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Abstract The purpose of this investigation was to evaluate
the diversity of bacteria in diabetic foot osteomyelitis using a
16S rRNA sequencing approach and to compare the results
with conventional culture techniques. In this prospective ob-
servational study, we obtained 34 bone samples from patients
admitted to our hospital with a moderate—severe diabetic foot
infection. We analysed the distribution of the 16S rRNA gene
sequences in the bone samples, using an [llumina MiSeq Per-
sonal Sequencer. We compared the genera that were detected
with the cultured pathogens in the bone samples with conven-
tional techniques. In the 23 samples that had positive results
with both techniques, Staphylococcus, Corynebacterium,
Streptococcus and Propionibacterium spp. were detected in
20, 18, 13 and 11 samples, respectively. Significantly more
anaerobes were detected with 16S rRNA sequencing com-
pared to conventional techniques (86.9 % vs. 23.1 %, p=
0.001) and more Gram-positive bacilli were present (78.3 %
vs. 3.8 %, p<0.001). Staphylococcus spp. were identified in
all of the sequenced bone samples that were negative with
conventional techniques. Mixed genera were present in
83.3 % (5 of 6) of the negative samples. Anaerobic and fas-
tidious organisms may play a more significant role in
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osteomyelitis than previously reported. Further studies with
larger populations are needed in order to fully understand
the clinical importance of the microbial diversity of diabetic
foot osteomyelitis.

Abbreviations
DFI Diabetic foot infection

DFO  Diabetic foot osteomyelitis

IDSA Infectious Diseases Society of America

NCBI National Center for Biotechnology Information
OTU  Operational taxonomic units

rRNA  Ribosomal ribonucleic acid

Introduction

Diabetic foot osteomyelitis (DFO) develops in approximately
44-68 % of patients with diabetes mellitus admitted to the
hospital with a diabetic foot infection (DFI) [1] and is the
leading cause of amputation among such patients [2]. The
microbiologic spectrum of DFO seems to be similar to deep
diabetic foot soft tissue infections [3] and primarily consists of
Gram-positive bacteria, especially Staphylococcus aureus and
beta haemolytic streptococci [4, 5]. Anaerobic pathogens are
generally uncommon, with some studies reporting that only
3—-14 % of infections involve anaerobes [6]. More recent stud-
ies indicate that 4685 % of DFO are monomicrobial [7, 8].
However, conventional culture techniques focus on organisms
easily cultured using traditional microbiological evaluations
and are limited by the time required for organisms to grow
[9]. The phenomenon that only a small percentage of micro-
organisms grow on agar plates has been known as the ‘great
plate count anomaly’ since the early 20th century [10]. Little is
known about the diversity of bacteria in DFO and the
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contribution of anaerobic and fastidious organisms to these
infections [11]. This study aimed to better characterise the
bacterial ecology of DFO using a modern 16S ribosomal ri-
bonucleic acid (rRNA) gene sequencing approach.

Materials and methods
Patient population

We consecutively obtained 34 bone samples from patients
admitted to our hospital with moderate—severe DFI according
to the diabetic foot infection classification of the Infectious
Diseases Society of America (IDSA) [12]. We included pa-
tients who were 21 years or older and had high suspicion of
DFO based on their IDSA classification. Exclusion criteria
included other infectious diseases, active, previously diag-
nosed DFO in the study foot, immunosuppressive therapy,
organ and/or haematological malignancies, and end-stage re-
nal disease requiring dialysis. We performed a percutaneous
biopsy using a 16 gauge Jamshidi needle introduced at least
2 cm from the ulcer site [6] (n=7) or we obtained intraopera-
tive bone samples from the patients that required surgical de-
bridement or amputation (n=27). We sent the obtained bone
samples to the laboratory for conventional culturing and his-
topathological tests. We used our hospital microbiology
laboratory’s established protocol for anaerobic sampling and
transport. The bone specimens were placed in sterile cups
without any transport medium and processed within 1 h of
collection. Laboratory technicians were kept unaware of the
clinical data. We stored a part of the obtained samples prompt-
ly at =80 °C until the end of the study. Informed consent was
obtained from all individual participants included in the study.

16S rRNA gene sequencing

After thawing, we recovered portions of the bone samples
using sterile forceps. We extracted genomic DNA using the
Roche High Pure PCR Template Preparation Kit (Roche Life
Sciences, Indianapolis, IN, USA) with a modified lysis step.
We lysed our samples by combining 25 mg of sample, 200 puL
each of lysis buffer and binding buffer (kit buffers 1 and 2),
500 uL of zirconium oxide beads and a single 5-mm steel
bead in a 200-uL screw-cap tube. We shook the tubes using
a TissueLyser II (Qiagen, Inc., Valencia, CA, USA) for 5 min
at 30 Hz. We continued the extraction using the manufac-
turer’s instructions. We used the [llumina MiSeq Personal Se-
quencer (Illumina, Inc., San Diego, CA, USA) in collabora-
tion with PathoGenius Laboratories (PathoGenius, Lubbock,
TX, USA) to assess the distribution of 16S rRNA gene se-
quences. We amplified the samples for sequencing using a
forward and a reverse fusion primer. The forward primer
was constructed with the (5'-3") Illumina i5 adapter, an 8—
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10-bp barcode, a primer pad and the 28F primer. The reverse
fusion primer was constructed with the (5'-3") Illumina i7
adapter, an 8—10-bp barcode, a primer pad and the 519R prim-
er. We used the HotStarTaq Plus Master Mix Kit (Qiagen, Inc.,
Valencia, CA, USA) for polymerase chain reaction (PCR)
under the following conditions: 94 °C for 3 min; followed
by 30 cycles of 94 °C for 30 s, 60 °C for 40 s and 72 °C for
1 min; and a final elongation step at 72 °C for 5 min.

In preparation for 16S sequencing, we denoised the DNA to
remove short sequences, singleton sequences and noisy reads
[13]. With the bad reads removed, we performed chimera de-
tection using the de novo method built into UCHIME [14] to
aid in the removal of chimeric sequences [15]. We corrected the
remaining sequences base by base to help remove noise from
within each sequence. We quality checked and demultiplexed
the denoised and chimera-checked reads generated during se-
quencing. We then clustered these sequences into operational
taxonomic units (OTUs) using the UPARSE algorithm [16].
We ran the centroid sequence from each cluster against a

Table 1  Bacterial genera identified with 16S ribosomal ribonucleic
acid (rRNA) sequencing in 23 positive bone samples

Genera* Samples Avg% SD Min—max %
No hit 22 15.6 26.1  0.03-87.1
Staphylococcus spp. 20 28.6 346 0.17-98.8
Corynebacterium spp. 18 7.0 10.7 0.01-33.8
Peptoniphilus spp. 17 2.3 3.1 0.01-11.7
Unknown Firmicutes 16 13.1 19.5  0.02-55.6
Finegoldia spp. 15 8.1 11.8  0.1744.6
Unknown Clostridiales 14 33 84 0.02-32.1
Streptococcus spp. 13 20.1 19.5  0.03-57.9
Anaerococcus spp. 12 82 87 0.06-27.6
Propionibacterium spp. 11 0.9 1.7 0.002-5.0
Clostridium spp. 9 0.9 1.1 0.008-3.3
Unknown Dermabacteriae 8 0.1 0.1 0.03-0.3
Unclassified Clostridiales 8 1.1 1.6 0.008-3.9
Unknown Clostridia 8 2.0 2.1 0.03-6.8
Porphyromonas spp. 7 1.8 1.7 0.03-4.8
Unclassified Clostridia 7 1.3 1.5 0.004-3.6
Unknown bacteria 7 22 51 0.01-13.8
Actinomyces spp. 6 1.0 1.8 0.003-4.7
Enterobacter spp. 6 6.0 11.3  0.10-28.8
Prevotella spp. 5 32 55 0.04-13.0
Helcococcus spp. 5 1.2 1.5 0.05-3.8
Pseudomonas spp. 5 20.8 42.8 3.90-52.6

*Genera sequenced that occurred in at least 21.7 % (5 of 23) of the
positive bone samples. The genera are sorted by the number of bone
samples in which they were detected

Avg % average percentage each genus contributed to its positive samples;
SD standard deviation of the percentages; Min—max % range of the per-
centages; No hit sequence has no match with the sequences in the NCBI
database
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database of high-quality sequences derived from the National
Center for Biotechnology Information (NCBI) database, March
2015. We used an internally developed Python program that
assigns taxonomic information to each sequence to analyse the
output and write the final analysis files.

Statistical analysis

Analysis was performed using the SAS 9.4 statistical package.
The data were presented as number of patients (%). Differ-
ences between both culture techniques were measured using
the McNemar’s test. p-Values <0.05 were considered statisti-
cally significant.

Results

Of'the 26 bone samples that grew pathogens with convention-
al culturing techniques, three did not sequence. The three
samples that did not sequence grew Stenotrophomonas
maltophilia (n=1), S. aureus (n=1) and Enterobacter cloacae
(n=1) with conventional culturing. All three samples were
monomicrobial infections. Table 1 presents an overview of
all the genera that were sequenced and occurred in at least
21.7 % (5 of 23) of the positive bone samples. The table
includes the average contribution of each genus to the total
bacterial population in those samples as represented as a per-
centage. Staphylococcus spp. were the predominant genus
identified in the positive bone samples. Sequences of

Table 2  Bacterial genera in diabetic foot osteomyelitis (DFO) with the two culturing techniques

Conventional culture techniques

16S rRNA sequencing*

Pathogens Overall (%), total number
of patients=26

Gram-positive cocci 20 (76.9)

S. aureus, total 13 (50.0)

S. aureus resistant to methicillin 3(11.5)

Coagulase-negative staphylococci 11 (42.3)

Streptococcus spp. 6(23.1)

Enterococcus spp. 2(7.7)

Gram-positive bacilli 1(3.8)

Corynebacterium spp. 1(3.8)

Gram-negative bacilli 13 (50.0)

P, aeruginosa 4 (15.4)

S. maltophilia 1(3.8)

Proteus spp. 1(3.8)

Anaerobes 6 (23.1)

Facultative anacrobes 3(11.5)

Obligate anaerobes 3(11.5)

Polymicrobial infections 16 (64.0)

Unknown bacteria NA

Pathogens Overall (%) total number
of patients,=23
Gram-positive cocci 23 (100.0)
Staphylococcus spp. 20 (86.9)
S. aureus resistant to methicillin Not tested
Coagulase-negative staphylococci Not tested
Streptococcus spp. 13 (56.5)
Enterococcus spp. 0
Unknown Dermabacteriae 8 (34.8)
Gram-positive bacilli 18 (78.3)
Corynebacterium spp. 18 (78.3)
Gram-negative bacilli 10 (43.5)
Pseudomonas spp. 521.7)
S. maltophilia 0
Proteus spp. 0
Enterobacter spp. 6 (26.1)
Anaerobes 20 (86.9)
Facultative anaerobes 17 (73.9)
Propionibacterium spp. 11 (47.8)
Actinomyces spp. 6(26.1)
Helcococcus spp. 5(2L7)
Obligate anaerobes 20 (86.9)
Peptoniphilus spp. 17 (73.9)
Finegoldia spp. 15 (65.2)
Anaerococcus spp. 12 (52.2)
Porphyromonas spp. 7 (30.4)
Prevotella spp. 521.7)
Unknown Firmicutes 16 (69.6)
Unknown/unclassified Clostridia 15 (65.2)
Unknown/unclassified Clostridiales 22 (95.7)
Clostridium spp. 9(39.1)
Polymicrobial infections 21 (91.3)
Unknown bacteria 7 (30.4)

*Genera sequenced that occurred in at least 21.7 % (5 of 23) of the positive bone samples. Data are number of patients (%)
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Staphylococcus spp. were detected in 20 of the 23 samples,
with an average contribution of 28.6 % to the total bacterial
population. The most prevalent populations of Gram-positive
cocci identified after that were, in order, Corynebacterium (n=
18), Streptococcus (n=13) and Propionibacterium spp. (n=
11). Facultative anaerobes included Actinomyces and
Helcococcus spp. in 6 and 5 of the samples, respectively.
Obligate anaerobes such as Peptoniphilus, Finegoldia,
Anaerococcus, Clostridium, Porphyromonas and Prevotella
were detected in 17, 15, 12,9, 7 and 5 of the samples, respec-
tively. Two of the positive samples were low coverage sam-
ples (sequence counts of 9 and 534, respectively). Both of
these low coverage samples only had sequences that matched
with Staphylococcus spp. and grew coagulase-negative staph-
ylococcei with conventional techniques.

Table 2 presents a comparison of the results of both cultur-
ing techniques. Only the genera that occurred in at least
21.7 % (5 of 23) of the positive bone samples with the se-
quencing method are reported. With 16S rRNA sequencing,
we found significantly more anaerobic pathogens (86.9 % vs.
23.1 %, p=0.001), significantly more Gram-positive bacilli
(78.3 % vs. 3.8 %, p<0.001) and more polymicrobial infec-
tions (91.3 % vs. 64.0 %, p=0.125). Also, greater bacterial
diversity was seen both in the Gram-positive cocci and the
anaerobes.

No pathogens were identified in 8 out of the 34 bone
samples (23.5 %) with conventional culture techniques.

Table 3  Bacterial genera identified with 16S rRNA sequencing in six
negative bone samples

Genera* Samples Avg% SD  Min-max %
Staphylococcus spp. 6 21.8 39.3  0.05-100.0
No hit 4 49.9 40.8 5.07-97.9
Corynebacterium spp. 3 3.8 1.6 1.99-5.0
Propionibacterium spp. 3 59 9.5 0.35-16.8
Streptococcus spp. 3 12.2 153 1.37-29.7
Anaerococcus spp 3 4.4 5.6 1.12-10.9
Finegoldia spp. 3 6.8 32 3.14-89
Peptoniphilus spp. 3 1.9 14 1.02-35
Unknown Firmicutes 3 7.2 9.1 0.03-17.4
Enterobacter spp. 3 0.2 0.2 0.02-0.5
Unknown Microbacteriaceae 2 7.6 104 0.27-15.0
Unknown Enterobacter 2 0.4 0.5 0.02-0.7
Pseudomonas spp. 2 18.4 26.0 0.04-36.8
Unknown bacteria 2 0.4 03 0.20-0.7

*Genera sequenced that occurred in at least 33.3 % (2 of 6) of the negative
bone samples. The genera are sorted by the number of bone samples in
which they were detected

Avg % average percentage each genus contributed to its positive samples;
SD standard deviation of the percentages; Min—max % range of the per-
centages; No hit sequence has no match with the sequences in the NCBI
database
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Two out of those eight negative samples did not sequence
either. The genera that were sequenced in the remaining
six and occurred in at least 33.3 % (2 of 6) of the samples
are presented in Table 3. Staphylococcus spp. were detect-
ed in all of the negative samples, with an average contri-
bution of 21.8 % to the total bacterial population. One of
the negative samples was a very low coverage sample
(sequence count 3); all three sequences matched with the
Staphylococcus spp. sequence derived from the NCBI da-
tabase. This was the only negative bone sample that had a
single genus present.

Conclusions

The primary genus detected in the bone samples of the current
study was the Staphylococcus spp., both with conventional
culturing techniques and with 16S ribosomal ribonucleic acid
(rRNA) gene sequencing. Not only was it detected in 89.6 %
(26 0of 29) of the sequenced samples, its average contribution
to the total bacterial population was the highest of all the
genera. This is not a surprising result, since nearly every study
reported in the North American and European literature iden-
tifies Staphylococcus aureus as the most common pathogen
cultured in diabetic foot osteomyelitis (DFO), followed by
S. epidermidis [1].

The Corynebacterium spp. was the most prevalent pop-
ulation after Staphylococcus spp. However, the average
contribution of this genus to the total bacterial population
appears to be much lower. This fastidious organism has
been associated with DFO in previous studies that used
traditional culturing methods [17, 18]. In a recent study
by Dowd et al. [11], the Corynebacterium spp. was even
identified as the predominant genus in the individual ecol-
ogies of 40 diabetic foot ulcers using a similar sequencing
approach. The Staphylococcus spp. was only detected in
13 of the 40 debridement samples. However, the patho-
genic role of Corynebacterium spp. in infections is not
well understood and the genus is usually considered a
contaminant.

Because DFO is not typically exposed to air, especially
if peripheral arterial disease is present, anaerobes may
play a bigger role than expected. As has been previously
reported in studies using pyrosequencing to characterise
bacterial diversity in chronic osteomyelitis of the jaw
[19], osteomyelitis was not caused by a single pathogen
but by diverse bacteria comprising both aerobic and an-
aerobic species, including unculturable bacteria with con-
ventional culturing methods. Only 3 out of our 29 se-
quenced bone samples had a single genus of bacteria pres-
ent, and all three of these samples had low sequence
counts, so they may have been contaminants. Our results
show that, by using a 16S rRNA sequencing technique,
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anaerobes were detected in 86.9 % of the positive bone
samples (vs. 23.1 % with conventional techniques). The
number of anaerobes seems to be largely dependent on the
culturing method. In studies by Senneville et al. [6] and
Ertugrul et al. [20], obligate anaerobes were identified in
only 3 % and 5 % of patients, respectively, after
optimising the culturing methods.

All of the patients enrolled in the study were admitted to
our hospital with moderate/severe Infectious Diseases So-
ciety of America (IDSA) infections that required antibi-
otics and surgery urgently per IDSA treatment guidelines.
Therefore, a limitation of our study design is the high pre-
test probability of osteomyelitis and the relatively small
number of negative subjects. In addition, we did not have
a ‘wash-out’ period with no antibiotic therapy before bone
cultures were obtained. While this convention is discussed
in the medical literature, there is no direct evidence that it
affects the results of either culture technique. However,
previous antibiotic therapy may have favoured the results
of 16S rRNA sequencing, since pathogens did not need to
be viable in order to be detected.

The use of advanced biological molecular technology is
of particular interest in DFO, wherein the chronicity of the
infection and the adhesion of bacteria in a sessile pheno-
type may make it difficult to culture these pathogens [21].
The diversity of the bacterial population may contribute to
the poor success rates of medical treatment of DFO
[22—-24]. Studies report prolonged treatment courses with
antibiotics in non-surgical cases ranging from 42 to 90
days [25], up to even 40 weeks [26], as well as consider-
able variation in success (57-70 %) [25]. Culture-specific
antibiotic treatment has been reported to provide a higher
rate of treatment success compared to empiric therapy [7].
A Dbetter understanding of the bacterial diversity in DFO
will provide new insights to redirect therapy and might
improve clinical outcomes in the future [27].
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