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ABSTRACT

Most mammalian genes have multiple polyA sites, representing a substantial source of transcript
diversity that is governed by the cleavage and polyadenylation (CPA) regulatory machinery. To better
understand how these proteins govern polyA site choice we introduce CPA-Perturb-seq, a multiplexed
perturbation screen dataset of 42 known CPA regulators with a 3’ scRNA-seq readout that enables
transcriptome-wide inference of polyA site usage. We develop a statistical framework to specifically
identify perturbation-dependent changes in intronic and tandem polyadenylation, and discover modules
of co-regulated polyA sites exhibiting distinct functional properties. By training a multi-task deep neural
network (APARENT-Perturb) on our dataset, we delineate a cis-regulatory code that predicts
responsiveness to perturbation and reveals interactions between distinct regulatory complexes. Finally,
we leverage our framework to re-analyze published scRNA-seq datasets, identifying new regulators
that affect the relative abundance of alternatively polyadenylated transcripts, and characterizing
extensive cellular heterogeneity in 3’ UTR length amongst antibody-producing cells. Our work highlights
the potential for multiplexed single-cell perturbation screens to further our understanding of
post-transcriptional regulation in vitro and in vivo.

INTRODUCTION

RNA cleavage and polyadenylation represent post-transcriptional regulatory mechanisms that are
required for the maturation of eukaryotic pre-mRNA1–4. The majority of mammalian genes harbor
multiple polyA sites, enabling a single gene to encode multiple mRNA transcripts via alternative
polyadenylation5–7. The distinct 3’ ends arising from this process add to the rich diversity of mammalian
transcriptomes, and can influence multiple distinct stages of the RNA life cycle. For example,
shortening of the 3’ untranslated region (UTR) at tandem UTRs can affect transcript stability and
localization8,9, while alternative polyadenylation at intronic sites can lead to the generation of truncated
coding or non-coding transcripts10–12. More generally, widespread changes in polyadenylation have
been demonstrated in many biological contexts including cellular proliferation13, tumorigenesis14,15,
embryonic development16, and secretory cell differentiation17.

Biochemical and molecular studies have revealed a subset of core and accessory proteins that are
responsible for regulating polyA site choice. For instance, the cleavage and polyadenylation specificity
factor complex (CPSF) catalyzes cleavage, the Cleavage factor I (CFIm) and Cleavage factor II (CFIIm)
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complexes bind auxiliary recognition sequences, and PolyA Polymerase (PAP) is responsible for adding
the polyA tail4. While the identity of key proteins is known, our understanding of how their relative
concentration and interaction with RNA sequence elements influences alternative polyadenylation
remains incomplete, representing a key challenge for our understanding of post-transcriptional
regulation.

Functional genomics approaches offer exciting potential to address these questions. Recently,
massively parallel reporting assays (MPRA) combined with deep neural networks have been utilized to
construct sequence-based models of alternative polyadenylation and can successfully predict cleavage
site usage under baseline conditions18–21. Alternatively, genome-wide 3’ transcriptome technologies can
be used to profile changes in polyA site usage across different biological samples16,22–24, including those
that perform genetic perturbations of CPA regulators. While some individual studies perturb individual or
small sets of regulators25–28, others have used siRNA-based screening approaches to generate larger
resources29,30. Alternatively, multiplexed single-cell technologies like Perturb-seq leverage single-cell
RNA-sequencing (scRNA-seq) for high-throughput transcriptome-wide characterization of molecular
perturbations31–34. While scRNA-seq is typically applied to profile heterogeneity in gene expression
levels, these data can also be leveraged to characterize changes in transcript structure. In particular,
the majority of scRNA-seq protocols are explicitly designed to capture the 3’ end of polyadenylated
mRNA transcripts. Therefore, these methods are well-suited to quantify transcriptome-wide polyA site
usage at single-cell resolution alongside gene abundances, revealing dynamic changes in
polyadenylation during cellular differentiation and disease35–38.

Here, we introduced CPA-Perturb-seq, a resource where we perturb known regulators of CPA in a
multiplexed 3’ scRNA-seq screen, and quantify each perturbation’s effect on polyA site usage at
single-cell resolution. We introduce new computational tools to specifically quantify changes in polyA
site usage in sparse single-cell datasets, and to decouple these from changes in gene abundance
levels. Our analyses reveal substantial diversity in the number and types of polyA sites affected by
perturbation of different regulators, modules of sites that are co-regulated across perturbations, and the
role of interacting RNA sequence elements in determining polyA site selection. We also demonstrate
how our computational tools can be applied to any 3’ scRNA-seq dataset, identify new regulators in a
genome-scale Perturb-seq resource39, and characterize natural variation in alternative polyadenylation
amongst high-resolution subsets of antibody-secreting plasma cells. Together, our analyses
demonstrate how single-cell sequencing can move beyond gene expression analyses and improve our
understanding of post-transcriptional gene regulation.

RESULTS

Multiplexed Perturb-seq screens of 3’ polyA site usage

We sought to understand how systematic perturbations of genes involved in cleavage and
polyadenylation would affect alternative polyadenylation at single-cell resolution (Figure 1A). We
designed a library of 162 single guide RNAs (sgRNAs) targeting 42 genes and 10 non-targeting (NT)
controls (Supplementary Table 1). Our target set included 18 genes that are known members of core
cleavage and polyadenylation complexes, including the Cleavage Factor Im (CFIm), Cleavage Factor
IIm (CFIIm), Cleavage and polyadenylation specificity factor (CPSF), and and Cleavage stimulation
factor (CSTF) complexes (Figure 1B). We also included 23 genes that have been previously implicated
in affecting relative polyA site usage, including subunits of the PAF complex40, the splicing factor
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SRSF327, and THOC541, a member of the transcription/export complex (TREX) (Supplementary Table
1).

We performed a pooled CRISPR inhibition screen (Supplementary Methods) in HEK293FT cells and
used the Perturb-seq experimental workflow to simultaneously capture the identity of the guide each
cell received along with a 3’ scRNA-seq readout (Figure 1A). While we focus our primary analyses on
the deeply profiled HEK293FT dataset (median of 1,788 cells per perturbation), we also repeated the
experiment in K562 cells to obtain a second biological context (median of 596 cells per perturbation).
Across two biological replicates (independent viral transductions) in each cell line, we obtained a total
of 109,661 single cells (Supplementary Table 2) where we were able to successfully assign a single
gRNA.

We utilized the scRNA-seq data to quantify both gene expression and transcriptome-wide polyA site
usage profiles for each cell. We used tools from the polyApipe pipeline to first identify a set of possible
cleavage and polyA sites, and then to quantify their usage in single cells38. We further restricted our
analysis to polyA sites that are within 50 nucleotides of polyA sites identified in polyAdbv37, a database
of polyA sites generated from multiple human cell lines (Supplementary Methods). We only included
sites located within an intron or the last exon of a gene (Supplementary Methods). This strategy
focuses specifically on splicing-independent changes in alternative polyadenylation, and does not
consider changes in alternative last exon usage driven by splicing.

We identified a total of 33,399 polyA sites across 12,194 detected genes, and found that 8,077 genes
exhibited usage of two or more polyA sites in our dataset (5,253 genes exhibited usage of three or
more) (Supplementary Figure 1A). Moreover, we found that 76% and 79% of our identified exonic and
intronic polyA sites, respectively, contained the canonical AATAAA/ATTAAA cleavage motif in the region
50 bp upstream of the inferred cleavage site, as would be expected for bona fide polyA sites
(Supplementary Figure 1B). We therefore assigned reads from our 3’ scRNA-seq dataset to each polyA
site (Supplementary Methods), generating a polyA site/cell count matrix for downstream analysis.

Multiple groups have previously observed that datasets from pooled single-cell CRISPR screens often
contain confounding sources of variation32,33,42. These include heterogeneity across replicate
experiments, cell cycle differences, or variable perturbation efficiency even amongst cells expressing
the same gRNA. We applied our previously developed computational pipeline, Mixscape42, to address
these effects and to remove cells that exhibit no phenotypic evidence of perturbation (Supplementary
Methods). For 16 of 42 regulators, Mixscape classified all cells as ‘non-perturbed’, suggesting that even
if the perturbation was successful (Supplementary Figure 1C), the global effect on the transcriptome
was minimal. For the remaining 26 genes, Mixscape classified 76% of cells as perturbed.

Perturbed cells exhibited diverse changes in alternative polyadenylation. For example, at the CBX3
locus, perturbation of NUDT21 and CPSF6 shifted expression towards the proximal polyA site (‘3’ UTR
shortening’) RBBP6 and PCF11 perturbation shifted expression towards the distal isoform (‘3’ UTR
lengthening’), while the regulators FIP1L1 and CPSF3L did not induce changes (Figure 1C). These
changes were reproducible across biological replicates and multiple independent gRNA (3-4 per gene;
Supplementary Figure 1D). We used the polyA site/cell count matrix for perturbed cells along with 3,789
NT controls, as input to linear discriminant analysis (LDA), UMAP visualization (Figure 1D), and
unsupervised clustering of the polyA site matrix (Supplementary Figure 1E). These analyses revealed
that cells clustered not only by the perturbation they received, but also into broader complexes. For
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example, cellular profiles after NUDT21 and CPFS6 (both members of the CFIm complex) perturbation
were highly correlated, as were profiles for members of the CPSF (CPSF1-4, FIP1L1), CSTF
(CSTF1/3), and PAF (PAF1, CTR9, LEO1, CDC73) complexes.

These results suggest our dataset can be used to uncover complex-specific ‘modules’ of co-regulated
polyA sites, each of which are responsive to perturbation by a set of functionally related regulators.
However, we note that changes in the polyA site/cell count matrix can reflect both changes in 3’ UTR
utilization, but also changes in the overall abundance of the gene even in the absence of isoform-level
changes. We observed both cases in our dataset. For example, when perturbing CSTF3 (Figure 2A-D),
we identify cases where changes in the utilization of a gene’s proximal peak corresponds exclusively to
a change in total RNA abundance (ATP6V1G1), exclusively to a change in transcript length due to 3’
UTR shortening (HNRNPH3), or changes in both abundance and relative isoform usage (MRPS16).

Quantifying relative polyadenylation levels at single-cell resolution

To specifically characterize perturbation-driven effects on alternative polyadenylation, we therefore
sought to design a computational approach to deconvolve these two effects. While computing ratios of
polyA counts for each site within a gene is typically used to study alternative polyadenylation in bulk
analyses, computing these ratios in scRNA-seq data is typically infeasible or noisy due to data sparsity.
Instead, for each polyA site in each single cell, we aimed to model and quantify the degree of over or
under-utilization, compared to the expected usage observed in NT cells.

We note that this problem is conceptually similar to quantifying the degree of increased or decreased
expression of each gene in each cell, compared to the population average. We and others have
developed statistical methods to address this challenge for gene abundances in scRNA-seq data using
generalized linear models43–46. Here, we chose to extend this framework to model alternative
polyadenylation (Figure 2E). We utilized the Dirichlet multinomial distribution to model the background
distribution of each polyA site in NT control cells. The expected value for each site is set by the relative
usage of all polyA sites within a gene, which controls for the overall expression of the gene, and can be
robustly estimated from 3,789 NT cells.

When quantifying the variance for each site, the Dirichlet multinomial allows for the possibility of
overdispersion compared to the standard multinomial47, analogous to the routine use of the negative
binomial distribution to model Poisson overdispersion when modeling gene abundances48,49. This
overdispersion accounts for natural biological heterogeneity and ‘intrinsic’ noise that occurs within the
background population46,50, and can be estimated directly from each dataset. As in sctransform45, we
first parameterize overdispersion estimates individually for each polyA site, but then regularize these
estimates across similar sites (Supplementary Methods). The output of our procedure is a statistical
model for each polyA site, describing its background usage across NT control cells.

Finally, we utilized these background models to quantify relative polyA site usage at single-cell
resolution. By comparing the observed counts at each site in each cell with the expected value and
variance from the Dirichlet multinomial model, we compute a Pearson residual (‘polyA-residual’) at each
polyA site. The sign and magnitude of this residual describes the cell’s relative deviation from the
expected background distribution for each polyA site. A positive residual reflects that a polyA site is
used more frequently in a single cell relative to the background distribution, and a negative residual
reflects that a polyA site is used less frequently than the background distribution.
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Our quantified polyA-residuals can be used as input for differential polyadenylation analysis, allowing us
to identify polyA sites whose relative frequency changes across groups of cells while mitigating any
confounding changes in overall gene abundance. We tested for changes in polyA-residuals using a
linear model, including gRNA identity as a covariate, to identify reproducible changes for each
perturbation (Supplementary Methods). When applied to our previous examples (Figure 2F-H), this
approach successfully distinguished loci where we observed either changes in transcript structure,
abundance, or both. The polyA-residuals can also be used as input for clustering and visualization.
When repeating our LDA-based visualization procedure and clustering analyses on the polyA-residual
matrix (Supplementary Figure 3A), we replicated our previously observed findings (Figure 1D)
confirming that these co-regulatory patterns were driven by coordinated changes in polyadenylation.

Characterizing perturbation-dependent changes in polyadenylation

We next characterized the effect of each perturbation individually. We identified 6,734 genes that
exhibited differential alternative polyadenylation (at least one polyA site with differential usage) in at
least one the 26 gene perturbations, but observed substantial differences across regulators. CFIm
complex members such as NUDT21 exhibited the strongest perturbation responses affecting more than
5,600 genes (Figure 3A), including 2,397 genes where we exclusively detected relative changes in at
least one polyA site (40%; blue bar), 1,058 genes where we exclusively detected changes in total
transcript levels (18%; light blue bar), and 2,536 genes where we detected changes in both abundance
and structure (42%, green bar).

Our results demonstrated that differential analysis of our polyA-residuals represents an effective
workflow to identify specific changes in relative polyA site usage, as opposed to total transcript
abundance. For example, we observed that perturbation of PABPC1, affected the expression level of
1,265 genes, but had negligible effects on relative polyA site usage in either our HEK293FT or K562
cell dataset (Figure 3A; Supplementary Figure 3C). This result is consistent with the known cytoplasmic
localization of PABPC1, which binds the polyA tail after nuclear export, and is not expected to regulate
polyA site choice51.

We next classified each significant change in polyA site usage as reflecting either intronic
polyadenylation or tandem polyadenylation, based on site annotations in the polyADB database (Figure
3B). We found that in most cases, perturbing an individual regulator primarily led to changes in tandem
polyA site usage. However, for a minority of regulators, such as polymerase-associated factor (PAF)
complex members52 or the RNA PolII elongation factor SCAF826, responses were primarily associated
with intronic polyadenylation in both HEK293FT and K562 cells (Supplementary Figure 3D). As both
sets of regulators interact with RNA Polymerase and play an established role in regulating polymerase
progression, these results provide additional evidence for kinetic models where changes in elongation
rate can influence alternative polyadenylation53, and suggest that this relationship is particularly
important in the context of intronic sites.

While we identified multiple regulators that primarily affected intronic polyadenylation, we found that
they regulated distinct intronic sites. (Figure 3C-E). Moreover, we found that the distance between two
adjacent cleavage sites in a transcript was predictive of the responsiveness to PAF1 perturbation
(Supplementary Figure 3E). This relationship was strongest for polyA sites located in the first intron, but
also held for downstream sites as well (Supplementary Figure 3E). However, when performing similar
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analyses for SCAF8, we observed a weaker predictive power for both intronic location or distance
between cleavage sites (Supplementary Figure 3F). These results demonstrate that while
transcriptional elongation rate likely influences intronic polyA site selection, polymerase-interacting
factors can exhibit distinct regulatory effects.

Focusing next on alternative polyadenylation between tandem polyA sites, we found that perturbation of
CPA regulators resulted in striking shifts in the utility of either proximal or distal polyA sites, with most
perturbations (18/26) exhibiting a skew of greater than 70% in either direction (Figure 3F). These
relationships replicated in our independently obtained K562 dataset as well (Supplementary Figure 3G).
We did observe a general trend where 3’ UTR shortening was associated with an increase in total gene
abundance (Figure 3G), consistent with the broad association between 3' UTR length and the presence
of regulatory elements that may impact RNA stability54,55.

Our observed patterns of shortening/lengthening were concordant with previous studies that utilize bulk
3’ end sequencing technologies, but highlighted the advantages of the Perturb-seq technology. For
example, four previous studies25,29,30,56 have consistently revealed that perturbation of NUDT21
perturbation affects polyA site usage in a subset of genes (ranging from 375-1,600) and leads to 3’ UTR
shortening at tandem UTRs. In our dataset (Figure 3F; Supplementary Figure 3G), we observed more
than 5,500 genes exhibiting significant changes in polyA site usage after perturbation, exhibiting not
only high sensitivity but also high specificity in both HEK and K562 datasets (>93% of tandem UTR
changes resulted in shortening, indicating that these reflect bona fide perturbation responses).

Similarly, RBBP6 perturbation has been associated with 3’ UTR lengthening, but the degree of this
preference (ranging from 60% to 78%) and the number of genes (ranging from 100 to 1,300) varies
across studies28–30. In our dataset, we observed more than 2,600 genes with polyA site changes, with a
high specificity (>95% lengthening at 3’ UTR) in both cell lines (Figure 3F; Supplementary Figure G).
These results highlight how pooled single-cell CRISPR screens, which avoid batch effects by
multiplexing all perturbations and controls together, can yield accurate perturbation signatures
especially when performed with high cell number and utilizing multiple independent gRNA. Moreover,
this experimental design is ideally suited for the identification of co-regulated polyA sites across multiple
regulators, without having to compare datasets generated across different experiments or studies.

Modules of co-regulated polyA sites exhibit distinct functional properties

While our previous analyses characterized regulators individually, we also clustered perturbations
based on the observed changes to all differentially polyadenylated sites quantified by our model
(Supplementary Methods; Figure 4A). Consistent with expression-based analysis, perturbation clusters
reflected membership structure of core CPA complexes, as well as additional evidence of co-regulation.
For instance, RBBP6, FIP1L1, and PCF11 are not members of the same complex, but all cause 3’ UTR
lengthening at overlapping sites upon perturbation, and cluster together. Moreover, we repeated these
analyses on the K562 dataset and observed highly concordant correlation patterns (Figure 4B),
suggesting these reflect co-regulatory relationships that generalize beyond a single biological context.

We found that the correlation structure was not exclusively driven by global preferences towards
shortening and lengthening, but also local differences in the specific sites affected by each regulator.
For example, perturbation of RBBP6 (preference towards 3’ UTR lengthening) and CFIm complex
members CPFS6 and NUDT21 (preference towards 3’ UTR shortening) showed strongly anti-correlated
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responses, reflecting their globally opposing regulatory tendencies at the same set of loci. By contrast,
CSTF and CPSF complex members (preference towards 3’ UTR lengthening) showed only weak
anti-correlation with CFIm members, reflecting more complex patterns of co-regulation.

To further explore this, we considered a group of 1,208 genes that exhibited transcriptional shortening
after CFIm perturbation (Supplementary Methods). When further subdividing this set of sites based on
their response to CSTF perturbation, we observed an expected module (Figure 4C-E, Module A) of 245
polyA sites (20%) where CSTF perturbation resulted in an opposing lengthening response. However,
we also identified a module (Module B) of 110 (9%) genes where CSTF perturbation also resulted in
shortening, phenocopying CFIm perturbation despite their opposing global preferences. The remaining
71% of sites did not exhibit changes in utilization upon CSTF perturbation. While we identified these
modules in our HEK293FT dataset, we independently observed reproducible patterns at the same loci
in K562 cells (Supplementary Figure 4A).

Strikingly, we found that these gene modules exhibited clear functional differences (Figure 4F). In
particular, we found that genes where we observed opposing regulatory effects between the two
complexes (Module A) strongly favored the usage of proximal sites in NT cells, while genes exhibiting
consistent regulatory effects (Module B) were strongly biased towards distal site usage. These results
were consistent in both HEK293FT and K562 cells (Supplementary Figure 4B) and indicate that local
effects, likely determined by differences in sequence content, establish the responsiveness to CSTF
perturbation, and are important in establishing the proximal versus distal bias for individual genes. More
broadly, we conclude that our polyA residuals represent an effective statistical approach for
characterizing the perturbation responses of individual regulators, and for identifying modules of polyA
sites that are co-regulated across perturbations.

APARENT-Perturb reveals an interactive cis-regulatory code

Our identification of modular patterns of differential polyadenylation that reproduce across cell types
emphasizes the role of local sequence drivers in determining an individual polyA site’s responsiveness
to distinct perturbations. Motivated by the success of deep learning models in accurately predicting
genome-wide patterns of alternative polyadenylation in baseline conditions18–20,57–59, we sought to
extend these models to predict the perturbation responses observed in our dataset. For example,
APARENT2 represents a residual neural net, originally trained on MPRA datasets, that can predict
baseline polyA site usage in HEK293FT cells and interpret specific sequences elements and genetic
variants that drive model accuracy57. The ability to successfully capture nonlinear interactions, including
positional and combinatorial interdependencies between motifs, highlights the ability of these models to
learn intricate cis-regulatory determinants60.

We therefore hypothesized that sequence-based learning models could predict the response of each
polyA site to each of the ten highest magnitude perturbations in our dataset. To test this, we first used
the pre-trained APARENT2 model to provide baseline predictions for polyA site usage. We then trained
a new neural network (APARENT-Perturb) to predict usage in our Perturb-seq data, using 200nt
sequences centered on the site of 3’ cleavage, along with the baseline APARENT predictions as input
(Figure 5A). This approach was inspired by the MTSplice model61, and represents an ensemble-based
multi-task perturbation network that can not only predict relative polyA site usage in NT control cells
(baseline), but also can predict polyA site usage after perturbation. After training, APARENT-Perturb
could accurately predict the isoform proportion of polyA sites for held-out genes in both the
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non-targeting (NT) condition (RS = 0.70) and in perturbations (0.65 ≤ RS ≤ 0.73 depending on
perturbation), as measured by 10-fold cross-validation (Figure 5B, Supplementary Figure 5A). When
predicting relative differences in polyA site usage between a given perturbation and the NT condition,
the performance varied more as some perturbations resulted in an only moderate change to APA levels
(0.27 ≤ RS ≤ 0.59), but these results were still highly significant (2.25x10-125 ≤ p ≤ 2.66x10-17).

To interpret the model, we performed in silico mutagenesis (ISM) by simulating local sequence
alterations and comparing the resulting predictions to the unaltered model. This procedure yields a set
of nucleotide-level ‘attribution scores’, reflecting the contribution of each individual base to the model’s
prediction62,63. Importantly, by subtracting scores of the NT (baseline) output, we isolate each
sequence’s importance in predicting perturbation responses. For example, the attribution scores of the
distal polyA site in the KMT5A gene, highlight an upstream UGUA motif that is predicted to drive
responsiveness to NUDT21 perturbation, and a distinct downstream GU-rich region motif that drives
responsiveness to CSTF3 perturbation (Figure 5C, Supplementary Figure 5B). For each perturbation,
we averaged ISM scores across loci to identify regions that harbored important sequence elements
(Figure 5D-E). We next used a motif discovery tool, TF-MoDISco60,64, to cluster the attribution scores of
each perturbation into a set of salient motifs (Figure 5D, Supplementary Figure 5C-D). These results
recapitulate and extend previously established binding motifs and positions2,4,59 , for example, NUDT21
and CPSF6 both display high average importance in the upstream region of polyA sites and are
sensitive to UGUA motifs with T- or A-rich flanks, while CSTF1 and CSTF3 display a peak of
importance in the downstream region with U- or GU-rich sequences among their top motifs.

Intriguingly, APARENT-Perturb attribution scores suggest motifs that help to coordinate joint activities of
both CFIm and CSTF complex members. Our model’s attribution scores predicted that CFIm
perturbation responses are predicted not only by sequences upstream of the cleavage sequence, but
also by a sequence element located approximately 30-50 bp downstream (downstream element; DSE).
This DSE overlaps with a region of predicted importance for CSTF perturbation, reflecting a
co-enrichment of functional sequences for both complexes at the same sites (Supplementary Figure
5E). While APARENT-Perturb predicted positive attribution scores for most sites in this region after
NUDT21 perturbation (Supplementary Figure 5F; Decile 10), a subset (Decile 1) exhibited negative
attribution scores. Indeed, we found that these two groups of sites differed in their responsiveness to
CSTF1 and CSTF3 (Supplementary Figure 5G). The fact that the NUDT21 perturbation model ascribes
importance to sequence motifs that drive CSTF regulation is strong evidence of sequence-driven
interaction between these factors.

We had previously observed that CSTF and CFIm complex members can jointly regulate polyA sites in
either the same or opposing directions (Figure 4C-F), and we identified a link between our model’s
attribution scores and our previously identified modules. Specifically, we found that in genes where
CFIm perturbation led to transcriptional shortening and CSTF perturbation led to lengthening (Module
A), the DSE at the proximal polyA site was characterized by sequence elements with high CSTF
attribution scores, which are predicted to facilitate CSTF binding and regulation. However, at genes
where perturbation of both complexes led to transcriptional shortening (Module B), the proximal sites
exhibited significantly weaker sequence elements (Figure 5F left, p< 2.0*10-5, Wilcoxon two-sided rank
sum test). By contrast, we observed increased attribution scores for Module A genes at distal sites
(Figure 5F right, p< 1.6*10-4).
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Taken together, these findings suggest a model where the sequence content at proximal polyA sites is
particularly important both in establishment of the proximal/distal bias, as well as the responsiveness to
multiple perturbations. In a subset of genes (Module A), proximal peaks contain strong motifs that serve
to recruit CSTF. This regulatory structure promotes cleavage at the proximal site under baseline
conditions, but leads to transcriptional lengthening after CSTF perturbation. Alternatively, a distinct
gene subset (Module B) exhibits weaker sequence features at the proximal site, while the distal site
contains sequences that promote recruitment of CSTF and CFIm. These loci exhibit distal cleavage
under baseline conditions, but perturbation of either complex results in transcriptional shortening.

Finally, as neural networks trained on ChIP-seq data have been recently shown to successfully learn
the syntax of cooperative binding between transcription factors60, we aimed to identify similar types of
interactions between CPA regulators. We used APARENT-Perturb to simulate either individual or
pairwise motif insertions, and compared the predicted results to identify epistatic interactions. For
example, the CFIm complex includes a NUDT21 homodimer, but it is unclear if and how multiple UGUA
motifs affect binding65,66. We found that two adjacent UGUA motifs tended to act cooperatively in
predicting the responsivity to NUDT21 perturbation. However, we only observed synergistic effects
when both motifs were surrounded by GC-rich sequences, while an AT-rich context was associated with
sub-additive interactions (Figure 5G, Supplementary Figure S5H-I). We also identified that two distinct
sequence elements, the canonical core hexamer, and GU-rich sequence element observed in the DSE,
also exhibited epistasis in predicting polyA site usage after RBBP6 perturbation. While previous work
has associated that both of these motifs independently are associated with RBBP6 regulation28,
APARENT-Perturb identified a position-dependent relationship, with a maximum epistatic interaction
observed when the motif distance was approximately 20bp (Figure 5H, Supplementary Figure 5J). We
verified each of these results using polynomial feature regression (Supplementary Figure 5K-L). We
conclude that deep learning models can be successfully applied to analyze high-throughput
Perturb-seq datasets, and can reveal a cis-regulatory landscape that encodes complex patterns of
co-regulation across multiple complexes.

Identification of APA regulators from genome-wide screening datasets

While the genes selected for our screen encompassed previously identified regulators of alternative
polyadenylation, our computational workflow is capable of characterizing changes in polyA site usage
for any 3’ scRNA-seq dataset. We therefore reanalyzed a recently published genome-wide Perturb-seq
dataset (GWPS)39 which perturbed 9,866 transcriptionally active genes in K562 cells (including all 26
perturbed regulators in our datasets), but did not explore perturbation-dependent changes in polyA site
usage. To address this, we computed polyA-residuals for each cell, and used these as input to
differential polyadenylation analysis (Supplementary Methods). As the GWPS dataset contained far
fewer cells per perturbation (median 91 cells, vs. 1,032 for in our dataset for the 26 overlapping
perturbations), we identified substantially fewer genes exhibiting changes in polyA site usage (median
of 165 genes per overlapping perturbation, compared to 1,351 in our data). However, even at shallow
depth, the GWPS dataset enabled accurate global characterization of each regulator. For example, we
observed a strong concordance in the global bias towards 3’ UTR shortening or lengthening induced by
regulatory perturbation across both datasets (Figure 6A).

We therefore extended our analyses to focus on a previously annotated set of 1,280 RNA binding
proteins67 in order to facilitate identification of regulators that directly modify RNA. While most
perturbations exhibited minimal transcriptome-wide changes in alternative polyadenylation, we
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identified 172 regulators whose perturbation affected polyA site usage in at least 50 genes (Figure 6B,
Supplementary Table 4). We also identified groups of highly correlated perturbations that were
consistent with and substantially expanded our previous observations (Figure 6C, Supplementary
Figure 6A). For example, one group included the CFIm complex members CPSF6 and NUDT21, but
also THOC3, a Transcription-Export (TREX) complex member, and TCERG1 (transcriptional elongation
regulator 1). While perturbation of this module was associated with shortening at tandem 3’ UTR
(Supplementary Figure 6B-C), we identified a separate lengthening-associated module (Module 4;
Supplementary Figure 6F) consisting of Up-frameshift complex members (UPF1, UPF2), the small
ribosomal subunit (RPS24, RPS4X), and the ribosome maturation factor TSR2. While these genes are
well-studied regulators of translational control and RNA stability, none have been previously associated
with regulating polyA site selection. Components of the large ribosomal subunit formed were also
associated with polyA site selection, but formed a separate module (Module 2; Supplementary Figure
6D), along with the translation initiation factor EIF6. These analyses demonstrate how large-scale
perturbation screens can identify novel regulatory factors and suggest tight regulatory crosstalk linking
changes in alternative polyadenylation with multiple processes in the RNA life cycle.

We additionally identified a third group of 15 correlated perturbations (Module 3), 13 of which have
been previously identified as members of the poly(A) tail exosome targeting (PAXT) complex68.
Perturbation of this module was associated primarily with the indirect up-regulation of intronically
polyadenylated transcripts (Figure 6B), whose abundance was not changed in response to perturbation
of the nuclear exosome targeting (NEXT) complex or the CPA machinery (Figure 6D). This response is
driven by the PAXT complex’s role in degrading prematurely terminated RNA transcripts, which
accumulate in the cytoplasm after PAXT perturbation68,69, although the nuclear surveillance machinery
that specifically distinguishes premature transcripts remains unknown70. Intriguingly, the nuclear
cap-binding complex member NCBP2 and and splicing regulator MBNL1 were also members of this
module but neither are members of the PAXT complex. While NCBP2 is known to promote successful
RNA export68,71, MBNL1 perturbation has been previously linked to regulating levels of intronic
retention72, including in cases where retention leads to premature termination73. The striking
phenocopying between perturbation of MBNL1 and PAXT subunits (Figure 6D-F) suggests a hypothesis
where a splicing regulator, via its role in regulating intron retention, may assist PAXT in selecting
unstable and undesired transcripts for degradation.

scRNA-seq profiles reveal extensive plasma cell heterogeneity in polyA site usage

While our previous analyses focused on cellular heterogeneity across in-vitro perturbation experiments,
we next asked whether our statistical framework could quantify and interpret APA heterogeneity in an
in-vivo context. For example, recent work using bulk RNA-seq datasets has demonstrated that
secretory cell differentiation is associated with widespread changes in polyadenylation17. To further
explore this, we calculated polyA-residuals on a 3’ scRNA-seq dataset consisting of 49,958 circulating
human peripheral blood mononuclear cells (PBMC) which includes seven COVID-19 infected samples
that exhibit an induction of antibody-secreting plasma cells74. We processed this data to identify and
quantify 20,067 polyA sites, and quantified both gene expression levels as well as polyA residuals.

Unsupervised analysis of polyA residuals revealed that heterogeneity in polyA site usage across
immune subsets was relatively modest compared to heterogeneity in gene expression (Figure 6G).
However, consistent with previous reports11,17, we did observe that plasma cells exhibited clear
differences compared to all cell types, including developmentally related B cell subsets. In addition to
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observing a shift towards the shorter isoform of the IGHM locus (one of the first described examples of
alternative polyadenylation75; Supplementary Figure 7A), we identified 1,8783 genes (630 intronic
changes and 1253 tandem changes) exhibiting differential usage of at least one polyA site in plasma
cells (Supplementary Methods). Genes exhibiting differential tandem polyadenylation were primarily
associated with 3’ UTR shortening (95%). Gene Ontology analysis revealed a strong enrichment for
Golgi vesicle transport and protein localization, which are linked to the core secretory phenotypes of
plasma cells (Figure 6H).

One key advantage of single-cell measurements is the ability to explore how multiple levels of
granularity in cell annotation affect downstream analyses. We found that when further subdividing
plasma cells to annotate short-lived and highly proliferative plasmablast subpopulations, these cells
exhibited the most striking shifts in polyA site usage (Figure 6I-J, Supplementary Figure 7B).
Surprisingly, we found that non-cycling plasma cells not only exhibited weaker changes, but also
exhibited a bimodal distribution in their polyA-residuals, enabling further subdivision into two groups
based on the degree of 3’ UTR shortening (Figure 6J; Supplementary Figure 7C-D). These two groups
differed not only in transcript structure, but also in the expression of a module of genes that were highly
enriched for their involvement in respiratory and metabolic processes (Supplementary Figure 7E).
These results extended previous bulk RNA-seq based findings17, but were uniformly consistent across
11 donors (Supplementary Figure 7F). They demonstrate that widespread 3’ UTR remodeling occurs in
the earliest stages of plasma cell differentiation, but substantial cellular heterogeneity in polyA site
usage remains even after commitment to this lineage. Future experiments will establish whether the
metabolic changes observed between these groups relate to the secretory capabilities or lifespan of
these cells.

We conclude that 3’ scRNA-seq data can be combined with tailored computational pipelines to explore
cellular heterogeneity in polyA site usage for both in vitro and primary samples, and have developed an
open-source R package PASTA (PolyA Site analysis using relative Transcript Abundance) that
implements the analytical methods described in this manuscript. PASTA is fully compatible with our
analytical toolkit Seurat76, and the software release includes a vignette demonstrating how users can
explore changes in their datasets using PASTA and Seurat. These data and code resources will
facilitate the characterization of heterogeneous alternative polyadenylation in diverse biological systems
and a deeper understanding of the sequences and regulatory factors that govern post-transcriptional
regulation.

DISCUSSION

In this study, we aimed to understand how the abundance of CPA regulators, as well as the presence of
RNA sequence elements, affect the regulation of alternative polyadenylation across the transcriptome.
We demonstrate that the Perturb-seq technology, which has been widely utilized to study transcriptional
regulatory networks, can be successfully applied to study post-transcriptional regulation as well. We
introduce a statistical framework to quantify changes in relative polyA site usage at single-cell
resolution, and demonstrate how this approach can characterize the effect of individual regulators,
identify modules of co-regulated polyA sites, and enumerate subpopulations of cells that exhibit
changes in polyA site usage in any 3’ scRNA-seq dataset.

Our CPA-Perturb-seq dataset revealed striking heterogeneity in the perturbation responses of different
regulators. This was reflected in the number, type, and directionality of changes induced by each
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perturbation. However, our dataset highlights that regulation of alternative polyadenylation is not a
uniform or global process, where all polyA sites are sensitive to perturbation by all core regulators.
Instead, we consistently observed evidence for modularity and substructure in our data. Even when
perturbing regulators of the core CPA machinery, we identified groups of polyA sites that were
co-regulated by a subset, but not all, regulators. Moreover, we identified cases where the same set of
perturbations resulted in opposing responses for distinct modules of polyA sites. Our Perturb-seq
dataset is well-suited for module characterization, as the multiplexed design mitigates experimental
batch effects and avoids the need to compare perturbation profiles generated from different
experiments or studies.

By interpreting our multi task deep neural network, APARENT-Perturb, we find that this local regulatory
structure is encoded in part by sequence-specific elements that surround the cleavage site. Previous
models trained on MPRA data constitute a powerful approach to identify functionally important
sequence elements, but it is challenging to understand how they exert regulatory effects. By integrating
these models with our perturbation data, we learn direct associations between sequence elements and
regulators, providing a more mechanistic understanding of cis-regulatory element function. We
demonstrate the ability of this approach to identify interactions between different regulators of
alternative polyadenylation, but this approach could also be extended to deep neural networks that
predict chromatin accessibility levels from DNA sequence, and to provide deeper functional
interpretation of sequence variants.

While our analyses aimed to focus on regulatory mechanisms that influenced cleavage and
polyadenylation decisions, we repeatedly observed cases where additional regulatory processes in the
RNA life cycle would alter the relative abundance of alternatively polyadenylated transcripts. For
example, we observed regulator-specific patterns that connected changes in RNA polymerase
elongation rate with altered usage of intronic polyA sites. More broadly, we also found that perturbation
of proteins with well-characterized roles in RNA export, RNA translation, and RNA splicing and intron
retention also resulted in differential usage of polyA sites. These results highlight the extensive
interdependencies that connect different RNA regulatory processes. To this end, future work may be
able to exploit these interdependencies to infer RNA kinetic parameters from 3’ scRNA-seq data, for
example, utilizing changes in the usage of intronic polyA sites to infer cell type-specific changes in RNA
elongation rate. More broadly, our statistical method may be extended to characterize additional
sources of transcriptomic diversity, such as changes in splicing from full-length datasets, in order to
characterize a broader realm of post-transcriptional regulatory events.

While our study independently explores datasets deriving from either multiplexed perturbation screens
or primary human samples, looking forward, we believe these contexts will be mutually informative.
Functional genomics tools like Perturb-seq are especially well-suited to identify causal relationships
between molecular regulators and their targets. In contrast, comparative analysis of alternative
polyadenylation across biological samples, conditions, and disease states is a powerful approach for
identifying transcriptome-wide changes, but identifying the causal regulators driving these responses
remains challenging. We envision that the molecular signatures inferred from experiments where causal
relationships are established represent important resources to interpret molecular signatures where
causal relationships are unknown. These links will be particularly informative as Perturb-seq
experiments extend beyond in-vitro models, as we perform here, towards true in-vivo settings.
Integration of these datasets therefore represents a potential path forward for systematic reconstruction
of the regulatory factors and networks that govern post-transcriptional regulation and the RNA life cycle.
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DATA AND CODE AVAILABILITY

The CPA-Perturb-seq datasets generated for this manuscript are available for download at:
https://zenodo.org/record/7619593#.Y-P7Zi1h2X0

Seurat and PASTA are both available as open-source R packages at:
https://github.com/satijalab/seurat
https://github.com/satijalab/PASTA

Code to train and interpret the APARENT-Perturb model is available at
https://github.com/johli/aparent-perturb
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Figure 1: Overview of CPA-Perturb-Seq.
(A) (Top) Schematic of the experimental workflow used to generate the CPA-Perturb-seq dataset.  (Bottom) Schematic of perturba-
tion-dependent changes in either tandem or intronic polyadenylation. (B) Diagram depicting core regulatory complexes that make up 
and interact with the cleavage and polyadenylation machinery. (C) Read coverage plots depicting the differential use of alternative 
polyA sites at the CBX3 locus. Each track represents a pseudobulk average of cells, grouped by their perturbation. ENSEMBL gene 
models and peaks (quantification region) that precede detected polyA sites are shown below. (D) UMAP visualization of HEK293FT 
cells profiled via CPA-Perturb-Seq. Cells are colored based on the target gene identity. Visualization was computed based on a linear 
discriminant analysis (LDA) of transcriptome-wide polyA site counts. 
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Figure 2: PolyA-residuals quantify alternative polyadenylation at single-cell resolution.
(A) Average usage of 5,335 proximal polyA sites in NT cells (x-axis) and CSTF3-perturbed cells (y-axis). Only genes with at least two 
tandem polyA sites are considered. Changes across conditions can breflect eithevr changes in relative polyA site usage, total gene 
expression, or both. (B-D): Read coverage plots at three loci highlighted in (A). Blue box denotes proximal polyA site. (E) Schematic 
depicting the procedure to calculate polyA-residuals (full description in Supplementary Methods). (F-H) Violin plots depicting single-cell 
gene expression levels (left) or single-cell polyA-residuals for the proximal polyA site  for NT and CSTF3-perturbed cells. NS (not 
significant) for RNA comparisons indicate absolute log2FC <0.25 or Bonferonni adjusted p-value >0.05 using Wilcoxon rank-sum test. 
NS for polyA residual comparisons indicates percent change <0.05 or adjusted p-value >0.05 in differential polyadenylation analysis 
described in Supplementary Methods.

N
or

m
al

iz
ed

 s
ig

na
l 

NT

CSTF3(ra
ng

e 
0 

− 
25

00
)

HNRNPH3

G
en

es

Chr 10 [bp]
68342000 68342500 68343000 68343500 68344000Pe

ak
s

R
eg

ul
ar

iz
ed

 v
ar

ia
nc

e

B C D

0

1

2

3

NT

CSTF3
E

xp
re

ss
io

n 
Le

ve
l

NT

CSTF3

E
xp

re
ss

io
n 

Le
ve

l

0

1

2

3

NT

CSTF3

E
xp

re
ss

io
n 

Le
ve

l

NT

CSTF3

E
xp

re
ss

io
n 

Le
ve

l

NT

CSTF3

E
xp

re
ss

io
n 

Le
ve

l

−2.5

0.0

2.5

5.0

NT

CSTF3

E
xp

re
ss

io
n 

Le
ve

l

1

2

3

4

−2

0

2

−2

−1

0

1

2

F G H
p = 5.7E-26 p = 1.1E-9NS NS p = 6.5E-128 p = 2.3E-11

A E 1. Parameterize NT distribution for each gene 2. Regularize across similar polyA sites

ATP6V1G1 (RNA change) HNRNPH3 (polyA change) MRPS16 (RNA + polyA change)

57% 30%

13%

C
ou

nt
s 

of
 s

in
gl

e 
po

ly
A 

S
ite

Total counts in all polyA sites in gene

44% 56%

47% 53%

64% 36% 0.5%

72% 26% 1%

17% 1% 82%

30% 1% 69%

polyA residual
(prox. peak)RNApolyA residual

(prox. peak)RNApolyA residual
(prox. peak)RNA

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

NT Normalized Counts (Proximal Peak)

C
S

TF
3 

N
or

m
al

iz
ed

 C
ou

nt
s 

(P
ro

xi
m

al
 P

ea
k)

MRPS16

HNRNPH3

ATP6V1G1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527751doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527751
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

2000

4000

PA
B

P
C

1
R

P
R

D
1A

P
C

F1
1

PA
P

O
LA

R
B

B
P

6
C

P
S

F1
C

P
S

F2
C

P
S

F3
C

P
S

F4
S

Y
M

P
K

FI
P

1L
1

C
S

TF
1

C
S

TF
3

C
TR

9
C

D
C

73
LE

O
1

PA
F1

S
F3

A
1

C
P

S
F3

L
S

C
A

F8
S

R
S

F3
PA

B
P

N
1

R
P

R
D

1B
TH

O
C

5
C

P
S

F6
N

U
D

T2
1

Intronic

Tandem

NT

CFIm

PAF

SCAF8

PABPN1

N
or

m
al

iz
ed

 s
ig

na
l 

(ra
ng

e 
0 

− 
35

0)

ZSCAN9

G
en

es

28228000 28230000 28232000

Chr 6 [bp]

Pe
ak

s

NT

CFIm

PAF

SCAF8

PABPN1

CPSF3L

N
or

m
al

iz
ed

 s
ig

na
l 

(ra
ng

e 
0 

− 
43

00
)

EXOSC4

G
en

es

144079000 144080000 144081000

Chr 8 [bp]

Pe
ak

s

Figure 3: Characterizing tandem and intronic alternative polyadenylation in CPA-Perturb-Seq
(A) Number of genes with significant changes in RNA abundance, relative usage of at least one polyA site, after perturbation of each regulator. 
Barplots show results in HEK293FT cells. (B) Total number of genes with relative changes in intronic or tandem polyA site usage in HEK293FT cell 
dataset. (C-D) Read coverage plots showing differential usage of intronic sites (boxed) at the ZSCA9 (C) and EXOSC4 locus (D). (E) Heatmap 
showing polyA residuals for intronic sites that are uniquely differentially utilized after perturbation of PAF, SCAF8, PABPN1, and CPSF3L. Each 
heatmap cell shows the pseudobulk average of cells after grouping by sgRNA identity. (F) Number of genes with significant changes in tandem polyA 
site usage in HEK293FT cell dataset, classified by 3’ UTR shortening or 3’ UTR lengthening. (G) Boxplot indicating the observed log2 fold-change in 
gene expression after NUDT21 perturbation. Genes are partitioned into deciles based on the degree of 3’ UTR changes observed after NUDT21 
perturbation. 
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Figure 4: Modules of co-regulated polyA sites exhibit functional differences
(A) Pearson correlation matrix depicting the relationships between perturbations in HEK293FT cells. Correlations are calculated using 
the linear model coefficients learned during differential polyadenylation analysis (Supplementary Methods). Matrices include all pertur-
bations where we obtained at least 50 cells in both HEK and K562 cells, and are ordered via hierarchical clustering. (B) Same as (A), 
but the correlation matrix is generated from an independent analysis on K562 polyA residuals. (C) Heatmap showing polyA-residuals for 
distal peak sites in Module A genes (CSTF and CPSF act in the opposite direction as CPSF6/NUDT21), and Module B genes (CSTF 
and CPSF act in the same direction as CPSF6/NUDT21). For visualization, the top 100 polyA sites, ranked by the magnitude of CSTF 
perturbation, are shown for each module. (D) Schematic diagram of genes belonging to module A and Module B. (E) Read coverage 
plots showing polyA site usage of representative genes belonging to module A (left, CCT6A) and module B (right, TMEM106C). (F) 
Density plot showing distal site usage in NT control cells for genes belonging to Module A (left) versus Module B (right). Genes in 
Module A tend to use the proximal site, while genes in Module B tend to use the distal site. 
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Figure 6: Characterizing heterogeneity in relative polyA site usage in additional 3’ scRNA-seq datasets
(A) 3’ UTR shortening preference observed after perturbing regulators in the CPA-Perturb-seq dataset (x-axis), and the GWPS dataset (y-axis). 
We observe concordant results for this global metric across datasets. (B) Same as Figure 3B, but for the GWPS dataset. (C) Correlation matrix 
depicting the relationship between perturbations in the GWPS dataset, as in Figure 4A. Representative genes for each of the six correlated 
modules are shown on the left. All genes are listed in Supplementary Figure 6A. Shown are all perturbations where we detected changes in 
relative polyA site usage in at least 50 genes. (D-F) MBNL1 perturbation phenocopies perturbation of PAXT complex members. (D) Heatmap 
shows polyA-residuals for polyA sites that are differentially utilized after both MBNL1 and PAXT perturbation. (E-F) Representative read 
coverage plot depicting changes in polyA site usage after perturbation of PAXT complex members and MBNL1. (G) UMAP visualization 
generated from polyA residuals of PBMC dataset. Cells are colored based on their gene expression-based cell annotation. (H) Gene ontology 
enrichment analysis on genes exhibiting 3’UTR shortening in plasma cells compared to B cells. (I) Read coverage plot depicting 3’UTR 
shortening in CHCHD7 gene in distinct B and plasma cell subpopulations. (J) Average polyA-residual (reflects degree of 3’ UTR shortening) of 
proximal sites with increased usage in plasma cells. We observe extensive heterogeneity within the plasma cell lineage, including increased 
shortening in cycling plasmablasts, and two subpopulations of non-cycling plasma cells (denoted by horizontal line, Supplementary Figure 7C).
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