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Abstract

The latest developments in mobile computing technology have enabled intensive applications on the modern
Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity
and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the
application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of
computational offloading frameworks are proposed for MCC wherein the intensive components of the application are
outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for
computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require
lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which
focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs
features of centralized monitoring, high availability and on demand access services of computational clouds for
computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The
framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the
proposed framework is validated by employing computational offloading for the proposed framework and the latest
existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of
data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application
is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes
additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.
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Introduction

Recent developments in mobile computing technology have

changed user preferences for computing. Smart Mobile Devices

(SMDs) have replaced a number of portable computing and

communication devices as all-in-one device [1], [2]. Human

dependency on the smartphones is increasing in different fields of

life including e-business, e-education, entertainment, gaming,

management information systems, and healthcare [3]. The

consumer and enterprise market for cloud based mobile applica-

tions is expected to raise $9.5 billion by 2014 [4], which predicts

the growth of applications for Mobile Cloud Computing (MCC).

SMDs are predicated to employ computational intensive applica-

tions identical to the station based computers [5]; however, mobile

applications on the latest generation of smartphones and tablets

are still constrained by battery power, CPU potentials and

memory capacity of the SMDs [6]. Therefore, MCC is employed

to leverage the services of computational clouds for mitigating

resources limitations in SMDs [7,8].

Computational clouds facilitate to increase the computing

capabilities of resources constrained client devices by offering on

demand access to the widespread services and resources of cloud

datacenters [9]. Computational clouds offer different service

models for the provisioning of computing services [10]. For

example, Elastic Cloud Compute (EC2) is employed for applica-

tion processing services and Simple Storage Service (S3) of

Amazon Web Services (AWS) is utilized for off-device storage [9].

MCC employs the services of computational clouds for enabling

computational intensive and ubiquitous mobile applications on

SMDs. For instance, the application processing services of

computational clouds are utilized for augmenting application

processing potentials of SMDs. Recently, a number of computa-

tional offloading frameworks are proposed for enabling intensive

mobile applications on SMDs [5]. For instance, Apple iCloud [11]

and Amazon Silk [12] browser are two latest mobile applications

which leverage the services of computational cloud for application

processing.
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Traditional computational offloading frameworks employ ap-

plication partitioning and component migration for computational

offloading to the computational clouds. Elastic mobile applications

are partitioned at different granularity levels and the intensive

partitions of the applications are migrated at runtime for

computational offloading. Therefore, current frameworks involve

the overhead of application partitioning and additional cost of

transferring the application binary code and corresponding data

file(s) of the running instances of mobile application to the remote

server node. Existing computational offloading frameworks lack of

considering the intensity of runtime application partitioning and

component migration. Therefore, resources intensive platform is

established at runtime for the distributed processing of intensive

mobile application. Such frameworks result in larger data

transmission cost, high energy consumption and longer turn-

around time of the mobile applications in accessing the application

processing services of computational clouds [5,13–15]. The

resources constrained nature of SMDs requires deploying light-

weight procedures for leveraging the application processing

services of computational clouds. Lightweight computational

offloading techniques require minimal resources utilization on

SMDs in accessing the application processing services of cloud

server nodes [6]. Therefore, mobile users are enabled to utilize

distributed services with lower computational load on mobile

devices, shorter turnaround time of the application and relatively

long lasting battery lifetime.

This paper presents a lightweight Distributed Computational

Offloading Framework (DCOF) for computational offloading in

MCC. DCOF employs distributed approach for the configuration

of intensive mobile application between mobile device and cloud

server node. It eradicates the overhead of application partitioning

and component migration at runtime, as a result the amount of

data transmission, energy consumption cost and turnaround time

of the application is reduced in cloud based processing of mobile

application. The framework is evaluated by testing prototype

application in real MCC environment. The lightweight nature of

the proposed framework is validated by comparing results of

employing DCOF and latest computational framework [16–18]

for computational offloading in MCC. Analysis of the results

shows that by employing DCOF for computational offloading the

size of data transmission is minimized 91%, energy consumption

cost is reduced 81% and turnaround time of the application is

decreased 83.5%. Hence, the proposed framework minimizes

resources utilization in leveraging the application processing

services of computational clouds and offers lightweight procedure

for computational offloading in mobile cloud computing.

The paper is classified into the following sections. Section 2

discusses related work in computational offloading for MCC.

Section 3 presents the architecture of proposed framework and

explains the operating procedure of DCOF. Section 4 describes

methodology used for the evaluation of proposed framework.

Section 5 presents results and discusses experimental findings.

Finally, section 6 draws concluding remarks and future directions.

Related Work

In the recent years, a number of cloud server based application

offloading frameworks are introduced for outsourcing computa-

tional intensive components of the mobile applications to cloud

datacenters [5]. Elastic applications are partitioned at runtime for

the establishment of distributed processing platform. The off-

loading frameworks for MCC employ static or dynamic applica-

tion partitioning mechanism. The static application partitioning

mechanism [19] involves single time application partitioning for

the distribution of workload between SMD and cloud server node,

wherein the intensive components of the application are

partitioned and transferred to the remote server node. For

example, the primary functionality offloading [20] mechanism

involves partitioning and offloading of the intensive components at

runtime. Static application partitioning is simple mechanism for

the distribution of computational load; however, it lacks of coping

with the dynamic processing load on SMDs. Dynamic application

partitioning [21–23] involves runtime profiling mechanism for

determining the intensive components of the application which

need to be offloaded to the clouds server node. Dynamic

application partitioning is a robust technique for coping with the

dynamic processing loads on SMD. Current dynamic partitioning

approaches analyze the resources consumption of SMDs, compu-

tational requirements of the mobile application and search for

runtime solving of the problem of resource limitations on SMD

[24].

A number of frameworks employ Virtual Machine (VM)

migration based computational offloading, wherein the running

instance of mobile application is encapsulated in the virtual

machine image [13]. It includes creation of VM instance,

encapsulation of the running mobile application in the VM

instance and transmission of the VM image on the wireless

medium to the remote server node. On the cloud server node, a

fresh VM instance is created and the delegated VM instance is

cloned onto the newly created VM instance. Mobile application

resumes its running state and application is executed on remote

server node. However, VM migration based computational

offloading requires additional computing resources for the

deployment and management of VM and migration of VM

instance to remote server node [13]. As a result, the execution cost

and turnaround time of the application is increased. Furthermore,

the migration of running application along with its data and active

states is susceptible to security breaches and attacks.

Computational offloading is composed of three phases including

initialization, computational offloading and remote application

execution. (a) In the initialization phase, the availability of services

on the cloud server node are discovered, context information

reports are collected from various sensor modules. Furthermore,

application characteristics such as security level and QoS demands

are also gathered. The information collected in this phase is used

for the offloading mechanisms. (b) The computational offloading

process involves decision of application partitioning and offloading

of an application, user authentication and authorization, VM

instance creation on mobile and cloud server, migration of VM

clone, QoS parameter negotiation and resources reservation. (c)

Once the delegated application is configured, the running state of

the application is resumed on the remote virtual device instance

and application is executed on remote server node. Recently, a

number of mobile cloud applications employ cloud computing to

alleviate resources constraints of SMDs. For instance, Apples

iCloud [11] provides applications such as music, photos, apps,

calendars, documents automatically on demand basis. Apples

iCloud employs the PaaS (Microsoft Azure) and IaaS (EC2) of

Amazon for hosting the application store. Similarly, Silk applica-

tion [12] is released by Amazon, which is a cloud-accelerated web

browser. Silk is a split browser which resides on both Kindle Fire

and EC2. For each web page request, Silk dynamically determines

distribution of computational load between the local SMD and

remote Amazon EC2. Silk considers the objective functions of

network conditions, page complexity and the location of any

cached content.

Existing frameworks [16,22,23,25] employ application parti-

tioning and component migration for computational offloading to
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the cloud server nodes. Mobile applications are partitioned at

different granularity levels and the intensive partitions of the

applications are migrated at runtime for computational offloading

[24]. The mechanism of runtime application partitioning and

component migration results in longer turnaround time of the

application and larger size of data transmission. The timing cost of

runtime computational offloading includes preferences saving time

(Tps), binary code offloading time of the application (Tcm), time

taken in uploading the data states of the mobile application to

remote server node (Tpu), application download time to remote

virtual device instance on the cloud server node (Tdv), application

reconfiguration and resuming time on the remote server node

(Trr), remote application execution time (Tre) and time taken in

returning the resultant data file to local mobile device (Tpr).

Therefore, the turnaround time of a single component of the

mobile application which is offloaded at runtime is given by

equation (1).

TT~Tps z Tcm z Tpu z Tdv z Trr z Tre zTpr ð1Þ

The Size of Data transmission (Ds) in runtime computational

offloading involves the size of application binary file migrated at

runtime (Dm), the size of preferences file uploaded to cloud server

node (Dpu) and the size of resultant preferences file downloaded to

the local (Dpd ). The total size of data transmission of a single

component of the mobile application which is offloaded at runtime

is given by equation (2).

Ds ~Dm z Dpu z Dpd ð2Þ

Therefore, current frameworks [16,22,25–30] involve the

overhead of application partitioning and additional cost of

transferring the application binary code and corresponding data

file(s) of the running instances of mobile application to the remote

server node. As a result, a resources intensive and time consuming

distributed platform is established for the distributed processing of

intensive mobile applications.

Proposed Distributed Computational Offloading
Framework (DCOF)

We propose as a lightweight alternative for the processing of

intensive mobile applications in MCC. DCOF enables intensive

mobile applications on the SMDs and reduces the additional

overhead of computational offloading to the cloud server nodes.

DCOF aims at leveraging the application processing services of

cloud datacenters with minimal resources utilization on SMD.

DCOF employs the SaaS model of computational clouds for

accessing the services of cloud server nodes on demand basis. It

focuses on dynamic computational task offloading to the cloud

server node instead of dynamic intensive partition migration. The

configuration of resources intensive components of the mobile

application on the cloud server nodes results in eradication of the

overhead of transmitting the application binary files and data files

to the cloud server node at runtime. Computational load of the

intensive mobile application is distributed by eliminating the

overhead of migrating application binary file and active states of

the application at runtime.

However, relying on the preconfigured services of the cloud

server nodes lead to the problem of dependency on the centralized

services and reduced offline usability. Similarly, it leads to the

employment of thin client applications such as traditional web and

email applications, wherein the processing logic of the application

is hosted on the remote server nodes and client applications

provide user interface. In order to address such issues, the

proposed framework employs replication of the intensive compo-

nents of the mobile application on mobile device and cloud server

node. DCOF employs two distinct operating modes (offline mode

and online mode) for the execution of mobile application. The

offline mode of the application execution indicates an ideal

situation wherein, sufficient computing resources are available on

the local mobile device for the execution of mobile application.

Therefore, in the offline mode all the components of mobile

application are enabled to be scheduled for execution on the local

mobile device. The profiler mechanism dynamically evaluates

availability of resources (RAM, CPU and battery power) and

future demands of the execution of mobile applications on SMD.

Mobile application switches to online mode in the critical

condition wherein the application processing services of compu-

tational clouds are used for the execution of intensive components

of the mobile application. The required input data are transmitted

to the cloud server node and upon the successful execution of the

task on the cloud server node, resultant data are returned back to

mobile device.

DCOF implements method level granularity for computational

task offloading. Traditional computational offloading frameworks

employ additional library which is coupled with the compiler

support for tagging the intensive components of the mobile

application (as remote) at compile time. Such frameworks

[22,23,25,31–33] involve the overhead of code generator module

which is executed against the modified code, takes the source le as

input and generates necessary remote-able method wrappers and

utility functions. The remotely tagged methods are used as

potential candidate methods for computational offloading. How-

ever, DCOF does not require the annotation of individual

methods of the mobile application as local and remote. Therefore,

DCOF reduces the developmental efforts for the distribution of

execution load between mobile device and cloud server node.

Furthermore, DCOF eliminates the additional overhead of

distributed application deployment for leveraging the application

processing services of cloud datacenters in MCC. Fig 1 shows

architecture of the proposed framework.

The computational intensive components of the mobile

application which do not require users interaction are configured

on the cloud server node, which is provided access on demand

basis in the online mode of application execution. DCOF based

mobile application is based on the conventional application

framework for mobile devices. However, mobile application is

Figure 1. Architecture of the Proposed Distributed Computa-
tional Offloading Framework.
doi:10.1371/journal.pone.0102270.g001
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enabled to switch dynamically between online and offline mode.

The dual operation modes of the mobile application enables to

dynamically switch between online and offline mode. Applications

are capable to operate with full functionalities on local mobile

device in the situations of remote server access problems.

Application is enabled to operate as a standalone application in

the offline mode and to access distributed cloud services in the

online mode. DCOF is composed of the following components.

Application Profiler
Application profiling mechanism is implemented for automating

the mechanism of application partitioning and computational

offloading [24]. Prolers are important part of computational

offloading frameworks. Computational offloading frameworks

employ different types of profilers. For instance, application

profiling dynamically evaluates availability of resources (CPU,

RAM) on mobile device and computational requirements of

mobile application [25]. Similarly, network profiling mechanism

determines accessibility of network and quality of signal strengths

while accessing the wireless access medium in MCC. Energy

profiler examines utilization of battery power during the process-

ing of mobile application. Memory profiler assesses the memory

allocated to applications running on the mobile device and

availability of memory for future allocations [22,34]. The accurate

and light weight nature of the profiling mechanism results in

correct decisions for computational offloading [25,35]. Profiling

mechanism is significant for the reason that it determines the

feasibility of application partitioning and component offloading.

Profiler decides the destination location for the execution of

mobile application. Based on the objective function considered by

the computational offloading framework, profiler decides either to

execute the component locally or remotely. DCOF employs

application profiling for dynamically switching between online and

offline mode of execution. Application profiler dynamically

evaluates resources utilization on SMD and it works in coordina-

tion with the execution manager for switching the application

between online and offline modes.

Execution Manager
Execution manager monitors the execution modes of the mobile

application. In the critical conditions, application is switched to the

online mode wherein the running instance of the component of the

application is terminated after saving the running state of the

application. Execution manager is responsible for the configura-

tion of the mobile application on SMD in the dual operating

mode. In the online mode execution manager enables mobile

application on the local device to access the services on the cloud

server node for remote application processing, whereas in the

offline mode all the components of the application are executed on

local mobile device. Preferences Manager: The execution manager

component is assisted by the preferences manager component for

saving data states of the running instance of the application (in the

online mode) and resuming the active state of the application on

the local mobile device (in the offline mode). Preferences manger

provides access to the preferences file of the application. Active

data state of the application is written to the preferences while

switching to the online mode. Similarly, data is read from

preferences file while switching back to the offline mode of the

execution. Synchronizer component of DCOF accesses the

preferences for the exchange of data files between SMD and

remote server node.

Synchronizer
The synchronizer component of DCOF monitors synchroniza-

tion of data transmission between local mobile device and cloud

server node. It is responsible for the synchronization of the

distributed components of the application. Synchronizer provides

different types of services in the online mode of the application

execution. Synchronizer coordinates for the synchronization

between the application running on local mobile device and the

application running on the cloud server node.

Middleware
Mobile applications require distributed services access features

and the configuration of middleware services for enabling access to

the distributed services of cloud server nodes. DCOF provides a

transparent distributed application execution environment in the

online mode. In the online mode the services of distributed

middleware are employed for computational task offloading. The

execution manager saves the execution states of the identified

intensive component by using preferences manager component of

DCOF framework. The running instance of the executing

component is terminated and the allocated resources are released

to reduce the execution load on local mobile device. DCOF

employs middleware services for accessing the services of cloud

server node. Application running on mobile device activates the

services of cloud server node by employing Inter Process

Communication (IPC) mechanism such as RPC or RMI [6].

Mobile devices implement different middleware services [36]

based upon the operating system platform. Middleware hides the

complications of the communication between the local mobile

application and cloud server application. DCOF provides a

transparent distributed application execution environment in the

online mode and therefore, mobile users are provided the notion

as all the components of the mobile application are executed

locally on SMD. For instance, we employ kSOAP2 API [37] for

accessing the application processing services on the cloud server

Figure 2. Illustration of the Interaction of the Components of
EECOF Framework in POP and SOP.
doi:10.1371/journal.pone.0102270.g002
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node. kSOAP2 is a lightweight SOAP client library for the

Android platform [38]. Similarly, we employ Web Service

Definition Language (WSDL) [39] middleware on the cloud

server node for enabling access to the services of cloud server node.

Fig 2 shows the flowchart for the interaction of the components

of DCOF framework in the execution of mobile application.

Mobile application is employed on the mobile device and is

capable to access cloud server node for computational task

offloading. The application profiler evaluates resources utilization

on mobile device continuously. In the critical conditions (for

instance low battery), application execution manager switches the

application to the online mode. Execution manager considers the

execution history of the running instances of the components of

mobile application for making the decision of computational

offloading. The running states of the component of the application

which is executing for a longer period of time and which utilizes

abundant processing potential of the mobile device are saved by

using the preferences manager. Mobile application accesses the

services of cloud server node and the required input parameters

are transferred for remote application execution. It is important to

highlight that only the resources intensive tasks of the application

are offloaded to the cloud server node, whereas the rest of the

application continues execution on the mobile device. The

synchronizer component of DCOF is responsible for the

synchronization between mobile application running on the local

mobile device and components of the application running on the

cloud server node. Once the computational task is performed

successfully on the cloud server node, final results are returned to

the application running on mobile device. The services of the

cloud server node always remain in the active mode. In the

meanwhile, whenever remote services become inaccessible for the

reason of interruption in network connectivity, execution manager

is capable to switch back to the offline mode and to resume the

running state of the application on local mobile device. However,

the decision of resuming to the offline mode is based up on the

feasibility of application execution on local mobile device.

Execution manager makes the decision of resuming running state

of the interrupted component on the basis of the input from the

application profiler.

To reduce the dependency on the remote server node, DCOF

involves the replication of computational intensive components of

the application on mobile device and cloud server node.

Application replication involves the complexities of consistency

and synchronization in the distributed processing of the applica-

tion between mobile device and remote cloud server node.

However, the replication of intensive components of the mobile

application assists in achieving the goals of minimal resources

utilization in computational offloading, rich user experiences and

offline usability. Resources utilization is reduced by eliminating the

overhead of runtime application partitioning and partition

migration at runtime. Similarly, rich user experience and offline

usability is ensured by dynamically switching mobile application

between online and offline mode. Therefore, application on the

mobile device can resume the interrupted running state of the

intensive component of the application in the situations of

unavailability of remote services on the cloud server node.

DCOF employs traditional client/server architecture in the

online mode of the application. However, the architecture and

operation procedure of DCOF are different from the traditional

client/server applications. The traditional client/server applica-

tions are thin client applications, wherein client applications are

dependent on the server component of the application. The client

applications provide user agents for interaction with the local

computer and the processing logic is implemented on the server

machines. Examples of such applications include web application,

email application, social network applications such as Facebook,

and video conferencing applications such as Skype application.

Therefore in the traditional client/server model, client component

of the application becomes inactive in the situations of inacces-

sibility of the server application. DCOF addresses such issues by

enabling the operation of mobile application in two distinct modes.

The application on the mobile device remains operational even

though the services of computational clouds are inaccessible.

Similarly, the components of the application can be executed on

the local mobile device in the online mode.

Evaluation

This section discusses the methodology used for the evaluation

of proposed framework and explains experimental findings.

Methodology
Experimental Setup. The proposed framework is evaluated

by testing the prototype application for Android devices in the real

mobile cloud computing environment. The server machine is

configured for the provisioning of services to the mobile device in

the online mode. SaaS model of computational clouds is employed

for the provision of services to mobile devices. Mobile device

accesses the wireless network via Wi-Fi wireless network connec-

tion of radio type 802.11 g, with the available physical layer data

rates of 54 Mbps. Java based Android software development

toolkit (Android SDK) is deployed for the development of the

prototype application. Power Tutor tool [40] is used for the

measurement of battery power consumption in distributed

application processing.

Prototype Application. The Service Oriented Architecture

(SOA) of Android application framework is employed for the

development of prototype application. The prototype application

is composed of three computational intensive components. (a)

Sorting service component implements the logic of bubble sort for

sorting liner list of integer type values. The sorting operation is

tested with 30 different computational intensities (11000–40000).

(b) The matrix multiplication service of the application implements

the logic of computing the product of 2-D array of integer type

values. Matrix multiplication logic of the application is tested with

30 different computational intensities by varying the length of the

2-D array between 160*160 and 450*450. c) The power compute

service of the application implements the logic of computing b ‘ e,

whereas b is the base and e is the exponent. The power compute

logic of the application is tested for 30 different computational

intensities by varying the exponent between 1000000 and

200000000. Empirical data are collected by sampling all

computational intensities of the application in 30 different

experiments and the value of sample mean is shown with 99%

confidence for the sample space of 30 values in each experiment.

Data are collected by running the prototype application in three

different scenarios. In the first scenario, the components of the

mobile application are executed on the local mobile device to

analyze resources utilization and turnaround time of the applica-

tion on mobile device. In the second scenario, the intensive

components of the mobile application are offloaded at runtime by

implementing the latest techniques [16], [18] which involve entire

component migration for computational offloading in MCC. In

this scenario, we analyze size of data transmission and turnaround

time of the mobile application. In the third scenario, DCOF is

employed for evaluating resources utilization on mobile device and

turnaround time of the application in cloud based application

processing. The evaluation parameters include RAM allocation on
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mobile device (MB), CPU utilization on mobile device (MIPS), the

size of data transmission (KB), and Turnaround Time (TT) of the

application (ms). RAM allocation shows the amount of memory

allocated to a particular component of the application on mobile

device. CPU utilization indicates the percent CPU utilization

during the execution of the component of mobile application on

mobile device. TT parameter represents the total time taken in the

execution of the component of mobile execution. The size of data

transmission parameter represents the amount of data transmitted

over the wireless network medium for offloading the components

of mobile applications. The amount of data transmission affects

the cost (energy consumption and turnaround time) of computa-

tional offloading for MCC.

Results and Discussion
This section discusses experimentation findings of evaluating

DCOF by employing the prototype application. It presents

analysis of turnaround time, amount of data transmission, and

energy consumption cost of the application from the perspective of

local and remote application execution. Remote execution of the

application is evaluated by employing the latest component

offloading frameworks [16], [18] and DCOF based computational

offloading for MCC.

As shown in the equation (1) the turnaround time (TT) of each

component of the application in traditional computational off-

loading includes preferences saving time (Tps), binary code

offloading time of the application (Tcm), time taken in uploading

the data states of the mobile application to remote server node

(Tpu), application download time to remote virtual device instance

on the cloud server node (Tdv), application reconfiguration and

resuming time on the remote server node (Trr), remote application

execution time (Tre) and time taken in returning the resultant data

file to local mobile device (Tpr). However, DCOF employs

computational task migration rather than application partitioning

and intensive components migration at runtime. Therefore, the

TT of each component of the application in DCOF based

computational offloading involves time taken in task offloading

(Tcm), remote application processing time (Tre) and preferences

download time (Tpr).

TT~ TcmzTpuzTpr ð3Þ

It shows that DCOF eliminates the additional delay incurred

during component migration (Tps, Tpu) and reconfiguration (Tdv,

Trr) on the remote server node. Therefore, the TT of the intensive

operation is reduced in each instance of computational offloading

of the prototype application. Fig 3 shows the comparison the TT

of sorting service execution in different scenarios. It is found that

for sorting service execution the TT and resources utilization on

SMD varies with the varying intensities of the sorting operation.

For instance, the TT is found 4876 ms for list size 11000,

16950 ms for list size 25000, and 31207 ms for list size 40000. We

found that TT for sort service execution on SMD increases by

84.3% for sorting list of 40000 values as compared to sorting list of

11000 values. The comparison of TT for sorting operation in local

execution and traditional offloading techniques shows that TT of

the sorting service increases considerably in runtime component

offloading. It is observed in offloading sorting service component

the TT of the sorting operation increases by: 80% for sorting list of

11000 values, 75% for sorting list 17000 values, 80% for sorting

list of 30000 values and 81% for sorting list of 40000 values.

The comparison of sorting service execution on local mobile

device and the DCOF based computational offloading shows

decrease in TT of the sorting operation in the online mode of

DCOF. We examined that by accessing the services of cloud server

on in the online mode of DCOF, the TT of sorting services

reduces by: 48% for sorting list of 11000 values, 60% for sorting

list of 25000 values and 57% for sorting list of 40000 values. The

overall reduction in TT value for sorting service is found by

57.8(+/2) 2% with 99% confidence in the sample space of 30

Figure 3. Comparison of the Turnaround Time of the Sorting
Service Execution in Local and Remote Execution.
doi:10.1371/journal.pone.0102270.g003

Figure 4. Comparison of the Turnaround Time of the Matrix
Multiplication Service Execution in Local and Remote Execu-
tion.
doi:10.1371/journal.pone.0102270.g004

Figure 5. Comparison of the Turnaround Time of Power
Compute Operation in in Local and Remote Execution.
doi:10.1371/journal.pone.0102270.g005
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values. The comparison of TT for the sorting operation in the

DCOF based computational offloading and traditional offloading

shows the lightweight nature of DCOF framework for computa-

tional offloading. The decrease in DCOF based offloading of

sorting service as compared to traditional runtime component

offloading is found 89% for sorting list of 11000 values, 91% for

sorting list of 20000 values, 92% for sorting list of 31000 values

and 92% for sorting list of 40000 values.

Fig 4 shows the comparison of the TT of matrix multiplication

service execution in different scenarios. It is observed that for

matrix multiplication operation the execution time is 3653 ms for

matrices length 160*160, 21185 ms for matrices length 310*310

and 99286 ms for matrices length 450*450. It shows that the

execution time increases 96.3% for multiplying matrices of length

450*450 as compared to matrices of length 160*160. TT of the

matrix multiplication increases considerably in runtime compo-

nent offloading. It is observed in offloading matrix multiplication

service the TT of the matrix multiplication service in remote

processing compared to local execution on mobile device increases

by: 78% for multiplying matrices of length 160*160, 70% for

multiplying matrices of length 250*250, 66% for multiplying

matrices of length 300*300 and 65% for multiplying matrices of

length 450*450.

DCOF based computational offloading however, reduces the

TT of the matrix multiplication operation as compared to both

local and traditional computational offloading based execution. It

is observed that DCOF based computational offloading reduces

the TT of matrix multiplication operation by: 10% for matrices of

length 160*160, 9% for multiplying matrices of length 350*350

and 8% for multiplying matrices of length 450*450. The overall

reduction in TT for matrix multiplication service in DCOF based

offloading of matrix multiplication operation is found 10.3(+/2)

0.5% with 99% confidence in the sample space of 30 values. The

decrease in TT of matrix multiplication operation in DCOF based

offloading as compared to traditional runtime component off-

loading is examined 74% for multiplying matrices of length

160*160, 72% for multiplying matrices of length 230*230, 64%

for multiplying matrices of length 350*350 and 63% for

multiplying matrices of length 450*450.

Fig 5 shows the comparison of turnaround time of the power

compute service execution for local and remote execution. It

shows that the turnaround time of power compute operation

increases with the increase in the intensity of power compute

operation. For example, the TT on local mobile device is found

51 ms for computing 2 ‘1000000, 1767 ms for computing 2

‘60000000 and 69044 ms for computing 2 ‘2000000000. It shows

the TT for power compute service execution increases by 99.9 for

computing 2 ‘2000000000 as compared to computing 2

‘1000000. The comparison of TT for power compute operation

in local execution and traditional offloading technique shows that

TT of the power computing increases considerably in runtime

component migration. We found that in runtime component

offloading the TT of power computing increases by: 99.3% for

computing 2 ‘1000000, 96.2% for computing 2 ‘20000000,

81.4% for computing 2 ‘400000000 and 74% for computing 2

‘2000000000.

The comparison of TT of power compute operation in local

and remote execution shows that DCOF based computational

offloading is insignificant for lower intensities of the application.

For instance, the TT of power compute operation for computing 2

‘1000000 is 33% higher in DCOF based computational offloading

as compared to the local execution of power compute operation. It

is for the reason of additional delays incurred in the process of

computational offloading. However for higher intensive opera-

tions, DCOF based computational offloading reduces the TT of

the power compute operation as compared to both local execution

and traditional computational offloading. It is observed that

DCOF based computational offloading reduces the TT of power

compute operation 6.3% for computing 2 ‘2000000, 47.7% for

Figure 6. Comparison of the Size of Data Transmission in
Traditional Offloading and DCOF Based Offloading for Sorting
Operation.
doi:10.1371/journal.pone.0102270.g006

Figure 7. Comparison of the Size of Data Transmission in
Traditional Offloading and DCOF Based Offloading for Matrix
Multiplication Operation.
doi:10.1371/journal.pone.0102270.g007

Figure 8. Comparison of Energy Consumption Cost in Tradi-
tional and DCOF based Computational Offloading.
doi:10.1371/journal.pone.0102270.g008
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computing 2 ‘20000000 and 84.2% for computing 2

‘2000000000. The overall reduction in TT in DCOF based

offloading as compare to local execution of power compute

operation is found 65(+/2) 10.8%. Similarly, the decrease in TT

of power compute operation in DCOF based offloading as

compared to traditional runtime component offloading is exam-

ined by: 99% for computing 2 ‘2000000, 98% for computing

2‘20000000 and 95.9% for computing 2 ‘2000000000. The

overall reduction in TT of power compute operation in DCOF

based offloading as compare to traditional runtime component

offloading is found 97(+/2) 0.6%.

As shown in equation (2) the amount of data transmission in

runtime computational offloading involves the size of application

binary file migrated at runtime, the size of preferences file

uploaded to cloud server node and the size of resultant preferences

file downloaded to the local mobile device. However, the size of

data transmission in DCOF based computational offloading of

each component of the application involves the amount of data

transmitted to remote server node as input parameter and amount

of data transmitted as the final result returned from remote server

node to the local mobile device. DCOF eliminates the additional

data transmitted in migrating application binary code and

preferences files. Therefore, the size of data transmission is

reduced in each instance of computational offloading of the

prototype application.

Fig 6 shows the size of data transmission in offloading sort

service component of the application at runtime. It is examined

that in all instances of offloading sorting service, the size of binary

application file (.apk) remains 44.4 KB for sort service; whereas,

the size of preferences file uploaded to the cloud server node and

the size of the resultant preferences file downloaded to the local

mobile device varies for different intensities of the sorting

operation. The size of data transmission for offloading sort service

component with the list of 11000 values is found 752.4 KB,

whereas the size of data transmission in accessing sorting service of

DCOF server application is examined 83 KB. Similarly, the size of

data transmission is examined 2645.4 KB for list of 40000 values

in traditional computational offloading, whereas the size of data

transmission by employing DCOF is found 692 KB. It shows that

by employing DCOF based computational offloading; the size of

data transmission is reduced 76% for sorting list of 1100 values

and 74% for sorting list of 40000 values. The average reduction of

data transmission is found 74.7% by employing DCOF based

computational offloading for the sorting list of 11000–40000

values.

Fig 7 shows the comparison of data transmission in traditional

runtime application offloading and proposed DCOF based

computational offloading for matrix service component of the

application. It is examined that in all instances of matrix

multiplication service offloading the size of binary application file

(.apk) remains 46 KB; whereas, the total size of data transmission

in runtime offloading of matrix multiplication service is examined:

5739.4 KB for matrices length 160*160, 15426.5 KB for matrices

length 260*260 and 46740 KB for matrices length 450*450. The

average size of data transmission for offloading matrix multipli-

cation service with the matrices length 160*160–450*450 is

determined 11474.3 KB. However, the size of data transmission

by employing DCOF for offloading matrix multiplication opera-

tion is found 463 KB for matrices of length 160*160, 1979 KB for

matrices of length 350*350 and 3308 KB for matrices of length

450*450. It shows that the size data transmission is reduced by

91.9% for matrix size 160*160 and by 92.2% for matrix size of

450*450 values by employing DCOF for offloading matrix

multiplication operation. The average reduction of data transmis-

sion over the wireless network medium is by 92% in DCOF based

computational offloading for the matrices of size 160*160–

450*450.

The size of data transmission for offloading power compute

service by employing traditional computational offloading is

evaluated in 30 different experiments. It is examined that in all

instances of offloading power compute service the size of binary

application file (.apk) is 42.7 KB; whereas, the size of preferences

file uploaded to the cloud server node is 1 KB and the size of the

resultant preferences file downloaded to the local is 1 KB.

Therefore, the total size of data transmission is observed as

44.7 KB for offloading power compute service at runtime;

whereas, the size of data transmission in employing DCOF for

power compute service is found 2KB. It shows that the overhead

of offloading the binary file of the power compute service is

eliminated; therefore, the size of data transmission reduces 95.5%

which results in the reduction of energy consumption cost and

turnaround time of the application in cloud based application

processing. The total size of data transmission in traditional

computational offloading for the mobile application is observed as

24761 KB; whereas, the size of data transmission in DCOF based

computational offloading is found 2074.6 KB. It shows that the

amount of data transmission is reduced 95.6% in employing

DCOF for offloading the intensive components of the application.

The energy consumption cost is evaluated in 30 different

experiments for all the three components of the application by

employing traditional and DCOF base computational offloading.

It is found that the energy consumption cost reduces considerably

by implementing DCOF for offloading computational task to

cloud server nodes. The decrease in the energy consumption cost

is for the reason of reducing the overhead of additional resources

utilization in the establishment of distributed application process-

ing platform at runtime. Fig 8 compares the average decrease in

energy consumption cost of offloading the components of the

application in traditional and DCOF based computational off-

loading. It is examined that energy consumption cost reduces by:

85.1% for sorting 11000 values, 85.2% for sorting 20000 values,

87.8% for sorting 30000 values and 88.6% for sorting 40000

values.

The decrease in the energy consumption cost by employing

DCOF for offloading sorting operation is found by 86.7% with 30

different intensities of the sorting operation. Similarly, it is

examined that by employing DCOF based offloading, the energy

consumption cost of matrix multiplication operation reduces by:

73% for matrices of length 160*160, 66.3% for matrices of length

300*300, 56.8% for matrices of length 400*400 and 50.4% for

matrices of length 450*450. The average decrease in the energy

consumption cost by employing DCOF for offloading matrix

multiplication operation is found 64.3% with 30 different

intensities of matrix multiplication operation. Similarly, the energy

consumption cost of power compute operation reduces by 63% for

computing 2 ‘1000000, 76.8% for computing 2 ‘30000000,

91.8% for computing 2 ‘200000000 and 96.8% in computing 2

‘2000000000.

The employment of DCOF results in minimal resources

utilization on SMD for computational offloading in MCC. It is

observed that the additional cost of application binary code

migration and active data state migration to the cloud server node

is reduced by employing DCOF for cloud based processing of

computationally intensive mobile applications. Therefore, turn-

around time, size of data transmission and energy consumption

cost is reduced in processing intensive mobile application on cloud

server node. For instance, by employing DCOF the size of data

transmission for sorting service is reduced by 74.8%, turnaround
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time of the sorting operation reduces by 91.3% and the energy

consumption cost is reduced by 87.5% as compared to the

traditional computational offloading technique [16], [18]. Simi-

larly, the size of data transmission for matrix multiplication

operation is reduced by 92.8%, turnaround time is reduced by

72% and energy consumption cost is reduced by 61.6% compared

to the traditional computational offloading technique. In the same

way, the size of data transmission for power compute operation is

reduced by 95.5%, turnaround time is reduced by 97% and

energy consumption cost is reduced by 93%.

Conclusions

The mechanism of application partitioning at runtime and

component migration increases data traffic, energy consumption

cost and turnaround time of the application. Therefore, resources

intensive and time consuming distributed application execution

environment is established for computational offloading in MCC.

DCOF is proposed to minimize the overhead of load distribution

between mobile devices and cloud server node in leveraging the

application processing services of computational clouds. DCOF

employs lightweight operating procedures for computational

offloading and leverages the SaaS model for the deployment of

computationally intensive mobile applications in MCC. The

incorporation of distributed services access technique for compu-

tational offloading facilitates in the optimal deployment procedure

with minimal resources utilization for the establishment of

distributed platform in MCC. The dual operating nature

contributes to the versatility and robustness of the distributed

framework for enabling intensive applications on resources

constrained SMDs. Mobile applications are enabled to operate

independently on the local mobile device in the offline mode;

whereas, the services of computational clouds are employed on

demand basis in the online mode for conserving computing

resources of SMDs.

Analysis of the results signifies the lightweight nature of DCOF,

which reduces the energy consumption cost, size of data

transmission and turnaround time of the application in cloud

based processing of the intensive component of mobile application.

The additional cost of application binary code migration and

active data state migration to the cloud server node is reduced by

employing DCOF for computational offloading. It is found that by

employing the DCOF for computational offloading, the size of

data transmission is minimized by 91%, energy consumption cost

is reduced by 81% and turnaround time of the application is

decreased by 83.5% as compared to the contemporary offloading

frameworks. Hence, the DCOF minimizes additional resources

utilization and therefore offers lightweight solution for computa-

tional offloading in MCC. The future research includes extending

the scope this research to address the issues of consistency of

simultaneous application execution between local mobile device

and remote cloud server node, and seamless application execution

in leveraging application processing services of computational

clouds in MCC.
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