

Figure 2. Continued.
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Figure 3. Validation of the overall survival (OS) model using the GSE86166 dataset. (a) Survival curves for
the low- and high-risk subgroups. (b) Receiver operating characteristic (ROC) curves for forecasting OS
based on risk score and (c–e) Expression heat map, risk score, and survival status.
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Figure 4. Least absolute shrinkage and selection operator (LASSO) regression analysis based on RNA-
binding proteins (RBPs) and relapse-free survival (RFS) prediction from the GSE42568 dataset. (a)
Confidence interval of each lambda. (b) Changing trajectory of each independent variable. (c) Survival curves
for the low- and high-risk subgroups. (d) Receiver operating characteristic (ROC) curves for forecasting
overall survival (OS) based on risk score. (e–g) Expression heat map, risk score, and survival status.
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þ �0:034 � ExpPAPD4ð Þ
þ �0:079 � ExpSRSF6ð Þ
þ 0:083 � ExpESRP1ð Þ
þ �0:024 � ExpSUGP2ð Þ
þ �0:033 � ExpSIDT1ð Þ
þ �0:059 � ExpEIF4E3ð Þ
þ �0:185 � ExpDIS3Lð Þ
þ �0:065 � ExpNOVA1ð Þ
þ �0:529 � ExpSETD1Bð Þ
þ 0:081 � ExpHINT3ð Þ
þ 0:060 � ExpCSTF3ð Þ

Survival analysis for the GSE42568 data-
set demonstrated that patients in the high-
risk group had significantly poorer RFS
than those in the low-risk group (Figure 4c).
The AUCs for the dataset were 0.817, 0.812,
and 0.794 at 1-, 3-, and 5-years, respectively
(Figure 4d). The relapse status of patients,
RS, and expression heat map of the 12
RBPs in the GSE42568 dataset are displayed
in Figure 4e–g.

We also verified the validity of the RFS
predictive model by analyzing the
GSE86166 dataset. Patients with high-risk
scores had significantly worse RFS than
those with low-risk scores (P< 0.001,

Figure 5a). The AUCs of the GSE86166

dataset were 0.735, 0.714, and 0.689 at 1-,

3-, and 5-years, respectively (Figure 5b).

The relapse status of patients, RS, and

expression heat map of the 12 RBPs in

the GSE86166 dataset are displayed in

Figure 5c–e.
Additionally, the prognostic significance

of different clinicopathological variables

was assessed among patients in the

GSE42568 dataset using Cox regression

analysis. The results demonstrated that

RS could independently predict both

OS (Table 1) and RFS (Table 2).

Additionally, there were similar results in

the GSE86166 dataset (Table S5 and S6).

Taken together, these data show that the

RBP-based OS and RFS models are reliable

in predicting the outcomes of BRCA

patients.

Building predictive nomograms

Nomograms for OS (Figure 6a) and RFS

(Figure 6c) were constructed to generate

clinically practical models that would

enable physicians to evaluate the prognosis

Figure 4. Continued.

8 Journal of International Medical Research



Figure 5. Validation of the relapse-free survival (RFS) model using the GSE86166 dataset. (a) Survival
curves for the low- and high-risk subgroups. (b) Receiver operating characteristic (ROC) curves for
forecasting overall survival (OS) based on risk score and (c–e) Expression heat map, risk score, and survival
status.
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of BRCA patients using the selected RBPs.

According to the results of the LASSO

regression analysis, each individual variable

was assigned a corresponding point based

on the scale obtained in the nomograms.

The point for each variable was determined

by drawing a horizontal line, and then the

points of all the variables were added to

obtain the patient’s total score. This was

used to estimate the survival rate of each

patient at 1, 3, and 5 years. Furthermore,

calibration plots (Figure 6b and 6d) were

generated to evaluate the validity and accu-

racy of the nomograms.

GO enrichment analysis and biology

network

To explore the functions of the differential-

ly expressed RBPs and mechanisms through

which they can promote BRCA

progression, we performed functional anal-
yses of the downregulated and upregulated
RBPs via the clusterProfiler package in R
software. As shown in Figure 7a and 7b,
significant differences were observed in the
functional enrichment of downregulated
and upregulated RBPs. Upregulated RBPs
were enriched in the spliceosomal complex,
nuclear speckles, catalytic step 2 spliceo-
some, and methyltransferase complex,
whereas downregulated RBPs were
enriched in ribosomal subunits, organellar
ribosomes, mitochondrial ribosomes,
mRNA cap binding complexes, and RNA
polymerase I complexes. Biological process
analysis showed that upregulated RBPs
were related to RNA splicing and non-
coding RNA processing, while downregu-
lated RBPs were related to RNA splicing,
translation, cellular amide metabolic pro-
cesses, and RNA phosphodiester bond

Table 1. Cox proportional-hazard regression analysis for overall survival in the GSE42568 dataset.

Characteristic

Univariate analysis Multivariate analysis

HR HR (95% CI) P-value HR HR (95% CI) P-value

Age 0.998 0.969–1.028 0.889 1.009 0.975–1.046 0.581

T 1.783 0.942–3.374 0.076 1.083 0.529–2.217 0.828

N 4.555 1.877–11.054 0.001 3.112 1.152–8.411 0.025

Grade 3.038 1.534–6.018 0.001 1.503 0.711–3.179 0.286

ER 0.532 0.268–1.056 0.071 0.647 0.274–1.528 0.321

Risk score 1.77Eþ18 1.75Eþ13–1.80Eþ23 <0.001 4.83Eþ14 1.74Eþ09–1.34Eþ20 <0.001

HR, hazard ratio; CI, confidence interval; ER, estrogen receptor.

Table 2. Cox proportional-hazards regression analysis for relapse free survival in GSE42568.

Characteristic

Univariate analysis Multivariate analysis

HR HR (95% CI) P-value HR HR (95% CI) P-value

Age 0.996 0.970–1.022 0.747 1.016 0.986–1.047 0.303

T 2.467 1.306–4.659 0.005 1.543 0.854–2.789 0.151

N 4.549 2.184–9.479 <0.001 3.689 1.656–8.218 0.001

Grade 2.365 1.375–4.069 0.002 1.109 0.607–2.029 0.736

ER 0.438 0.243–0.792 0.006 0.504 0.246–1.034 0.062

Risk score 17.425 7.289–41.655 <0.001 9.241 3.205–26.643 <0.001

HR, hazard ratio; CI, confidence interval; ER, estrogen receptor.
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Figure 6. Nomograms for predicting 1-, 3-, and 5-year overall survival (OS) and relapse-free survival (RFS)
of breast cancer patients in the GSE42568 dataset. (a) Nomogram for predicting OS. (b) Calibration plots of
the nomogram for predicting OS at 3- and 5-years in the dataset. (c) Nomogram for predicting RFS and
(d) Calibration plots of the nomogram for predicting RFS at 3- and 5-years in the training cohort.
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Figure 6. Continued.

Figure 7. Gene ontology (GO) enrichment analysis and biology network. (a) GO enrichment of
downregulated RNA-binding proteins (RBPs). (b) GO enrichment of upregulated RBPs. (c) Protein–protein
interaction (PPI) network and hub RBPs and (d) Transcription factor (TF)–microRNA coregulatory network.
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hydrolysis. Molecular functional analysis
demonstrated that upregulated RBPs par-
ticipated in catalytic, methyltransferase,
and transferase activities, as well as single-
stranded RNA binding, whereas downregu-
lated RBPs participated in catalytic,
endonuclease, nuclease, and ribonuclease
activities.

To investigate the functions of the differ-
entially expressed RBPs in BRCA, we cre-
ated PPI and TF-miRNA coregulatory
networks and identified the top 20 hub
RBPs (Figure 7c). As shown in Figure 7d,
the TF-miRNA co-regulatory network sug-
gested that the prognosis-related RBPs are
regulated by many TFs and miRNAs.

TIICs based on CIBERSORT

To explore the impact of the risk score on
TIICs, the infiltration proportions of 22
immune cell types in the GSE42568 dataset
were calculated using the CIBERSOT algo-
rithm. For the BRCA samples, follicular
helper M0, M1, and M2 macrophages
were the major constituents of TIICs
(Figure S1). Compared with normal breast
tissues, the infiltration proportions of follic-
ular helper T cells (P< 0.001), M0 macro-
phages (P< 0.001), and M1 macrophages
(P< 0.001) were significantly increased in
BRCA tissues, while the infiltration propor-
tions of activated natural killer (NK) cells
(P¼ 0.001), monocytes (P< 0.001), M2
macrophages (P< 0.001), and resting mast
cells (P¼ 0.004) were reduced (Figure 8a).
We also analyzed the relationship between
TIICs and OS or RFS. Patients with high
proportions of follicular helper T cells
(P¼ 0.001, Figure 8b) or activated mast
cells (P¼ 0.015, Figure 8b) had poorer
OS than those with low infiltration propor-
tions, whereas patients with high propor-
tions of resting mast cells had longer OS
(P¼ 0.017, Figure 8b). In addition, patients
with high infiltration proportions of follic-
ular helper T cells had poorer RFS than

those with low infiltration proportions
(P¼ 0.034, Figure 8b).

Compared with the low-risk group desig-
nated by the OS model (Figure 8c), the pro-
portions of CD4 naı̈ve T cells (P¼ 0.016),
resting CD4 memory T cells (P¼ 0.029),
resting dendritic cells (P¼ 0.003), and rest-
ing mast cells (P¼ 0.048) were significantly
reduced in the high-risk group, while the
infiltration proportions of CD8 T cells
(P¼ 0.028), monocytes (P¼ 0.031), and acti-
vated mast cells (P¼ 0.028) were increased.
In addition, the prognosis-related RBPs had
different associations with various TIICs
(Figure S2). These results suggest that the
prognosis-related RBPs interact with some
TIICs and influence the progression and
prognosis of BRCA.

Discussion

In the present study, we identified 138 dif-
ferentially expressed RBPs. OS- and RFS-
risk models were established based on
prognosis-related RBPs that were identified
and validated using the GSE42568 and
GSE86166 datasets, respectively. Both
models proved reliable in predicting OS
and RFS. To improve the clinical practical-
ity, we constructed nomograms to
evaluate the survival or relapse of patients
at 1-, 3-, and 5-years. Additionally, we ana-
lyzed the relevant biological functions and
networks of the RBPs, and assessed the
effects of risk score on TIICs.

To explore the prognostic significance of
the differentially expressed RBPs, we per-
formed Cox survival analysis on the
GSE42568 dataset, which showed that 13
RBPs (DDX39A, PAPD4, SRSF6, NOP2,
ZCCHC24, SIDT1, EIF4E3, DIS3L,
SFPQ, SETD1B, CTIF, UBAP2L, and
CSTF3) were OS-related, and 12 RBPs
(DDX39A, PAPD4, SIDT1, SETD1B,
DIS3L, SRSF6, ESRP1, EIF4E3, CSTF3,
SUGP2, NOVA1, and HINT3) were
RFS-related. Subsequently, we established

Fan et al. 13



OS- and RFS-risk models based on the
identified RBPs to predict the prognosis of
BRCA patients in the GSE42568 dataset.
ROC analysis demonstrated that the RBP-
based risk models were reliable in selecting

BRCA patients with poor OS and RFS,
which was validated by the GSE86166 data-
set. Additionally, RS was shown to be an
independent prognostic factor in BRCA
patients. Furthermore, we constructed

Figure 8. Differences in immune infiltration characteristics between risk groups in the GSE42568 dataset.
(a) Quantity of tumor-infiltrating immune cells (TIICs) in normal and breast cancer tissues. (b) Prognostic
value of different TIICs and (c) Difference in TIICs between the low- and high-risk groups determined using
the CIBERSORT R package.

14 Journal of International Medical Research



a nomogram to enable physicians to more
accurately predict survival or relapse at 1-,
3-, and 5-years.

Functional enrichment analysis demon-
strated the significant enrichment of genes
involved in the post-transcriptional regula-
tion of RNA, including RNA splicing, reg-
ulation of translation, and non-coding
RNA processing. Post-transcriptional regu-
lation of RNA plays an important role in
many types of cancers.14,15 For example,
serine and arginine rich splicing factor 1
(SRSF1) has been shown to play an impor-
tant role in BRCA by regulating alternative
splicing,16 and heterogeneous nuclear ribo-
nucleoprotein A1 (HNRNPA1) affected the
progression of triple-negative breast cancer
by regulating hypoxia up-regulated 1
(HYOU1) mRNA expression.17 In addi-
tion, N-acetyltransferase 10 (NAT10) regu-
lates cell cycle checkpoint control and
resistance to DNA-damaging chemothera-
py and radiotherapy by affecting MORC
family CW-type zinc finger 2 (MORC2)
acetylation in BRCA.18 Furthermore, inter-
leukin enhancer binding factor 3 (ILF3)
promoted breast tumorigenicity by regulat-
ing sustained urokinase-type plasminogen
activator (uPA) expression,19 and DEAD-
box helicase 17 (DDX17) enhanced the
tumorigenic and stem-like features of
SRY-box 2 (SOX2) by promoting its bind-
ing to its target genes in ER-positive
BRCA.20 Consistent with the results of
the functional enrichment analysis,
the hub RBPs mainly affected the
post-transcriptional regulation of RNA.
However, the roles and mechanisms of
other hub RBPs, such as SRSF6,
PRPF19, POLR2E, SNRPB, and SF1, in
BRCA remain unclear and require further
study. The TF-miRNA co-regulatory net-
work revealed that these prognosis-related
RBPs might play important roles in BRCA.
Indeed, studies have shown that CSTF3,21

SIDT1,7 ESRP1,22 DDX39A,23 NOP2,24

NOVA1,25 SFPQ,26 and UBAP2L27

participate in BRCA development and pro-
gression. Although the mechanisms still
need to be defined, these studies support
our prognostic models. In addition, the
roles of other prognosis-related RBPs
(CTIF, EIF4E3, SETD1B, ZCCHC24, and
SUGP2) in BRCA warrant further
exploration.

Finally, we analyzed TIICs in BRCA.
The infiltration proportions of follicular
helper T cells ranked among the top four
TIICs and correlated with OS and RFS.
This finding suggests that follicular helper
T cells play an important role in BRCA.
Furthermore, the proportion of follicular
helper T cells was significantly higher in
the BRCA tissues than in the normal tis-
sues. A high proportion of follicular
helper T cells in BRCA patients was asso-
ciated with worse OS and RFS when com-
pared with those with a low proportion of
follicular helper T cells. This suggests that
follicular helper T cells are associated with a
poor prognosis and tumor progression in
BRCA. However, follicular helper T cells
are direct mediators of the immune check-
point inhibitor response and are associated
with B cell activation and antitumor
responses in high mutation burden mouse
models of BRCA,28 which have not yet
been studied in humans. Nevertheless,
these studies suggest that follicular helper
T cells play an important role in BRCA.

This study has some limitations. First,
the sample size of the GSE42568 dataset is
small. Second, detailed clinicopathological
parameters were lacking in the GSE42568
and GSE86166 datasets. Third, this study
was based on public data and needs more
basic experiments to further verify these
concepts.

Collectively, we investigated the prog-
nostic value and potential function of dif-
ferentially expressed RBPs in BRCA. Risk
models that reliably predict the prognosis of
BRCA patients were constructed based on
identified RBPs and validated using an
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alternative dataset. In addition, the results

showed that follicular helper T cells play an

important role in BRCA and are positively

correlated with some RBPs. Our study

provides important evidence for future

studies on the role of RBPs in BRCA.
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