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Abstract: Herpesviruses are ubiquitous pathogens infecting most animals. Although host immunity
continually coevolves to combat virulence, viral variants with enhanced transmissibility or virulence
occasionally emerge, resulting in disease burdens in host populations. Mustelid gammaherpesvirus 1
(MusGHV-1) is the only herpesvirus species identified thus far in European badgers, Meles meles. No
MusGHV-1 associated pathomorbidity has been reported, but reactivation of MusGHV-1 in genital
tracts is linked to impaired female reproductive success. An analysis of a short sequence from the
highly conserved DNA polymerase (DNApol) gene previously identified two variants in a single
host population. Here we compared genetic variance in blood samples from 66 known individuals of
this same free-ranging badger population using a partial sequence comprising 2874 nucleotides of
the DNApol gene, among which we identified 15 nucleotide differences resulting in 5 amino acid
differences. Prevalence was 86% (59/66) for the common and 17% (11/66) for the novel variant,
with 6% (4/66) of badgers presenting with coinfection. MusGHV-1 variants were distributed un-
evenly across the population, with individuals infected with the novel genotype clustered in 3 of
25 contiguous social groups. Individuals infected with the novel variant had significantly higher
MusGHV-1 viral loads in their blood (p = 0.002) after adjusting for age (juveniles > adults, p < 0.001)
and season (summer > spring and autumn, p = 0.005; mixed-effect linear regression), likely indicating
higher virulence of the novel variant. Further genome-wide analyses of MusGHV-1 host resistance
genes and host phenotypic variations are required to clarify the drivers and sequelae of this new
MusGHV-1 variant.

Keywords: red queen hypothesis; coevolution; sexually transmitted infection; one health; genetic
epidemiology

1. Introduction

Under the concept of ‘One Health’ (a framework recognising the interconnection
between human, animal and environmental health), emerging pathogen strain monitoring
and pathotype identification are considered essential for disease surveillance and preven-
tion, not only in humans and domestic animals but also in wildlife [1,2]. The majority
(60%) of emerging infectious diseases are of animal origin, predominantly (72%) from
wildlife [1]. Due to a lack of fidelity during replication, viruses have a higher mutation
rate than cellular organisms. This results in higher evolutionary plasticity, which favours
viral adaptation to changing environments (i.e., novel hosts, new host immune strategies,
different medical treatments, etc.) and the emergence of new strains [3,4]. The resulting
arms race between pathogen virulence and host resistance continually shapes the evolu-
tion of competitive coevolving genes or organisms through repeated cycles of adaptation
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and counter-adaptation, a process formalised under the Red Queen hypothesis (RQH) [5].
When applied to host–pathogen coevolution, the RQH predicts that, under natural con-
ditions, changes in host allele frequencies within a population cause pathogens to adjust
allele frequencies to match those of the host and vice versa [6–8]. This can drive intrahost
speciation (i.e., several closely related virus strains or species can evolve independently
within the same host species) [9,10]. A recent study shows that this so-called ‘duplication’
has occurred more frequently than expected in the evolution of herpesviruses (previously
believed to be dominated by cospeciation with their host species), especially among viruses
belonging to the Gammaherpesvirinae subfamily [11].

European badgers (Meles meles) are promiscuous, polygynandrous mustelids [12].
Their social system is highly flexible [13], ranging from solitary or pair-living [14] to the
formation of extended family groups comprising upwards of 30 individuals [15] Mustelid
gammaherpesvirus 1 (MusGHV-1) is the only gammaherpesvirus known to infect bad-
gers [16]. Like other gammaherpesviruses, after primary infection, MusGHV-1 may estab-
lish latency in white blood cells [17]. Screening badger blood samples revealed a 98–100%
prevalence of MusGHV-1 in wild British and Irish populations [18,19]. Reactivation from
latency causes viral replication and shedding in the mucosa in oral, nasal, and/ or genital
tracts. Depending on the season and population [20], the prevalence of genital shedding
of MusGHV-1 ranges from 55% to 62% [21,22]. No specific signs or pathomorbidity have
been linked to MusGHV-1 reactivation in badgers. However, viral shedding is associated
with lower female reproductive success and lesions in the genital tract of both sexes [21].
In our previous analysis of partial DNA polymerase (DNApol) gene sequences [20], we
identified two distinct variants through the genotyping of MusGHV-1 in a single closed
wild badger population located in Wytham Woods, Oxfordshire (for details of the study
population, sees Buesching et al., 2010 [23]).

Since the herpesviruses DNApol gene encodes exonuclease and polymerase proteins
essential for virus replication and viral genome proofreading, its quantified expression
could then be used as a proxy for determining virulence [24]. The DNApol gene is thus
one of the most conserved genes in herpesviral genomes and likely to be under strong
purifying selection with a low substitution rate. Nevertheless, any mutations found in
these domains are typically associated with lower replication fidelity (see review: [25]),
contributing to higher mutation rates. If some of these mutations are beneficial to virus
replication efficiency, they can, in turn, result in faster evolution rates [26]. Consequently,
herpesvirus strains belonging to the same species that show differences in their DNApol
genes can result in different disease expressions and outcomes in their hosts. For example, a
single nucleotide difference in the equine herpesvirus 1 (EHV-1) polymerase gene on amino
acid position 752 (N to D) is associated with neurological disease outbreaks [27–29] and
higher viraemia levels in infected horses compared with those infected with the EHV-1 N752
strain, suggesting a higher virus replication efficiency [30]. Differences in host susceptibility
to the two variants have not yet been explored, but simultaneous infections with both
strains have been reported [31,32].

Here we investigated genetic, epidemiological, and phenotypic differences between
the two previously reported MusGHV-1 variants in a natural host population [20]. Specifi-
cally, we aimed to:

(1) acquire longer sequences of the MusGHV-1 DNA polymerase gene to investigate for
additional mutations/genetic differences between the two variants;

(2) establish the relative prevalence of the two MusGHV-1 variants within the population,
investigate the rate of coinfection, and whether potential differences in variant preva-
lence are associated with demographic (i.e., host sex and age) and/or socio-geographic
(i.e., badger sett and social group) patterns;

(3) analyse potential differences in viral loads in blood samples between individuals
infected with each or both MusGHV-1 variants.
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2. Materials and Methods
2.1. Animal Sampling

We captured free-ranging badgers in Wytham Woods, Oxfordshire, United Kingdom,
(51◦46′26′′ N, 1◦19′19′′ W; for details of the study site, see [33]; for details of badger
trapping and handling protocols see [20,34]) in spring (21st May to 2nd June), summer
(3rd to 15th September) and autumn (13th to 24th November) 2018. In summary, individual
badgers were identified by their serial tattoo numbers, given at first capture as part of a long-
term badger research programme [15,35]. After sedation with ketamine hydrochloride [36],
oral, nasal, genital, and rectal swab samples were collected using wooden shafted cotton
tips (Dynarex). Blood samples (not exceeding 2 mL) were collected by jugular venipuncture
in heparin-coated tubes and stored immediately at −20 ◦C. All protocols and procedures
were approved by the Zoology Department’s (University of Oxford) Animal Welfare and
Ethical Review Body and were conducted under the Animals (Scientific Procedures) Act,
1986 (PPL: 30/3379).

2.2. Genotyping of MusGHV-1 DNA

DNA was extracted and purified from swab samples using DNeasy Blood and Tissue
Kits (Qiagen), and from 200 µL whole blood samples using Monarch Genomic DNA Pu-
rification Kits (New England Biolabs Inc., Ipswich, MA, USA) following manufacturers’
instructions (for full methodological details see Tsai et al. [20]). MusGHV-1 DNA was
amplified from each sample by PCR using primers (pol3-F and pol3-R, Table 1), specifically
targeting the MusGHV-1 DNA polymerase gene. After checking amplification results on
1.5% agarose gels following electrophoresis, we sent 66 amplified PCR products for geno-
typing using Sanger sequencing (Zoology Sequencing, University of Oxford, Oxford, UK).
Variant allocation was determined using ClustalW alignment (with the respective default
parameters) in MEGA11 (Molecular Evolutionary Genetics Analysis version 11.0.8, Tamura,
Stecher, and Kumar) according to nine substitutions across 691 nucleotides identified be-
tween the two previously reported MusGHV-1 sequences (accession numbers MT332100
and MT332101) in the same study population: at position 363 (C to T), 378 (T to C), 383 (A
to G), 480 (T to C), 486 (T to C), 537 (A to G), 540 (G to A), 546 (G to A), and 558 (C to A) [20].
Coinfection was reported if the aforementioned signals for both nucleotides were present
in a given sequencing product.

Table 1. Primers used for MusGHV-1 DNA polymerase gene PCR amplification.

Start Position End Position Primer Sequence (5′-3′) Product Length

pol5-F 3 22 GGCAGGGAATTTTTATAACC
699pol5-R 681 701 CCACCCAAAAGTAGAAAATCC

pol6-F 345 364 CCCCTCTGGAACTGTGCTAA
637pol6-R 962 981 AGGGTCACATGTCCCCAAAT

pol7-F 863 846 ATGTCTGGGGGAAAATGG
486pol7-R 1329 1348 GACCTCCTATGCACTGCTTG

pol10-F 1185 1204 TGAAGTTCACACACCCCAGA
361pol10-R 1524 1545 TCCATCGGTCAGCACTCTC

pol3-F 1328 1347 CCAAGCAGTGCATAGGAGGT
771pol3-R 2072 2098 TGGACTTCTCCAACATGCGTCGCCCTT

pol11-F 1684 1703 CCGATCTTGGTGGTTGATTT
627pol11-R 2291 2310 CTTAATTGGCTCCTCGAACA

pol12-F 2015 2034 CAGGTGTGTCCTCGGGTATT
561pol12-R 2556 2575 TCACTTTGAAAAGTGGAAGTGG

pol9-F 2393 2412 TGATGAAGGGAGTGGATCTC
597pol9-R 2936 2989 TCACAGCTTTGTCTGCACTG

2.3. MusGHV-1 DNA Polymerase Gene Mapping and Phylogenic Analysis

One sample of each variant was chosen for extended DNApol gene genotyping using
primer pairs designed specifically for this study (Table 1). The same PCR procedures
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and conditions were used as described above, and successfully amplified PCR products
were sent for Sanger sequencing (Zoology Sequencing, University of Oxford). Sequences
were then mapped to the reference gene (DNA polymerase gene of MusGHV-1, Acces-
sion number: AF275657), assembled, translated to amino acids, and aligned using the
ClustalW method (with set default parameters) [37] to 7 representatives of published
gammaherpesvirus sequences in GenBank (having either complete or > 1000 bp of the DNA
polymerase gene), using the software Unipro UGENE (version 37, Okonechnikov, Golosova,
Fursov, the UGENE team, Novosibirsk, Russia) [38]. For each isolate, a purifying selection
test using the Nei-Gojobori method was employed to determine whether the number of
nonsynonymous substitutions per nonsynonymous site (dNS) was fewer than the number
of synonymous substitutions per synonymous site (dS) [39]. Nucleotide sequences were
aligned using ClustalW with default parameters. A maximum likelihood (ML) phylogenetic
tree was constructed under the GTR + I + gamma nucleotide model using 100 bootstrap
replicates using MAFFT version 7.450 [40]. The ML tree was mid-point rooted.

2.4. Geographic Distribution of MusGHV-1 Strains and Social Group-Specific Prevalence

The social group affiliation of each individual was determined using previously
established residency rules [41,42] (Figure S1), with social group ranges established through
bait-marking surveys [34,42]. Social group-specific MusGHV-1 variant prevalence was
calculated by dividing the number of total positive badgers by the total of tested badgers
resident in each social group. All maps were drawn using QGIS (version 3.14.15, QGIS
Development Team).

2.5. Blood Viral Load Quantification

We selected blood samples from individuals with known MusGHV-1 variant infec-
tions. Some individuals (see Table 2) were sampled in more than one trapping season.
We analysed each sample’s relative MusGHV-1 genome copy numbers using StepOne-
Plus PCR Systems (Applied Biosystems, ABI) to obtain Ct values. We used primers
designed by Sin et al. [18] targeting the MusGHV-1 DNA polymerase gene (forward:
5′-GGAGAGTGCTGACCGATGGA; reverse: 5′-AAAAGCCTGGAATTGGATCAATAA,
product length: 150 bp). We prepared 20 µL of reaction mix containing 0.5 mM of each
primer, 10 µL of Luna Universal qPCR Master Mix, 3 µL of RNase-free water and 5 µL of
DNA template. Amplification conditions were as follows: 95 ◦C for 60 s (initial denatura-
tion), 45 cycles of 95 ◦C (denaturation) for 15 s, and 60 ◦C for 30 s (extension). StepOne
Software (version 2.3) obtained Ct values of each sample automatically.

Table 2. Blood samples used for relative viral load analysis.

Tattoo Number Sex Age Spring Summer Autumn

1012 Male 13 v
1045x Female 13 v v
1232 Female 10 v v

1234x Female 10 v v
1283 Male 9 v v
1330 Male 8 v
1379 Male >8 * v v
1435 Female 6 v v
1478 Female 5 v
1487 Male 7 v v
1520 Female 4 v v
1622 Male 3 v v
1694 Female 2 v v
1699 Male 1 v v
1735 Male 0 v
1746 Male 0 v
1749 Female 0 v
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Table 2. Cont.

Tattoo Number Sex Age Spring Summer Autumn

1750 Female 0 v v
1751 Female 0 v v v
1753 Female 0 v
1754 Male 0 v
1755 Male 0 v v v
1778 Male 0 v
1785 Female 0 v

* Age not determined as this individual was first captured as an adult; according to its tooth wear [43], it was
estimated as older than 8 years of age.

2.6. Statistical Analyses

All statistical analyses were performed using R studio (version 1.2.1335, RStudio Team,
Boston, MA, USA) [44,45]. Fisher’s exact tests were used to test if infections with the
MusGHV-1 variant differed with sex, age group (adult: ≥2 years old, and juvenile: <2 years
old) or social group (n = 25). Differences in viral loads between variants were analysed with
a mixed-effect linear regression analysis using the R package lmerTest. We used Ct values
as the response variable and variants (common, coinfection and novel), age group and
sampling seasons (spring, summer and autumn) as fixed effects. Tattoo ID was included as
a random effect, as some individuals were sampled more than once.

3. Results
3.1. Substitutions in the DNApol Gene of the Two MusGHV-1 Variants

We sequenced 66 MusGHV-1 PCR products amplified from the partial DNApol gene.
All sequences were trimmed to 693 base pairs and were confirmed to be MusGHV-1,
showing between 98.7% and 100% identity with the published MusGHV-1 sequence isolated
from a badger in Cornwall, England (Accession number: AF275657).

The extended genotyping of the DNApol gene resulted in the acquisition of a total
sequence length of 2874 nucleotides for each of the two MusGHV-1 variants. This enabled us
to test for additional variations between the two variants. In total, we found 15 nucleotides
and five amino acid differences in the DNA polymerase domain between the two variants,
which we classified here as the ‘common variant’ and the ‘novel variant’, as the former was
almost identical (99.9% nucleotide identity) to the reference sequence. In contrast, the novel
variant only shared 99.4% identity with the reference sequence. Both MusGHV-1 variants
had three nucleotides and two amino acid substitutions in common with the reference
sequence, all located at the exonuclease domain (details of these substitutions are listed in
Table 3 and Figure 1). There was support for strong purifying selection between the two
variants in the Wytham badger population (dNS < dS, p value = 0.004, dS/dNS = 2.66).

Table 3. Amino acid substitutions (nonsynonymous differences) between the two variants in the
MusGHV-1 DNA polymerase gene.

Position Reference
(AF275657 a)

Common
Variant

Novel
Variant

Conserved Protein
Domain Family b

In Conserved
Region c

In Conserved Region
within Host Order d

253 P L L 3′-5′ exonuclease Exo I Yes Yes
274 N Y Y 3′-5′ exonuclease Exo I Yes Yes
591 K K R Polymerase No No
649 N N K Polymerase No Yes
819 E E G Polymerase No No
872 T T N Polymerase No No
889 S S L Polymerase No Yes

a: GenBank accession number. b: Data from the NCBI Conserved Domain Database (CDD) [46]. c: Determined
by whether the substitution is located in previously identified conserved motif of viral DNA polymerase genes
[47]. d: Determined by whether the substitution is located in a position with a higher conservation degree within
herpesvirus species confirmed in the order Carnivora (Figure 1).
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Figure 1. DNA polymerase gene alignment containing three MusGHV-1 variants and seven other
gammaherpesviruses belonging to the genus Percavirus. Red rectangles show amino acid substitutions
between the three MusGHV-1 variants (numbers 1 to 3 on the list).

Among these 66 individuals, the common variant was detected in 59 (89.4%), including
genital swabs (n = 49), oral swabs (n = 5), rectal swabs (n = 2), and blood samples (n = 5).
The novel variant was detected in 11 (16.7%) individuals, including in genital swabs (n = 9)
and blood samples (n = 5). Coinfection was confirmed in four individuals (6.1%) in three
blood samples and one rectal swab (Supplementary Material Table S1).

3.2. Phylogenetic Relationships between the Two MusGHV-1 Variants and Other
Gammaherpesvirus Species

All Carnivora-infecting gammaherpesviruses are grouped in a monophyletic clade,
including the MusGHV-1 virus, which likely belongs to the genus Percavirus [48]. A
phylogenic analysis using the DNApol gene sequence showed that the novel and the
common variant share a common ancestor (Figure 2). The Cornish variant (NC_038266)
was derived from the common variant more recently, making the more recently discovered
variant the actual ancestral variant.
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values (100 replicates) in excess of 30% are indicated at each node. The scale bar corresponds to
nucleotide substitutions per site. The MusGHV-1 variants discussed in this paper (i.e., common and
novel variants) are coloured in red.

3.3. Novel MusGHV-1 Variant Infections Were Clustered within Just Three Social Groups

MusGHV-1 variant frequencies did not differ significantly between males and females
(Fisher’s exact test, p = 0.19) or between age groups (p = 0.19) but varied somewhat between
social groups (p = 0.052) (Table S3). The novel variant (and coinfection with both variants)
was confined to badgers from three neighbouring social groups, while the common strain
was evenly distributed across the Woods (Figure 3). To investigate further, we screened
14 DNA samples from blood collected from badgers resident in these three social groups
during 2009 and 2010. Two individuals were infected with the novel variant, one was
infected with both variants and the rest were infected with the common variant. This
retrospective scrutiny indicated that the novel variant originated in the CHO social group
before spreading to the CH and RC groups (Table S4).
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3.4. The MusGHV-1 Novel Variant Was Associated with Higher Viral Load in the Blood Stream

The Ct values from real-time PCR on 40 blood samples collected from 24 individuals in
spring, summer and autumn 2018 (Table 2) showed that the MusGHV-1 relative viral load
was highest (i.e., low Ct value) among badger cubs (age class) then decreased thereafter
in yearlings (age class 1) (Figure 4). Furthermore, juveniles had higher relative viral loads
than adults (p < 0.001), and samples taken in summer had higher loads than those in spring
or autumn (p = 0.006) (Table 4). The mixed-effect linear regression analysis results suggest
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that badgers infected with the novel variant generally had a higher MusGHV-1 viral load
than those infected with the common variant (p = 0.004).
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Table 4).

Table 4. Results of linear mixed-effect model fit by REML (restricted maximum likelihood). t-tests
using Satterthwaite’s method (formula= Ct ~ Variant + Age Group + Season + (1 | Tattoo)). Number
of observations: 39, groups (by tattoo ID: 23).

Variable Estimate Std. Error df t Value p Value

(Intercept) 34.855 0.464 28.794 75.072
Genotype

Common (Reference)
Novel −1.815 0.547 19.447 −3.316 0.004

Coinfection −0.346 0.834 32.885 −0.415 0.681
Age Group

Adult (Reference)
Juvenile −3.030 0.543 18.615 −5.583 <0.001

Season
Spring (Reference)

Summer −1.379 0.453 23.179 −3.045 0.006
Autumn 0.012 0.416 17.381 0.028 0.978

4. Discussion

Understanding epidemiological traits can aid the interpretation of viral load data
across wildlife species. Despite this study’s relatively small sample size, epidemiological
variations were apparent in viral loads. Higher relative viral loads of MusGHV-1 in
juveniles corroborated a previous study using animals from the same population [18], where
primary herpes infection with a higher viral load typically occurs early in life [49]. Higher
viral loads in summer were correlated with a higher prevalence of genital tract viral DNA
reactivation [20]. Most intriguingly, we discovered that the relative blood viral load was also
dependent on the MusGHV-1 variant. This could indicate that the two MusGHV-1 variants
found in Wytham have not only genotypic but also phenotypic differences. A higher viral
load could cause a higher pathogen burden and additional stress on the host immune
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system, which can lead to higher susceptibility to other pathogens [18]. Accordingly,
we previously found that badgers infected with the novel variant, which had higher
relative viral loads in this study, had a higher risk of infection with Clostridium perfringens,
a zoonotic bacterial pathogen that can cause severe enteritis [50].

The genetic diversity of herpesviruses strains found within a single host species is
typically very low, even between host populations separated by geographical barriers. For
example, the gammaherpesvirus (LcaGHV-1) variants found in two geographically distinct
Canadian lynx (Lynx canadensis) populations (from Maine, USA, and Newfoundland,
Canada) are identical apart from just two synonymous substitutions across the 3.4 kb
nucleotide sequences of its partial gB protein and DNApol gene [51]. Considering the
generally low mutation rate of herpesviruses and their strong host cospeciation traits [50],
the coexistence of two closely related gammaherpesvirus variants in the same population
is unusual. A molecular analysis of the DNApol gene of twelve EHV-2 strains circulating
in horse herds in Iceland that had been isolated for more than 1000 years, still showed
99% to 100% similarity across a region of 483 base pairs to seven EHV-2 strains from
other European countries [52]. Furthermore, country-wide screening for MusGHV-1 in
Irish badgers in 2019 showed that 691 base pair sequences from 23 individuals were 100%
identical to the reference MusGHV-1 DNApol sequence [21]; all of which demonstrates the
stability of species-specific herpesvirus DNApol genes.

Establishing whether the MusGHV-1 variant in the Wytham Woods population origi-
nated from introduction or evolution is challenging without a genome-wide analysis of
mutations and sequencing results from other badger populations across the UK and nearby
countries. Potentially, MusGHV-1 may have coevolved with badgers from a different popu-
lation (likely subject to greater isolation by distance than the Cornish and Irish populations,
e.g., continental Europe [53]) and then have been introduced into the Wytham population
more recently, but at least before 2009 [54]. However, there are no historical records of
badgers either colonising or being introduced into Wytham from other subpopulations,
and badger genetic diversity in this population is low [55]; although any such introduced
badger could, plausibly, have caused contagion with the novel variant and died without
leaving any descendants. Ultimately, it seems unlikely that the novel variant originated
from an ex situ source.

A phylogenetic analysis revealed that the node from/at the Cornwall variant branched
from the ancestral MusGHV-1 root occurred earlier than the node at which either Wytham
population branched which separated and evolved independently from an earlier time
point. Although the common variant is dominant in the Wytham and the Irish populations,
this does not infer that the novel variant emerged (branched) later than the common variant.
It is also possible that the common variant became dominant by selectively outcompeting
the novel variant, even if that novel strain branched earlier. For instance, if the higher
virulence of the novel variant (rising from replicative advantage) caused higher host
mortality prior to some immune adaptation, or triggered a more robust host immune
response to eliminate the pathogen [56], then a less virulent variant (common) would
spread among surviving badgers and become dominant. Some explanation based on
balancing or fluctuating selection between specific variant advantages [57,58], or among
host immune alleles [59], could account for occasional coinfection and why infections of the
novel variants were limited to only a few social groups due to incomplete over-dominance.

The hypothesis that virulence may be a trade-off against transmission is debated [56,60].
Although a higher viral load can indicate more efficient within-host replication or higher
virulence [60], various vertebrate and invertebrate models show that selection for an inter-
mediate replication level can maximise pathogen fitness [61,62]. This may prevent the novel
MusGHV-1 variant found in this study from being completely wiped out from the badger
population. Although the high replication efficiency of the novel variant may result in it
being outcompeted by the common variant due to host immune activities, this advantage
may aid the novel variant to transmit and seed in the population through virus-shedding
individuals. The lifelong infection trait of the herpesvirus may allow the novel variant to
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persist in a latency stage in the host at subclinical levels, possibly beyond the detection
limit of PCR.

An alternative but not mutually exclusive explanation is that differences in host–
pathogen resistance determined by immune-related genes, such as MHC genes, may be
a causal factor for new strain emergence and the coexistence of multiple strains within a
population. In badgers, Sin et al. (2014) found that individuals with specific MHC variants
had different blood viral loads of MusGHV-1. Similarly, in horses, the EHV-1-induced
downregulation of cell surface molecules expressed by MHC I is allele-dependent [63], and
the extent to which MHC I is downregulated is EHV-1 strain-dependent [64]. In humans,
herpesvirus infection has been linked to dementia [65], as some human leucocyte antigen
(HLA; equivalent to MHC) alleles that protect against dementia have a high binding ability
to a variety of human herpesvirus strains, suggesting that this link may be dependent on
host variant [66]. Moreover, the subtypes of human herpesvirus 8 (HHV-8, or Kaposi’s
sarcoma-associated herpesvirus, KSHV) are clustered by ethnic group, and infection with
different subtypes affects the risk of Kaposi’s sarcoma occurring [67]. However, Wytham’s
badgers engage extensively in extra-group mating. Therefore, if a specific MHC variant is
more susceptible to the novel variant reactivation, it should spread quickly across social
groups; however, this is contrary to our observations where the novel variant expanded
from one to three social groups over nine badger cohorts (from 2009 to 2018). This would
require a recessive MHC gene circulating within these social groups only expressed through
inbreeding [42]. Currently, we lack the data to corroborate or refute this hypothesis.

5. Conclusions

In this study, we report a newly discovered variant of MusGHV-1 in badgers, indicating
that a highly host-specialised pathogen maintains a certain degree of genetic diversity at
the host-population level. This could illustrate an ongoing coevolution between badgers
and MusGHV-1. Furthermore, we also found that variant variation in MusGHV-1 results in
different epidemiological and spatial patterns of infection. By better understanding viral
genetics and pathotypes and how these interact with coevolving host immunity, we can
accurately inform conservation management and initiatives, such as One Health, tasked
with disease surveillance and prevention in wildlife.
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