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Simple Summary: Mesenchymal stem cells are investigated for therapy because of their ability to
regulate the immune response to an injury. Cell therapy is increasingly important in veterinary
patients such as horses, which are also valuable as a model. Therefore, what is learned in these
animals can benefit both them and people. However, the patient’s immune system could recognize
and destroy mesenchymal stem cells, impairing effectiveness and potentially leading to adverse
effects. In this study, we analysed how equine mesenchymal stem cells interact with immune cells
in different scenarios. We tested the effect of inflammation and differentiation of these cells, and
how they acted depending on donor–patient compatibility. As we expected, inflammation activated
the regulatory ability of equine mesenchymal stem cells, but also increased the risk of immune
recognition. We anticipated that, after differentiation, these cells would lose their regulatory ability
and would be more easily targeted by the immune system. However, they maintained similar features
after differentiating into cartilage cells. The balance between the ability of mesenchymal stem cells
to stimulate and to regulate an immune response is of the utmost importance to develop safe and
effective cell therapies for animals and people.

Abstract: Immunomodulation and immunogenicity are pivotal aspects for the therapeutic use of
mesenchymal stem cells (MSCs). Since the horse is highly valuable as both a patient and translational
model, further knowledge on equine MSC immune properties is required. This study analysed
how inflammation, chondrogenic differentiation and compatibility for the major histocompatibility
complex (MHC) influence the MSC immunomodulatory–immunogenicity balance. Equine MSCs
in basal conditions, pro-inflammatory primed (MSC-primed) or chondrogenically differentiated
(MSC-chondro) were co-cultured with either autologous or allogeneic MHC-matched/mismatched
lymphocytes in immune-suppressive assays (immunomodulation) and in modified one-way mixed
leukocyte reactions (immunogenicity). After co-culture, frequency and proliferation of T cell subsets
and B cells were assessed by flow cytometry and interferon-G(IFNG) secretion by ELISA. MSC-primed
showed higher regulatory potential by decreasing proliferation of cytotoxic and helper T cells and
B cells. However, MHC-mismatched MSC-primed can also activate lymphocytes (proliferative
response and IFNGsecretion), likely due to increased MHC-expression. MSC-chondro maintained
their regulatory ability and did not increase their immunogenicity, but showed less capacity than
MSC-primed to induce regulatory T cells and further stimulated B cells. Subsequent in vivo studies
are needed to elucidate the complex interactions between MSCs and the recipient immune system,
which is critical to develop safe and effective therapies.
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1. Introduction

Mesenchymal stem cells (MSCs) are adult multipotent stem cells that have raised
interest in the field of regenerative medicine due to their unique biological properties [1].
Mesenchymal stem cells have potential for treating several pathologies, such as those
affecting the musculoskeletal system. However, MSC paracrine activity, including im-
munomodulatory effects, have broadened their scope for inflammatory and immune-
mediated pathologies. As the etiopathogenesis of some diseases is similar in both people
and animals, the results obtained can be valuable for both human and veterinary pa-
tients [2]. The horse presents a remarkable value for translational medicine [3], but further
research on the mechanisms of equine MSC, especially their immune properties, is needed.
The immune regulatory mechanisms of MSCs mainly depend on their paracrine activity [4],
which is not only linked to their therapeutic effects, but also to their ability to escape from
immune recognition when administered allogenically. Actually, a highly relevant paradigm
change is that MSCs are not truly immune-privileged but immune-evasive, and thus, their
recognition and elimination by the immune system in the allogeneic setting should be
considered [5]. Allogeneic application presents several advantages over autologous therapy,
including the possibility of providing quicker and wider availability of well-characterized
MSCs, and its application when autologous cells are not appropriate [6].

Therefore, MSC immunogenicity should be further investigated to develop safe and
effective treatments. Cellular and humoral immune responses may be generated against
allogeneic MSCs, thus limiting their effects and potentially leading to adverse reactions [7,8].
Furthermore, immune memory mechanisms could be developed and compromise the
repeated administration of allogeneic MSCs in the horse [9]. In recent years, the importance
of the major histocompatibility complex (MHC) matching between donor and recipient has
been studied by several authors in the horse [7,10], as well as in other species [11,12]. As the
therapeutic effectiveness could be compromised by the generation of antibodies specifically
directed against the equine leukocyte antigen (ELA) of the donor, ELA haplotypes and
compatibility should be taken into account.

In addition, it has also been reported that the MHC level expression in MSCs in basal
conditions is quite dependent on the equine donor [7]. However, there are other factors
that may modify the initial immune properties of MSCs, such as their exposure to an
inflammatory environment and the process of differentiation. The knowledge on these
factors is critical to use them for designing more effective therapeutic strategies.

Regarding inflammatory exposure, priming equine MSCs with pro-inflammatory
cytokines like interferon gamma (IFNγ) and tumour necrosis factor alpha (TNFα) in-
creases their immunomodulatory properties and may result in enhanced regulatory effects
in vivo [13]. However, priming MSCs may also raise their immunogenicity because of in-
duced expression of MHC, thus potentially limiting the allogeneic administration [14]. The
balance between immunomodulation and immunogenicity induction seems to depend on
the type of inflammatory exposure. For example, high doses of interferon (IFNγ) appears
to increase the expression of MHC-II [7], whereas a short priming of equine MSCs with
low doses of IFNγ and TNFα could maintain the balance between immunomodulatory
and immunogenic factors [15]. It has also been suggested that MSCs may lose their regula-
tory abilities and increase their immunogenicity after differentiation [16]. The increased
expression of MHC-I and/or MHC-II could result in a higher risk of allo-recognition if
equine MSCs differentiate after administration or are administered pre-differentiated [17],
especially if their regulatory abilities are also impaired by differentiation.
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In spite of all the aforementioned, allogeneic MSC administration has been shown to
be safe and effective in several conditions [10,18,19]. Therefore, it has been suggested that
the balance between their immunomodulatory and immunogenic potentials would allow
allogeneic MSCs to evade the immune system and elicit their actions [14]. To strengthen
the development of allogeneic cell therapies, it is critical to gain knowledge into how
factors such as MHC matching/mismatching, inflammation and differentiation may affect
such balance in equine MSCs. To the best of authors’ knowledge, there are not studies
simultaneously assessing these factors on equine MSCs.

Therefore, the aim of this study was to analyse the changes elicited in vitro by equine
MSCs on relevant lymphocyte subpopulations under different conditions: inflammation,
differentiation, and compatibility for the MHC. For this purpose, lymphocyte proliferation
assays consisting of immunosuppression assays (i.e., immunomodulatory capacity) and
modified one-way mixed leukocyte reactions (MLRs) (i.e., immunogenic potential) were
carried out using equine MSCs in basal conditions (MSC-naïve), pro-inflammatory primed
(MSC-primed) or chondrogenically differentiated (MSC-chondro), co-cultured with either
autologous or allogeneic MHC-matched/mismatched lymphocytes. The initial hypothesis
was that inflammatory priming would markedly increase MSC immune regulatory poten-
tial with a slight effect on MSC immunogenicity, whereas differentiation would diminish
their immunomodulatory ability and increase their immunogenicity. Regarding the MHC
compatibility, it was hypothesized that MHC-matched cells would generate similar results
than autologous ones, whereas the MHC-mismatched co-cultures would result in similar
immunomodulation but increased immunogenicity.

2. Materials and Methods
2.1. Study Design

Three MHC homozygous horses were used as donors of bone marrow derived MSCs
to study their immunomodulatory capacity and immunogenic potential in three condi-
tions: basal (MSC-naïve), proinflammatory-primed (MSC-primed) and chondrogenically-
differentiated (MSC-chondro) conditions. For this purpose, MSCs under the different
conditions were co-cultured with peripheral blood lymphocytes (PBLs) autologous (n = 3)
or allogeneic from MHC-matched (n = 8) and mismatched (n = 7) animals. A total of 11
animals, selected by their MHC haplotype, were involved for MSCs and PBLs collection
and co-cultures were established using the combinations shown in Figure 1. Two types
of co-cultures were used: immunosuppressive assays to study MSC immunomodulatory
potential, and one-way modified MLR to assess MSC immunogenicity. PBLs were stained
with carboxyfluorescein succinimidyl ester (CFSE) to evaluate their proliferation after each
type of co-culture. In addition, at the end of the co-culture assays, PBLs were stained with a
panel of antibodies to study changes in the frequency and proliferation of each lymphocyte
subset by flow cytometry. The secretion of IFNγ in co-culture supernatants was assessed
by ELISA as a reflection of T cell activation.
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analysis was performed as previously reported by our group [9]. 

Definitive haplotypes were established for homozygous animals and the remaining 
animals were assigned with provisional haplotypes based on previously known ones, ei-
ther reported in the bibliography [10,21], or described in a preliminary study of our group 
in Purebred Spanish horses [22]. Three groups of animals were selected, including one a 
homozygous horse for each of the haplotypes HapPRE10, HapPRE11 or HapMAI04, and 
two to three heterozygous animals sharing one haplotype. In each group, the homozygous 
horse served as a MSC donor as it was MHC-matched with the heterozygous animals in 
the group, but MHC-mismatched with animals in other groups, thus allowing autologous, 
matched and mismatched combinations (Figure 1). The premise of using homozygous in-
dividuals for matching with different heterozygous individuals is the same proposed to 
create haplo-banks of human induced pluripotent stem cells (iPSCs) [23,24], and also used 
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Figure 1. Study design showing mesenchymal stem cells (MSCs) and peripheral blood lymphocytes
(PBLs) donors to establish autologous and allogeneic major histocompatibility complex (MHC)-
matched and MHC-mismatched co-cultures, to study immunomodulatory capacity and immunogenic
potential. MSCs were assayed unstimulated (MSC-naïve), primed with cytokines (MSC-primed) or
chondrogenically differentiated (MSC-chondro).

2.2. Animal Selection by MHC-Haplotyping

Eleven mixed-breed horses (1 stallion, 3 geldings, 7 mares; aged 2–8 years, weight
412–493 kg) in good health status and with no previous pregnancy history were chosen
based on their MHC haplotypes. Haplotypes were determined by microsatellite typ-
ing using a validated panel of 10 highly polymorphic intra-MHC regions, as previously
described [9,20]. To find and select animals, a screening of 60 Purebred Spanish and mixed-
breed horses from a local farm was performed. Blood was collected with informed owner’s
consent and methodology for DNA extraction, multiplex PCRs and fragment analysis was
performed as previously reported by our group [9].

Definitive haplotypes were established for homozygous animals and the remaining
animals were assigned with provisional haplotypes based on previously known ones, either
reported in the bibliography [10,21], or described in a preliminary study of our group in
Purebred Spanish horses [22]. Three groups of animals were selected, including one a
homozygous horse for each of the haplotypes HapPRE10, HapPRE11 or HapMAI04, and
two to three heterozygous animals sharing one haplotype. In each group, the homozygous
horse served as a MSC donor as it was MHC-matched with the heterozygous animals in
the group, but MHC-mismatched with animals in other groups, thus allowing autologous,
matched and mismatched combinations (Figure 1). The premise of using homozygous
individuals for matching with different heterozygous individuals is the same proposed
to create haplo-banks of human induced pluripotent stem cells (iPSCs) [23,24], and also
used in equine MSC studies [25]. Table 1 shows the microsatellite alleles of each haplotype
identified in the different horses chosen.

All the procedures involving animals were carried out under the Project License
PI 15/16 approved by the in-house Advisory Ethics Committee for Animal Research from
the University of Zaragoza. The care and use of animals were performed accordingly
with the Spanish Policy for Animal Protection RD53/2013, which meets the European
Union Directive 2010/63. All animals were kept on paddocks of the facilities of the Animal
Research Service of the University of Zaragoza, with free access to water and fed with ad
libitum grass hay.
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Table 1. List of major histocompatibility complex (MHC) microsatellite haplotypes identified in the
horses enrolled in the study.

MHC Class I MHC Class III MHC Class II

Micros-
atellite

Loci
UMNJH-

38 COR110 ABGe9019 UMNe65 ABGe9030 EQMHC
1 COR112 COR113 UM011 COR114

Horses
ID

Haplotype

D1
165 221 301 261 215 190 262 270 179 241 HapPRE10

165 221 301 261 215 190 262 270 179 241 HapPRE10

R1
165 221 301 261 215 190 262 270 179 241 HapPRE10

156 215 301 261 215 190 262 270 179 241 HapPRE10-
like

R2
165 221 301 261 215 190 262 270 179 241 HapPRE10

156 221 320 250 219 190 254 270 172 249 HapMAI06

R3
165 221 301 261 215 190 262 270 179 241 HapPRE10

156 207 318 263 215 184 262 260 172 243 HapPRE31

D2
156 217 312 261 205 194 258 260 169 243 HapMAI04

156 217 312 261 205 194 258 260 169 243 HapMAI04

A1
156 217 312 261 205 194 258 260 169 243 HapMAI04

156 205 305 253 205 194 266 268 174 234 HapPRE01

A2
156 217 312 261 205 194 258 260 169 243 HapMAI04

156 207 312 263 211 192 264 270 172 249 Unknown1

D3
156 221 314 259 215 190 262 272 169 255 HapPRE11

156 221 314 259 215 190 262 272 169 255 HapPRE11

C1
156 221 314 259 215 190 262 272 169 255 HapPRE11

156 221 312 261 205 190 262 270 180 245 Unknown2

C2 156 221 314 259 215 190 262 272 169 255 HapPRE11

156 211 301 259 209 192 262 268 174 234 A2 *

C3
156 221 314 259 215 190 262 272 169 255 HapPRE11

156 207 314 261 215 190 262 270 180 247 HapPRE26

MHC homozygous horses are indicated in bold. Asterisks indicate haplotypes that have been previously identified
in other horse breeds [26].

2.3. Isolation and Characterization of MSCs

Equine bone marrow MSCs were obtained as previously described [15,17]. Briefly,
bone marrow was harvested from the sternum of D1, D2 and D3 animals under seda-
tion (0.04 mg/kg IV romifidine; Sedivet, Boehringer-Ingelheim, Barcelona, Spain and
0.02 mg/kg IV butorphanol; Torbugesic, Pfizer, Madrid, Spain) and local analgesia with
lidocaine (Anesvet, Laboratorios Ovejero, León, Spain). Mononuclear cells were separated
by density gradient centrifugation and seeded in culture medium consisting of low-glucose
Dulbecco’s modified Eagle’s medium supplemented with 2 mM L-glutamine, 0.1 mg/mL
streptomycin, 100 U/mL penicillin and 10% foetal bovine serum (FBS) (all from Sigma-
Aldrich, Madrid, Spain). Cells were expanded until passage three, and then cryopreserved
in 10% DMSO (Sigma-Aldrich) and 90% FBS medium until subsequent experiments started.

Cells were characterized at passage three by their phenotype and tri-lineage differentia-
tion, as previously described [15,17,27] according to minimal criteria for defining human MSCs
established by the International Society for Cellular Therapy [28]. Details on the methodology
used and characterization data obtained are provided in Supplementary Materials S1.

Surface expression of MHC-I and MHC-II was studied by flow cytometry in both
MSC-naïve and MSC-primed, since inflammatory exposure can induce changes in MHC ex-
pression. Methodology followed and antibody suitability was previouslydescribed [13,29],
and is briefly explained in Supplementary Materials S1.
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Preparation of MSC Experimental Conditions: MSC-Naïve, MSC-Primed and
MSC-Chondro

Cryopreserved MSCs (n = 3) were thawed and seeded at 5000 cells/cm2 in the basal
medium described above, at 37 ◦C and 5% CO2 for 72 h to recover from freezing. Sub-
sequently, MSCs were detached with 0.25% trypsin-EDTA (Sigma–Aldrich) and seeded
into a 24-well plate at 100,000 cells per well for the immunomodulatory assays, and at
20,000 MSCs per well for the immunogenicity assays. For MSC-naïve and MSC-primed,
plating was done 24 h prior to co-cultures to allow MSCs to attach to the well. For MSC-
chondro, plating was performed with the same amount of cells, but 14 days before the
co-cultures to induce differentiation.

For the MSCs-primed condition, corresponding MSCs were exposed for 12 h to
5 ng/mL of equine recombinant TNFα (R&D Systems, Barcelona, Spain) plus 5 ng/mL of
equine recombinant IFNγ (R&D Systems), added to the basal culture medium described
above [15], before adding PBLs.

Chondrogenic differentiation for the MSC-chondro condition was induced with the
StemPro™ Chondrogenesis Differentiation Kit (Thermo Fisher, Madrid, Spain) using the
micro-mass system during 14 days [30], before adding PBLs. The protocol was adapted
to suit the required amount of MSCs for the ratios selected for immunomodulatory and
immunogenicity assay, which were 100,000 and 20,000 MSCs per well, respectively. For
each donor, two replicates of each MSC type were prepared to run each co-culture in
duplicate. Wells were washed with phosphate buffered saline (PBS, Gibco, Thermo Fisher),
before adding PBLs.

2.4. Co-Cultures for Lymphocyte Proliferation Assays: Immunosuppression and Modified
One-Way MLR
2.4.1. Optimization of the Assays: CFSE Staining and Mitogen Stimulation

Prior to any experimental assay, the optimal concentration of CFSE (Sigma-Aldrich)
and PBLs for staining were determined. Two different CFSE concentrations (2.5 µM and
5 µM) and two PBL concentrations (10 × 106 PBL/mL and 20 × 106 PBL/mL) were
examined based on previously reported conditions [31]. After testing all the combinations,
using 2.5 µM CFSE to stain cells at 20 × 106 PBL/mL were set as the most appropriate
conditions. Subsequently, a gradient of concentrations of the mitogen phytohemagglutin
isoform P (PHA, Sigma-Aldrich) (2.5, 5, 10, and 20 µg/mL) were tested according to
previous reports [32] and assessed after 2, 3 and 4 days [33,34]. The combination of PHA
concentration and time of stimulation that provided maximal proliferation was 10 µg/mL
of PHA during 3 days, and as such was set for all the immunomodulatory assays.

2.4.2. Blood Collection and Isolation of PBLs

Peripheral blood lymphocytes were isolated using the carbonyl iron granulocyte deple-
tion method, followed by density gradient centrifugation with LymphoprepTM (Fisher Sci-
entific, Madrid, Spain) as previously described [8,9]. Briefly, blood was collected aseptically
via jugular venipuncture into sterile 60-mL syringes with 17 I.U./mL of lithium heparin
(Sigma-Aldrich), and plasma was allowed to separate for 20′ at room temperature (RT).

Plasma was separately collected into conical tubes using extension sets and incubated
with carbonyl iron (Sigma-Aldrich) in agitation for 30′ at 37 ◦C. Then, carbonyl iron was
placed in the bottom of the tubes by using a magnet, and supernatant was collected and
centrifuged at 310× g 5′. The cellular pellet was resuspended in PBS and overlayed on
LymphoprepTM. After 690× g 15′ centrifugation (without brake), a lymphocyte layer was
recovered and washed with PBS. Cells were counted in a hemocytometer chamber using Try-
pan Blue 0.4% as dye exclusion, and concentration was adjusted to 10 × 106 live cells/mL
in PBS. This isolation technique has been reported to provide an enriched lymphocyte
population (95–99%) [9,35].
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2.4.3. Carboxyfluorescein Succinimidyl Ester Labelling and Analysis of Proliferation

Cells were labelled with 2.5 µM CFSE to measure lymphocyte proliferation by assess-
ing CFSE dilution using flow cytometry [7,36]. After isolation, PBLs were placed in 15 mL
conical tubes, centrifuged and resuspended at 20 × 106 PBLs/mL in RPMI 1640 medium
(Thermo Fisher), supplemented with 5% FBS to minimize cell toxicity, and 2.5 µM CFSE.
Cells were evenly mixed to ensure rapid and homogeneous labelling and were incubated
5′ RT in dark [31]. The reaction was blocked by adding 2 mL of ice-cold FBS 1′ RT, and
then the cells were washed once with PBS and twice with PBL medium (consisting of RPMI
1640 medium supplemented with 10% FBS, 0.1 mM 2-mercaptoethanol (Sigma), 100 U/mL
penicillin, and 100 µg/mL streptomycin). Cells from the same horse but stained in different
tubes were not mixed but used for separate immunomodulation or immunogenicity assays,
to prevent heterogeneous intensity of the CFSE staining. After the staining procedure, PBLs
were counted again and adjusted to 10 × 106 live cells/mL in PBL medium.

2.4.4. Immunosuppression Assay

The immunomodulatory function of MSCs was determined by their ability to modulate
the proliferation of mitogen-stimulated lymphocytes. As described above, corresponding
MSCs were previously plated in 24-well plates at 100,000 cells per well in duplicate and
prepared for each condition (MSC-naïve, MSC-primed, MSC-chondro).

CFSE-labelled lymphocytes from autologous, MHC-matched and mismatched horses
were seeded at 1× 106 PBL per well (1:10 ratio MSC:PBL), based on previous studies [34,37]
with PBL medium containing mitogen (PHA 10 µg/mL) [32,38], using the combinations
explained above under experimental design.

Appropriate controls were set along with experimental conditions in duplicate: 500,000
unlabelled (background control) and CFSE-labelled (with and without PHA, non-proliferating
and proliferating controls, respectively) were seeded alone in a 96-well U-bottom. All the
cultures were maintained for 3 days, after which corresponding analysis were performed,
as will be detailed below.

2.4.5. Modified One-Way MLR

To assess the ability of MSCs to stimulate a proliferative response in lymphocytes,
modified one-way MLRs were performed. Stimulator MSCs were previously plated at
20,000 cells per well on 24-well plates in duplicate for each condition, as described above.
Autologous, MHC-matched and mismatched responder CFSE-stained PBLs were seeded at
1 × 106 PBL per well following the experimental design aforementioned, thus resulting in
a MSC:PBL ratio of 1:50 [7,34]. Appropriate controls were set as described for immunosup-
pression assays (unlabelled PBLs for background signal and CFSE-stained PBLs, with and
without PHA, as non-proliferating and proliferating internal controls). In addition, classic
MLRs were established for each responder. Briefly, MHC-matched and mismatched PBLs
were used as stimulators by treating them with 50 µg/mL mitomycin C (Sigma-Aldrich)
(37 ◦C 30′ incubation followed by 2 washes with PBS) to inhibit proliferation [10,39]. Stim-
ulator PBLs were plated at 500,000 PBLs/well in 96-well plates immediately before the
addition of 500,000 CFSE-stained responder PBLs (ratio 1:1) to create MHC-matched and
mismatched MLRs for all the PBLs tested with MSCs.

All the cultures were maintained for 5 days without media exchange, after which
corresponding analyses were performed, as will be detailed below.

2.5. Analysis of Lymphocyte Proliferation and Subpopulations

After co-culture, experimental PBLs from proliferation assays (both immunosuppres-
sion and modified one-way MLRs) were collected from 24-well plates, centrifuged at
310× g 5′, resuspended in PBS, and split for the 2 flow multi-colour panels. The super-
natants were collected and centrifuged at 500× g 15′ to remove any contaminating cell,
and subsequently frozen at –20 ◦C for further ELISA analysis. Control PBLs in 96-well
plates were centrifuged at 310× g 5′, supernatants collected as aforementioned, and cells
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suspended in PBS. Experimental PBLs were then transferred to the 96-well plates along
with controls for antibody staining for flow cytometry.

Two multi-colour panels of markers were designed to allow assessment of different
lymphocyte subpopulations, along with the proliferation (CFSE dilution). In panel 1,
anti-CD3, Pan Ig and CD21 were used to assess T and B cells. In panel 2, anti-CD8, CD4
and CD25 antibodies were used to assess cytotoxic, helper and regulatory T cells. All
primary antibodies were selected based on previous reports [40–43], and used directly
conjugated or in combination with appropriate secondary antibodies [44]. All the anti-
bodies were previously titrated in order to determine the optimal dilution. Information
regarding antibodies characteristics, dilution and conjugated fluorochromes is presented in
Supplementary Materials S2: Tables S2.1 and S2.2.

For panel 1 staining, all control and experimental PBLs were blocked with 100 µL/well
of 10% normal goat serum (Panbiotech, IBIAN, Zaragoza, Spain) in PBS, washed twice
(wash buffer consisting of PBS with 3% FBS and 310× g 5′ spinning) and stained with
primary anti-Pan Ig-cells antibody. Then, PBLs were washed twice, incubated with corre-
sponding secondary antibody, and washed again prior to staining with anti-CD21 antibody.
At this point, viability staining was performed with Ghost dye Violet 450 (Tonbo Biosciences,
Bio-Rad, Barcelona, Spain) as per manufacturer’s instructions and prior to fixation and
permeabilization. Cells were washed twice in PBS and fixation/permeabilization were per-
formed using Leucoperm reagents (Bio-Rad, Barcelona, Spain) according to manufacturer’s
indications, provided that the anti-CD3 antibody was directed against an intra-cellular
epitope. Immediately after the permeabilization step, PBLs were blocked with 100 µL/well
of 10% normal mouse serum in PBS, washed and stained with primary anti-CD3 antibody.
After two washing steps, cells were incubated with corresponding secondary antibody.
Cells were washed twice and fixed with 4% paraformaldehyde (Fisher Scientific) in PBS for
15′ 4 ◦C, with one washing step afterwards.

For panel 2, all PBLs were blocked in PBS containing 10% donkey serum and 10% rat
serum (100 µL/well) (both from Panbiotech). After two washing steps, cells were stained
simultaneously with both primary anti-CD4 and anti-CD25 antibodies, washed twice, and
incubated with corresponding secondary antibodies. After two washing steps, cells were
stained with primary anti-CD8 antibody. Subsequently, cells were washed twice with PBS
and incubated with viability dye prior to fixing them, as described above.

All blocking steps and incubation with primary antibodies were performed at 4 ◦C
for 30′. All the incubations with secondary antibodies were carried out at 4 ◦C for 20′.
The volume per well of each primary or secondary antibody was of 50 µL. Two technical
replicates per sample were performed and all the procedures were carried out protecting
the samples from light. All samples in each panel were subjected to the same steps and
were kept in 3% FBS in PBS at 4 ◦C in the dark up to 24 h for analysis.

Samples were analysed in a Gallios flow cytometer (Beckman Coulter, Madrid, Spain),
acquiring a minimum of 10,000 events per sample. Flow cytometry data was analysed with
FCS Express 7 Flow software (De Novo Software, Pasadena, CA, USA).

Unstained and secondary controls (cells stained with secondary antibodies alone) were
used to assess fluorescence background and establish gates. Single colour stains were used
for compensation controls and fluorescence minus one (FMO) controls were performed to
assess the fluorescence spread from other channels. The population of lymphocytes was
first gated in the forward and side scatter (FSC × SSC) plot, and doublets were excluded.
Dead cells were subsequently excluded by incorporation of the viability staining (FL9
channel). In panel 1, live cells were gated for T cell population as CD3+ and for B cells
as CD3−/pan-Ig +/CD21+ [45]. In panel 2, live cells were gated as cytotoxic and helper
T cells as CD8+/CD4− and CD4+/CD8−, respectively. The subpopulation of regulatory
T cells (Treg) was gated from the CD4+ cells as CD4+/CD25high [46]. Due to the variability
among individuals, for each animal, the percentage of each lymphocyte subpopulation was
normalised over the positive control (PHA-stimulated PBLs) in the immunosuppressive
assays, and over the MLR-matched control in the one-way MLR assays.
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In both immunosuppressive and one-way MLR assays, proliferation was assessed
for each lymphocyte subset by studying CFSE dilution (FL1 channel) in cells gated as
aforementioned. Unstimulated and unstained PBLs were used to define the autofluores-
cence (background). Unstimulated and CFSE-labelled PBLs were used to establish the
non-proliferating population, considering cells to the left (lower fluorescence intensity) as
proliferating. Supplementary Material S2: Figure S2.1 represents the gating strategy.

In the immunosuppressive assays, PHA-stimulated PBLs alone from each horse were
used as the positive control and their proliferation was considered as 100%. Lymphocyte
proliferation after co-culture was calculated by comparing samples to paired positive
control to account for inter-individual variability in PHA response.

In the one-way modified MLRs, PHA-stimulated PBLs served only as internal control
to verify their proliferative ability. Proliferation after MSC exposure was normalised over
that observed in MLR-matched controls.

2.6. Interferon Gamma Secretion Assay

Supernatants collected from both immunosuppression and modified one-way MLR
assays were used to evaluate IFNγ production by using a commercially available ELISA
kit (Equine IFN-gamma DuoSet ELISA, R&D Systems, REF: DY1586), as previously re-
ported [33,47]. The supernatants from unstimulated and PHA-stimulated PBLs seeded
alone were used as negative and positive controls, respectively, for the immunosuppression
assays. For the modified one-way MLRs, the supernatants from the classical MLRs with
MHC-matched or mismatched PBLs as stimulators were used as the negative and positive
control, respectively. All supernatants were diluted 1:1 in reagent diluent.

All the procedures were performed as per manufacturer’s instructions and concentra-
tions determined using a standard curve, including a blank.

The standard curve was set from 31.25 pg/mL to 8000 pg/mL of IFNγ. All the
samples and points of the standard curve were run in duplicate. All the colorimetric assays
were analysed on a microplate reader (Biotek Synergy HT, Winooski, VA, USA) and read
immediately at 450 nm with wavelength correction set to 540 nm. The duplicate readings
for each standard, control, and sample were averaged, and the average zero standard
optical density was extracted. The standard curve was created generating a four-parameter
logistic curve-fit and the concentrations extrapolated were multiplied by the dilution factor.

2.7. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 5 software (San Diego, CA,
USA). Data sets were checked for normality using the Shapiro–Wilk test, and parametric
or non-parametric tests were chosen accordingly. Differences in the surface expression
of MHC-I and MHC-II between MSC-naïve and MSC-primed were analysed by paired
t-test. Results from flow cytometry and ELISA were separately analysed for each assay
(immunomodulation or immunogenicity). For each one, data were compared among MSC-
naïve, MSC-primed and MSC-chondro, and regarding corresponding controls, in each
type of co-culture (autologous, allogeneic MHC-matched or allogeneic MHC-mismatched)
by using one-way ANOVA or the Kruskall–Wallis test followed by Dunn’s post-hoc test.
The effect of the type of co-culture was analysed by comparing the results for each type
of combination (autologous, MHC-matched, MHC-mismatched) for each type of MSC
(MSC-naïve, MSC-primed, MSC-chondro) using paired tests (repeated measures ANOVA
or Friedman test, followed by Dunn’s post-hoc test). Significance was set as p < 0.05 in
all cases.

3. Results
3.1. Surface Expression of MHC-I and MHC-II

The expression of MHC-I was highly variable among MSCs from the three horses,
both before and after priming MSCs with proinflammatory cytokines. The mean value
of MHC-I expression was 19% of positive cells for MSC-naïve and 65% for MSC-primed.
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Expression of MHC-II in MSC-naïve was low and similar among donors (mean of 8.5%
positive cells) and experienced a similar increase in the MSCs from the three horses after
priming (mean 62%). It is worth noting that MSCs from one donor (D1, green dot) showed
very low expression of both MHC-I and MHC-II before priming (MSC-naïve), but these
cells experienced the greatest MHC-I and II increase after priming (MSC-primed) (Figure 2).
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3.2. Changes in Lymphocyte Subpopulations and Proliferation in Immunomodulatory Assays
3.2.1. CD3+ T Lymphocytes

The percentage of CD3+ T lymphocytes remained similar under the different condi-
tions, so neither the type of combination nor the type of MSCs seemed to produce relevant
changes in the global T cell population (Figure 3A).

However, the proliferation of CD3+ T cells was reduced in the presence of all types
of MSCs and for all the combinations (autologous and allogeneic MHC-matched and
mismatched) compared to PHA-stimulated lymphocytes alone. Overall, MSC-primed
were superior suppressing the proliferation of lymphocytes, followed by MSC-chondro
and MSC-naïve. In the MHC-matched co-cultures, CD3+ T cell proliferation was signifi-
cantly reduced by MSC-primed (p < 0.05) and by MSC-chondro (p < 0.001) compared to
MSC-naïve, whereas in MHC-mismatched combination, the suppression was significant
only between MSC-primed and MSC-naïve (p < 0.05). Significant differences were not
observed between MSC types under autologous combinations, likely because of the lower
n. Nevertheless, autologous MSCs tended to further suppress CD3+ T cell proliferation,
followed by allogeneic matched and mismatched MSCs (non-significant) (Figure 4A).

3.2.2. CD8+ Cytotoxic and CD4+ Helper T Lymphocytes

When looking at specific T cell populations, CD8+ cytotoxic and CD4+ helper T cells
showed opposite changes. The percentage of CD8+ T cells tended to increase in the presence
of MSCs, as shown by significant differences over PBLs alone in both positive and negative
controls. Specifically, the population of CD8+ T cells was significantly increased by MSC-
naïve MHC-matched (p < 0.001) and mismatched (p < 0.05) compared to PHA-stimulated
PBLs alone. Compared to the negative control (non-stimulated PBLs alone), matched MSC-
naïve (p < 0.001), mismatched MSC-naïve (p < 0.05), matched MSC-primed (p < 0.01) and
mismatched MSC-primed (p < 0.05) significantly raised the CD8+ population. There were
not significant differences among combinations, but a tendency was observed with MHC-
mismatched MSCs inducing higher CD8+ percentages, followed by MHC-matched and
autologous MSCs. Overall, the type of MSCs (naïve, primed or chondro) also influenced
the T cytotoxic population, with MSC-naïve promoting higher percentages of CD8+ cells,
followed by MSC-primed and MSC-chondro. Specifically, this increase was statistically
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significant between MSC-naïve and MSC-chondro for both MHC-matched (p < 0.05) and
MHC-mismatched (p < 0.01) combinations. In the mismatched setting, MSC-primed also
induced a significantly higher percentage of CD8+ T cells compared to MSC-chondro
(p < 0.05) (Figure 3B).

On the contrary, the population of CD4+ T cells tended to decrease in the presence of
MSCs. The percentage of helper T cells was significantly reduced over both the positive
and negative controls when exposed to MHC-matched or MHC-mismatched MSC-naïve
and MSC-primed (p < 0.001 in all cases). In spite of no significant differences detected
among combinations, a tendency was observed with autologous MSCs inducing higher
CD4+ percentages, followed by MHC-matched and mismatched MSCs—on the contrary to
that observed for CD8+ T cells. In addition, inversely to the cytotoxic T cell population,
MSC-naïve promoted lower percentages of CD4+ cells, followed by MSC-primed and MSC-
chondro. Specifically, PBLs co-cultured with MSC-naïve and MSC-primed showed lower
percentages of CD4+ cells than those exposed to MSC-chondro in both MHC-matched
(p < 0.05) and mismatched (p < 0.001) allogeneic settings (Figure 3C).

Regarding the proliferation of these subpopulations, MSC-primed and MSC-chondro
tended to suppress proliferating CD8+ T cytotoxic cells over the positive control, but
MSC-naïve promoted an increase in the proliferation of CD8+ cells. These differences were
statistically significant only in the MHC-matched setting (p < 0.05 for all the three types of
MSCs). Interestingly, MSC-chondro showed the highest suppressive capacity, followed by
MSC-primed. Specifically, MSC-chondro significantly suppressed CD8+ T cells proliferation
compared to MSC-naïve in both MHC-matched and mismatched co-cultures (p < 0.001). Sig-
nificant differences were not observed between MSC types under autologous combinations,
as reported for CD3+ T cells. Significant differences were neither seen among combinations,
but a tendency towards further suppressive capacity of autologous MSCs over allogeneic
ones was noted, as well as the aforementioned for CD3+ lymphocytes (Figure 4B).

Proliferation of CD4+ T cells was suppressed in all the co-cultures with MSCs. Com-
pared to PHA-stimulated PBLs alone, MSC-naïve and MSC-primed significantly reduced
CD4+ cells proliferation in both MHC-matched and mismatched combinations (p < 0.001
for all conditions). MSC-chondro also showed suppressive capacity of CD4+ cells, but it
was more variable, being significant only over MSC-naïve in the MHC-matched setting
(p < 0.01). Similarly to that described for CD3+ and CD8+ cells, the effect of the type of
combination was not statistically significant, but autologous MSCs tended to show further
suppression (Figure 4C).

3.2.3. CD4+ CD25high Regulatory T Cells

In this study, Treg were gated as CD4+ CD25high cells. Phytohemagglutinin increased
the percentage of CD4+ CD25high, as shown in the positive control over the negative
one (p < 0.05), and as also previously reported using a similar lectin mitogen [48]. In
the presence of MSC-naïve and MSC-primed, PHA-activated PBLs further increased the
percentage of CD4+ CD25high T cells, whereas MSC-chondro clearly tended to decrease this
population. Specifically, and compared to the positive control, Treg population increased
when co-cultured with MSC-naïve and MSC-primed, either MHC-matched (p < 0.001) or
MHC-mismatched (p < 0.05), and decreased when exposed to MHC-matched MSC-chondro
(p < 0.001). Similar increases were also noted over the negative control (MHC-matched MSC-
naïve and primed, p < 0.001; MHC-mismatched MSC-naïve, p < 0.001; MHC-mismatched
MSC-primed, p < 0.05). The effect of the combination followed a clear tendency in spite of
no significant differences observed, with MHC-mismatched MSCs inducing higher levels of
Treg cells, followed by MHC-matched and autologous MSCs. The effect of the type of MSCs
was also clear, with MSC-naïve further increasing Treg cells, followed by MSC-primed. In
particular, MHC-matched and mismatched MSC-naïve promoted higher percentages of
Tregs over MSC-chondro (p < 0.001 in both cases), and MHC-mismatched MSC-primed
also increased this population compared to MSC-chondro (p < 0.01) (Figure 3D).



Animals 2022, 12, 984 12 of 25

Despite of the fact that MSC-naïve and MSC-primed can increase the CD4+ CD25high

population, all the co-cultures suppressed the proliferation of these cells compared to
the positive control, but this reduction was not statistically significant in any condition.
Suppression of Treg proliferation was stronger for MHC-matched MSC-chondro over MSC-
naïve (p < 0.05), which may be related to the tendency of MSC-chondro to reduce the
percentage of these cells. No clear effect of the type of combination was observed, but
overall autologous MSCs appeared to be more suppressive (Figure 4D).

3.2.4. CD3− Pan-Ig+ CD21+ B Cells

B cells were gated as CD3− Pan-Ig+ CD21+ and this population tended to increase in
the presence of MSCs, especially with MSC-naïve. Specifically, MHC-matched MSC-naïve
promoted higher percentage of CD3− Pan-Ig+ CD21+ compared to the positive (p < 0.001)
and negative (p < 0.01) controls, and also to MSC-primed (p < 0.05) (Figure 3E).

When looking at the proliferation of B cells, MSCs had a clear suppressive effect.
Compared to PHA-activated PBLs alone (positive control), MHC-matched and mismatched
MSC-naïve and MSC-primed significantly suppressed CD3− Pan-Ig+ CD21+ proliferation
(p < 0.001 in all the four comparisons). When comparing types of MSCs, MSC-primed
elicited a higher suppressive potential of this population, followed by MSC-naïve and MSC-
chondro. In particular, suppression of the B cell population was further suppressed by
MHC-matched MSC-primed (p < 0.01) and MSC-naïve (p < 0.05), and by MHC-mismatched
MSC-primed (p < 0.001), compared to corresponding MSC-chondro. The type of combina-
tion did not significantly influence the suppression of B cells proliferation, but autologous
MSCs tended to further reduce this proliferating population (Figure 4E).
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3.3. Changes in Lymphocyte Subpopulations and Proliferation in Immunogenicity Assays
3.3.1. CD3+ T Lymphocytes

The percentage of CD3+ T cells did not significantly change in response to the different
MSCs in the modified one-way MLRs, neither regarding their type (MSC-naïve, MSC-
primed, MSC-chondro), nor regarding the combination (autologous, allogeneic MHC-
matched or mismatched) (Figure 5A).

Compared to the negative control (MLR-matched), proliferation of T cells was not
significantly induced under any condition. Actually, a lower proliferation of T cells was
observed when co-cultured with MSC-naïve and MSC-primed in all the three combina-
tions. Specifically, proliferation of T cells was significantly lower with MSC-naïve than
with MSC-chondro in both autologous and MHC-mismatched settings (p < 0.05 in both
conditions). Regarding the mismatched co-cultures, these tended to produce a higher
T cell response, followed by MHC-matched and autologous combinations. Nevertheless,
the difference was only significant for MSC-primed between mismatched and matched
conditions (p < 0.05) (Figure 6A).

3.3.2. CD8+ Cytotoxic and CD4+ Helper T Lymphocytes

The percentage of CD8+ T cells did not significantly change under any condition in
the one-way modified MLR assays, contrary to that observed in the immune suppression
assays (Figure 5B). However, the percentage of CD4+ T cells was reduced in the presence
of MSC-primed in the allogeneic MHC-matched (p < 0.05) and mismatched (p < 0.01)
combinations, and after the exposure to MSC-chondro in the MHC-mismatched scenario
(p < 0.05), compared to the MLR-matched control. Furthermore, in the mismatched co-
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cultures, MSC-chondro (p < 0.001) and MSC-primed (p < 0.05) reduced the percentage of
CD4+ T cells compared to the MSC-naïve. Overall, mismatched combinations tended to
further reduce the percentage of helper T cells, but only MSC-chondro showed a significant
reduction (p < 0.05) compared to the matched setting (Figure 5C).

A statistically significant increase of CD8+ T cells proliferation was neither observed
compared to the MLR-matched control under any condition, but a marked tendency
towards cytotoxic T cells induction was observed with MSC-primed. Actually, CD8+ T cell
proliferation was higher in the presence of MSC-primed compared to MSC-naïve and
MSC-chondro in the three combinations, but the difference was statistically significant only
regarding MSC-chondro in the mismatched setting (p < 0.05) (Figure 6B). Proliferation of
CD4+ T cells followed a similar pattern to CD8+ T cells: whereas no significant differences
were observed between any condition and the MLR-matched control, MSC-primed tended
to induce T helper proliferation in the two allogeneic settings. Specifically, proliferation of
CD4+ T cells was higher after exposure to MSC-primed compared to MSC-naïve (p < 0.05)
and to MSC-chondro in both the MHC-matched (p < 0.05) and mismatched (p < 0.01)
scenarios. Significant differences among conditions were only observed for MSC-chondro,
with higher proliferation in the MHC-mismatched combination compared to the MHC-
matched one, but not exceeding the MLR-matched values (Figure 6C).

3.3.3. CD4+ CD25high Regulatory T Cells

Overall, MSC-naïve and MSC-primed tended to increase the percentage of CD4+
CD25high and MSC-chondro to reduce it, regardless of the type of combination. Specifically,
MHC-mismatched MSC-primed significantly increased the CD4+ CD25high population
(p < 0.05) compared to the MLR-matched control and to both MSC-naïve (p < 0.01; MHC-
mismatched) and MSC-chondro (p < 0.05; MHC-matched and mismatched) (Figure 5D).

Similarly to that observed for cytotoxic and helper T cells, Treg cells were induced to
proliferate after exposure to MSC-primed regardless of the type of combination. However,
the proliferation observed was not statistically different to that reported for the MLR-
matched control. Nevertheless, MSC-primed significantly induced proliferation of Tregs
compared to MSC-chondro in both the allogeneic MHC-matched (p < 0.01) and mismatched
(p < 0.001) combinations, as also seen with CD4+ helper T cells. Furthermore, the prolifera-
tion induced by MSC-primed was significantly higher in the mismatched setting compared
to the matched (p < 0.05) (Figure 6D).

3.3.4. CD3− Pan-Ig+ CD21+ B Cells

The frequency of the B cell population did not significantly change compared to
control MLRs after exposure to different types of MSCs in autologous and allogeneic MHC-
matched combination. Overall, MSC-naïve tended to further diminish the percentage of
B cells. However, in the MHC-mismatched combination, MSC-chondro promoted a greater
reduction, being significant compared to both MLR-matched (p < 0.05) and mismatched
(p < 0.01) controls. In this setting, both MSC-chondro and MSC-naïve elicited a reduction
of B cells compared to MSC-primed (p < 0.05 in both cases) (Figure 5E).

In the three combinations, proliferation of B cells was similar to that in the MLR-
matched control for MSC-naïve and MSC-primed, whereas it was higher for MSC-chondro
but not statistically significant. However, B cell proliferation elicited by MSC-chondro
was significantly higher (p < 0.05) than that observed with MSC-primed in both allogeneic
MHC-matched and mismatched settings. Among combinations, proliferation of B cells
exposed to MSC-primed was higher (p < 0.05) in the mismatched scenario than in the
matched, but did not differ from the MLR-matched control (Figure 6E).
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ences of each condition over the positive control (MLR mm+, mismatched MLR consisting of responder 
PBLs exposed to MHC-mismatched stimulator PBLs; black bar) are represented by a cross (+) above the 
corresponding bar (++ = p < 0.01). Significant differences over the negative control (MLR M−, white bar) 
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= p < 0.01; *** = p < 0.001). 

Figure 5. Mean ± SEM of the relative frequency of different lymphocyte subsets in the im-
munogenicity assays (one-way modified mixed lymphocyte reaction): (A) CD3+ T lympho-
cytes, (B) CD8+ cytotoxic T cells, (C) CD4+ helper T cells, (D) CD4+ CD25high regulatory T cells,
(E) CD3−Pan-Ig+ CD21+ B cells. Non-activated PBLs were exposed in vitro to MSC-naïve (light grey
bar), MSC-primed (medium grey bar) and MSC-chondro (dark grey bar). Co-cultures of MSCs and
PBLs were autologous (n = 3) or allogeneic, matched (n = 8) or mismatched (n = 7) for the MHC. Data
from each PBL donor is normalised over the negative control (MLR M−, matched MLR) consisting
of responder PBLs from the same donor exposed to MHC-matched stimulator PBLs (value 1), to
account for inter-individual variability. Significant differences of each condition over the positive
control (MLR mm+, mismatched MLR consisting of responder PBLs exposed to MHC-mismatched
stimulator PBLs; black bar) are represented by a cross (+) above the corresponding bar (++ = p < 0.01).
Significant differences over the negative control (MLR M−, white bar) are represented by hashes (#)
above the corresponding bar (# = p < 0.05; ## = p < 0.01). Significant differences between experimental
conditions are represented by a squared line with an asterisk (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).
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Figure 6. Mean ± SEM of the relative proliferation of different lymphocyte subsets in the
immunogenicity assays (one-way modified mixed lymphocyte reaction): (A) CD3+ T lympho-
cytes, (B) CD8+ cytotoxic T cells, (C) CD4+ helper T cells, (D) CD4+ CD25high regulatory T cells,
(E) CD3−Pan-Ig+ CD21+ B cells. Non-activated PBLs were exposed in vitro to MSC-naïve (light grey
bar), MSC-primed (medium grey bar) and MSC-chondro (dark grey bar). Co-cultures of MSCs and
PBLs were autologous (n = 3) or allogeneic, matched (n = 8) or mismatched (n = 7) for the MHC.
Proliferation of each PBL donor is normalised over the proliferation observed in the negative control
(MLR M−, matched MLR) consisting of responder PBLs from the same donor exposed to MHC-
matched stimulator PBLs (value 1), to account for inter-individual variability. Significant differences
over the negative control (MLR M−, white bar) were not observed. Significant differences between
experimental conditions are represented by a squared line with an asterisk (* = p < 0.05; ** = p < 0.01;
*** = p < 0.001).

3.4. Interferon Gamma (IFNγ) Production in Immunomodulatory and Immunogenicity Assays

The concentration of IFNγ was measured in co-culture supernatants from both im-
munomodulatory and immunogenicity assays as reflection of lymphocyte activation. Val-
ues of IFNγ were overall higher in the immunomodulatory assays, where PBLs were
activated by PHA. Significant differences among autologous, allogeneic MHC-matched and
MHC-mismatched co-cultures were not observed, neither in immunomodulatory assays
nor in the immunogenicity ones, but for both types of assays, IFNγ concentration was
higher in the co-cultures with MSC-primed (Figure 7).

In the immunomodulatory assay, co-cultures with MSC-naïve showed IFNγ concen-
trations similar or slightly higher to the positive control (PHA-stimulated PBLs alone),
but significant differences were not observed. IFNγ presence in co-cultures with MSC-
chondro was similar to that in the negative control (unstimulated PBLs alone). However,
supernatant from MSC-primed co-cultures contained significantly higher concentrations of
IFNγ than the negative control in both MHC-matched (p < 0.01) and MHC-mismatched
(p < 0.05) combinations. In addition, IFNγ in these conditions also increased signifi-
cantly compared to corresponding MSC-chondro co-cultures (p < 0.001 for MHC-matched,
p < 0.05 for MHC-mismatched) (Figure 7A).

In the one-way MLRs (immunogenicity assays), both MSC-naïve and MSC-chondro
induced IFNγ secretion in amounts similar to the negative control (MLR-matched) and
lower than in the positive control (MLR-mismatched), but no significant differences over
controls were observed. Presence of IFNγ in the supernatants from MSC-primed co-cultures
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was higher than with the other MSC types and compared to controls, but significant
differences were only observed between the MHC-matched MSC-primed co-culture and
the negative control (p < 0.05) (Figure 7B).
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each condition over the positive controls were not observed. Significant differences over the negative
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4. Discussion

To the best of authors’ knowledge, this is the first study in the equine species as-
sessing the effect of proinflammatory priming, chondrogenic differentiation, and MHC
compatibility on the immunomodulatory and immunogenic potentials of MSCs. Under
the conditions of this study, equine MSCs stimulated by proinflammatory cytokines (MSC-
primed) were more immunosuppressive and presented mild immunogenicity compared
to non-manipulated MSCs (MSC-naïve). Interestingly, equine MSCs differentiated into
chondrocytes (MSC-chondro) did not lose their regulatory capacity, and neither did they sig-
nificantly increase their immunogenicity. In addition, autologous MSCs were slightly more
suppressive, whereas allogeneic MHC-mismatched MSCs tended to be more immunogenic,
especially when they were primed with cytokines.

Previous studies have shown that both autologous and allogenic MSCs significantly
suppressed the proliferation of PHA-activated T cells [32,39,49], but fewer studies have anal-
ysed the ability of MSCs to stimulate an immune response in resting lymphocytes [7,34,50].
In addition, the effects of MSCs under different conditions on specific lymphocyte subpop-
ulations, and the way these populations change and proliferate after co-culture in vitro,
has been barely studied in the horse. Overall, and in agreement with previous reports,
co-culture assays conducted in this study showed that allogeneic MSCs are able to suppress
activated lymphocytes. Moreover, allogeneic MSCs do not stimulate marked changes on
the proliferation and frequency of different lymphocyte subpopulations.

According to our initial hypothesis, MSC-primed were more immune suppressive
but also more immunogenic than MSC-naïve. However, we also hypothesized that MSC-
chondro would lose their regulatory ability and would be more easily recognized by the
immune cells; however, it turned out that differentiated MSCs were able to suppress the
proliferation of different lymphocyte subpopulations in a similar way to MSC-primed,
and did not provoke a marked proliferative response in resting lymphocytes. Therefore,
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the capacity of suppressing CD3+ T cells was enhanced in both MSC-primed and MSC-
chondro over MSC-naïve. Actually, when analysing the two main subpopulations of T cells,
MSC-naïve were not able to suppress the proliferation of CD8+ cytotoxic T cells, indicating
that the suppression in T cell proliferation elicited by these cells was exclusively due to
the suppression of CD4+ helper T cells. Thus, and according to previous studies in the
horse [34,51], a suppressive effect of MSC-naïve is observed in the general T cell population.
However, contrary to our findings, Ranera et al. (2016) found that untreated MSCs were
able to suppress the proliferation of CD8+ lymphocytes, while CD4+ cells were only slightly
modified [32]. Meanwhile, both MSC-primed and MSC-chondro decreased the proliferation
of both cytotoxic and helper T cells in a similar way, suggesting a further activation of their
immunomodulatory properties over untreated MSCs, since cytotoxic T cells (CD8+) are
primarily involved in the destruction of cells presenting foreign antigens, and T helper cells
(CD4+) play an important role in establishing and maximizing the immune response [52].

Even though MSC-primed and MSC-chondro similarly suppressed the proliferation
of cytotoxic and helper T cells, they differ in their behaviour regarding Treg and B cells.
An increase in Tregs would be related to the immunosuppressive ability of MSCs, as these
lymphocytes would help dampen the adaptive immune response and prevent rejection
of foreign cells by the host [53]. In the one-way MLRs conducted in our study, relative
frequency and proliferation of Treg cells were consistently and significantly increased
after exposure to MSC-primed compared to MSC-chondro. In addition, MSC-naïve also
induced an increase of Treg relative frequency in the three combinations, similarly to that
reported by Kamm et al. (2021), which also showed an increase in Treg lymphocytes in
contact with MSCs from universal blood donors and with low MHC class II expression [50].
Furthermore, for the population of B lymphocytes, which principal function is the produc-
tion of antibodies against foreign antigens [52], MSC-primed showed the most marked
suppressive capacity. In agreement with our results, a previous study in human MSCs [54]
observed that MSC-primed inhibited the proliferation of B cells over MSCs-naïve. Inversely,
for lymphocytes B, MSC-chondro were significantly less suppressive than MSC-primed.

Previous studies measuring the ability of proinflammatory primed equine MSCs to
suppress the proliferation of allogeneic activated T cells have shown similar results. The
study of Caffi et al. (2020) analysed the effect of pre-conditioning MSC with proinflamma-
tory cytokines (TNFα and IFNγ) and, according to our results, reported that priming MSCs
increases their inhibitory effect on lymphocyte proliferation [55]. Another study [51] con-
cluded that MSCs primed with either polyinosinic:polycytidylic acid, lipopolysaccharide,
or inflammatory macrophages, produced a similar enhancement in their ability to modulate
T cell proliferation. This suppressive ability of MSC-primed would be related to paracrine
immunomodulation mechanisms, which are induced by inflammation as reflected by the
increase of the expression and secretion of different mediators, such as cyclooxygenase 2
(COX-2), indoleamine 2-3-dioxygenase (IDO), and interleukin 6 (IL-6) [15].

Furthermore, previous studies in other species reported that chondrogenically differ-
entiated rat MSCs had decreased immunomodulatory potential, in disagreement with our
results [16]. However, there are also reports on human chondrogenically-induced MSCs
showing a regulatory profile similar to undifferentiated cells [56]. Therefore, variability
among species could be expected, and thus it is important to explore this scenario in the
horse. Beyond the potential inter-species variability, other possible explanations for these
findings should be considered. First, the ratio between MSC-chondro and PBLs could
have varied over MSC-naïve and MSC-chondro in this experiment. For MSCs-naïve and
MSC-primed, the number of cells seeded to reach the appropriate ratio of MSC:PBLs can
be controlled, and was chosen based on previous studies [7,32,34]. However, for MSC-
chondro, because two weeks were necessary for inducing their differentiation, it is difficult
to adjust the exact final number of cells. There is no consensus regarding whether MSCs
proliferate or not while differentiating into chondrocytes. Some authors [57] described
that proliferation of MSCs in micromasses is decreased during the first week of chondro-
genic differentiation, whereas other authors [58] reported that MSCs proliferate as they
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differentiate into cartilage. In this study and prior to any experimental assay, MSCs were
differentiated into chondrocytes by different methods (monolayer, micromass and pel-
let culture). After two weeks, the extracellular matrix of chondrogenically differentiated
MSCs were digested by collagenases, and the number of cells evaluated as previously
described [59,60]. Based on these preliminary assays, the micromass technique was chosen
as the most consistent method for differentiation under our conditions, but the effect of this
variable on the final MSC:PBL ratio cannot be totally disregarded. In addition, the possible
presence of undifferentiated MSCs in the MSC-chondro co-cultures could have contributed
to the suppression of lymphocyte proliferation observed.

Regarding immunogenicity, and according to our initial hypothesis, MSC-primed
induced a proliferative response in cytotoxic and helper T cells. However, B cells were
not activated and Treg were increased. However, even though we hypothesized that
MSC-chondro would be more immunogenic, they did not increase proliferation or induce
changes in the cytotoxic and helper T cell populations. However, MSC-chondro induced
proliferation of B cells and showed the lowest ability to stimulate Tregs. Kamm et al.
(2021) showed that proliferation of B cells was not stimulated when faced with allogeneic
MSCs [50], similarly to that observed with both MHC-matched and mismatched MSC-
naïve and MSC-primed in this study. Regarding MSC-chondro, a previous study in rat
MSCs [16] reported a significant increase in B cells when co-cultured with chondrogenically
differentiated cells, similarly to our findings.

The increased immunogenicity of MSC-primed would be associated with the increase
in MHC expression. The upregulation of MHC-I and MHC-II after priming MSCs observed
in this study agrees with previous reports in the equine species [7,15]. A recent study
in horses [50] described that the MHC expression level in MSCs largely depends on the
horse donor, and these cells could be classified as MHC class II-high or low expression,
which would affect their immune recognition. According to our results, the MSCs in
our study would be classified as MHC-II low, but will change into the MHC-II high
category after cytokine priming, with a parallel increase in their capacity to stimulate an
immune response.

Studies reporting immune response against MSC-chondro have also shown increased
levels of MHC surface expression compared to undifferentiated MSCs [16]. In a previous
work from our group, an upregulation of MHC-I and II was observed after chondrogenic
differentiation of equine MSCs [17]. However, in the current study, immunogenicity of
MSC-chondro was not observed, except for the B cells response. In the equine species,
there is only one study assessing the capacity of chondrogenic induced equine allogeneic
peripheral blood-derived MSCs (ciMSCs) to activate lymphocytes [18]. Their results showed
no cellular immune response in one-way MLRs with ciMSCs, and no immunomodulatory
capacity of these cells in immunosuppressive assays either; although, it should be noted
that all co-cultures were carried out from 5 days to one year and a half after treating
10 horses with ciMSCs. In addition, in their study, the MHC-haplotype of ciMSC donors
and recipients was not established, and neither were lymphocyte subpopulations assessed.
It should also be considered that the methodology for chondrogenic induction varies
between this and our study, which might explain the lack of immunomodulatory properties
seen by Van Hecke et al. (2021) [18].

In our study, MSC-chondro were thoroughly washed prior to adding PBLs but the
possible effect of TGF-β3 in the differentiation media regarding their immunogenic profile
should also be noted, provided that TGF-β2 can diminish MHC expression in equine
MSCs [61]. These authors observed that TGF-β2-treated MHC-mismatched MSCs, which
have reduced MHC-I surface expression, and induced less T cell receptor downregulation
and cytotoxicity than untreated MHC-mismatched MSCs in vitro, thus suggesting that
treatment with this growth factor could reduce the cell-mediated immunogenicity of MHC-
mismatched MSCs in vitro.

We also hypothesized that MHC-matched MSCs would generate similar results than
autologous ones, while MHC-mismatched MSCs would present similar regulatory ca-



Animals 2022, 12, 984 20 of 25

pacity but increased immunogenicity. Even though we observed similar results in both
immunomodulatory and immunogenicity assays for the three types of combinations, it
should be noted that the autologous group tended to further supress the proliferation of
all lymphocyte subpopulations, followed by the allogeneic MHC-matched group and the
MHC-mismatched one. Furthermore, MHC-mismatched MSCs tended to induce higher
lymphocyte proliferation, but this effect was only obvious with MSC-primed.

Ranera et al. (2016) studied the immunomodulatory ability of MSCs co-cultured with
activated PBLs of autologous and MHC-mismatched horses, and showed that both of them
exhibited a similar capacity to significantly reduce lymphocyte proliferation in vitro [32].
However, in this study MHC-matched co-cultures were not analysed and only MSC-
naïve were tested. Another study [34] showed that both autologous and allogeneic MSCs
decreased proliferation of activated lymphocytes. Both autologous and allogeneic MSCs
appeared to be equally immunosuppressive, and no difference was noted between them,
but only CD3+ T cells were analysed. For the general T cell population, our study also
showed similar results between combinations for MSCs-naïve, but further tendencies
were observed when assessing lymphocyte subpopulations and MSCs under different
conditions. Moreover, in the study of Colbath et al. (2017), MHC haplotypes of horses were
not established and they reported a low expression of MHC-II in MSCs, which remained
low after the co-cultures [34].

To assess the ability of MSCs to activate lymphocytes, Colbath et al. (2017) also co-
cultured autologous or allogenic MSCs with inactivated PBLs, and concluded that equine
allogeneic MSCs were not inherently more immunogenic in terms of T cell activation, as
they only induced a mild lymphocyte proliferation in vitro, similar to that observed with
autologous MSCs [34]. In our study, a higher immunogenic response in cytotoxic and
helper T lymphocytes were observed in MHC-mismatched co-cultures when MSCs were
primed, in agreement with [50], which observed increased proliferation of CD8+ and CD4+
T cells after co-culture with MHC-mismatched MSCs showing MHC-II high expression.
Nevertheless, Kamm et al. (2021) concluded that differences between autologous and
allogeneic MSCs were minimal regarding their effect on the activation of lymphocytes [50].
On the contrary, another in vitro study where MHC-haplotypes were controlled showed
that MHC-mismatched MSCs induced lymphocyte activation [7]. Their results were in
agreement with our findings, as Schnabel et al. (2014) revealed that MHC-mismatched MHC
class II-positive MSCs caused a significant increase in the proliferation of T cells compared
to MHC-matched MSCs and to MHC-mismatched MHC class II-negative, concluding that
MHC-mismatched MSCs induced greater lymphocyte activation in vitro, particularly when
MHC-II expression was high, as it was observed with MSC-primed in our study [7].

It should also be considered that, in the autologous group of our study, only three
horses were involved. This n was lower than in the allogeneic groups and could help explain
why in most autologous conditions no significant differences appeared among MSC types,
even though they followed the same trend as allogeneic MHC-matched and mismatched
groups. However, this setup was chosen to use the same MSCs across all the experiments,
avoiding the involvement of more animals and the increase of inter-individual variability.

Finally, IFNγ was determined in co-culture supernatants as this proinflammatory
cytokine is related to cell-mediated immunity produced by T lymphocytes. The principal
function of IFNγ is to stimulate both innate and adaptive immune responses [62], so its
secretion indicates expansion of CD8+ or CD4+ effector and memory cells against donor
MSCs [5]. However, other authors report that IFNγ production stimulates the regula-
tory ability of MSCs, thus subsequently reducing the proliferation of immune cells [63].
In our study, overall lower secretion of IFNγ was observed in the immunogenicity as-
says compared to the immunomodulatory ones, but it must be considered that in the
latter, the lymphocytes were mitogen-activated and thus produce higher concentrations
of IFNγ [34,47,49]. In both immunomodulatory and immunogenicity assays of our study,
lymphocytes co-cultured with MSC-chondro showed the lowest IFNγ secretion, and lym-
phocytes co-cultured with MSC-primed resulted in the highest secretion.
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In the immunomodulatory assays, and contrary to that previously reported [39,49],
a significant reduction in IFNγ secretion over the positive control was not observed after
co-culture of activated lymphocytes with the different types of MSCs and in the different
combinations. Actually, IFNγ secretion increased in the presence of MSC-primed in both
immunomodulatory and immunogenicity co-cultures. This finding could reflect a further
activation of lymphocytes in the presence of MSC-primed, as seen by increased proliferation
of CD8+ and CD4+ T cells in the one-way MLRs of this study and, according to their
increased MHC expression, also observed in previous studies [55]. However, the possible
presence of residual exogenous IFNγ from the priming process prior to co-culturing MSCs
with lymphocytes should also be considered, even though cells were washed with PBS.

At the same time, MSC-naïve and MSC-chondro did not significantly reduce IFNγ

secretion by activated lymphocytes, but neither stimulated their secretion over the controls
in resting ones. Secretion of IFNγ by lymphocytes in the presence MSC-chondro agrees
with observations discussed above regarding suppression of CD8+ and CD4+ T cell prolif-
eration in immunomodulatory assays and lack of their induction in one-way MLRs, further
pointing at the ability of equine MSCs to maintain their regulatory properties and not
increase their immunogenicity after chondrogenic differentiation.

Finally, and in addition to the limitations discussed along this section concerning the
lower n of the autologous group, the challenges of MSC-chondro co-cultures and possible
interferences of molecules in the culture media, few other points should also be noted. First,
for one of the MSC donors (D2), it was only possible to find two other MHC-matched horses
(A1, A2). The heterogeneity reported in ELA haplotypes [20,21] likely prevented finding a
third matched animal to complete the group, even after a large screening. Nevertheless,
the n of this study is similar to that in related reports [6,35], since the complexity of
randomly finding compatible animals makes working with larger study groups difficult.
Secondly, MHC haplotypes were determined as previously described but, since familiar
information of horses was not available, only homozygous animals could be assigned as
definitive [20,21]. Third, using mitogens such as PHA is a simple and effective method for
stimulating PBLs in immune suppression assays, and has been widely reported [39,47],
but does not completely resemble the in vivo activation. It should also be considered that
in vitro assays provide valuable information to guide in vivo research, but the complexity
of the interactions with the immune system cannot be completely reproduced.

5. Conclusions

This study reports how inflammation, differentiation, and compatibility for the MHC
can influence the immunological properties of equine MSCs. Priming MSCs with proinflam-
matory cytokines activates their regulatory potential, as seen by decreased proliferation
of cytotoxic and helper T cells, and B cells. However, inflammation can also increase the
immune recognition of these cells through induction of MHC expression, thus making
the allogeneic MHC-mismatched MSCs more likely to be targeted by the immune system.
Importantly, equine MSCs do not lose their regulatory ability, and neither increase their
immunogenicity after chondrogenic differentiation, but have reduced capacity to stimulate
Treg cells and can stimulate the proliferation of B cells. Even though lymphocyte prolifera-
tion assays are important tools to assess both the immunomodulatory and immune evasive
properties of MSCs, and thus exploring their therapeutic potential and immunogenicity,
in vivo studies are needed to fully comprehend the complexity of the interactions of MSCs
with the recipient immune system to develop safe and effective cell therapies.
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