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Emilio J. Vélez and Suraj Unniappan*

Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan,
Saskatoon, SK, Canada

Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key
endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in
regulating vital processes, including nutrition, reproduction, physical activity,
neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of
the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular
processes associated with growth promotion, including protein synthesis, cell
proliferation and metabolism, leading to growth disorders. The metabolic and growth
effects of GH have interesting applications in different fields, including the livestock
industry and aquaculture. The latest discoveries on new regulators of pituitary GH
synthesis and secretion deserve our attention. These novel regulators include the
stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors,
nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1–like peptide) and irisin. This
review aims for a comparative analysis of our current understanding of the endocrine
regulation of GH from the pituitary of vertebrates. In addition, we will consider useful
pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways)
that are important in studying GH and somatotroph biology. The main goal of this review is
to provide an overview and update on GH regulators in 2020. While an extensive review of
each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we
have compiled information on the main endogenous and pharmacological regulators to
facilitate an easy access. Overall, this review aims to serve as a resource on GH
endocrinology for a beginner to intermediate level knowledge seeker on this topic.
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INTRODUCTION

Growth hormone (GH), originally isolated from bovine pituitaries in 1944 (1), is a key endocrine
regulator of somatic growth. The main action of pituitary-derived GH is the stimulation of hepatic
insulin-like growth factors (IGFs). The GH/IGF axis acts on different target tissues (Figure 1)
including the muscle and adipose tissue, to regulate different physiological processes associated with
growth promotion, protein synthesis, cell proliferation and metabolism. Therefore, dysregulation of
the GH/IGF axis leads to growth disorders. In this regard, alterations in hypothalamic growth
n.org February 2021 | Volume 11 | Article 6149811
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Vélez and Unniappan Growth Hormone Regulation in Vertebrates
hormone-releasing hormone (GHRH), one of the main
stimulators of GH (reviewed in detail below), could affect the
pituitary GH and consequently the GH/IGF axis. Moreover, the
disorders of the pituitary transcription factors and other
components of the GH/IGF axis [GH secretagogues; GHSs,
GH- and IGF-receptors, and their signal transducers] also can
alter GH production, secretion and responsiveness (2).

The hypersecretion of GH, which is mostly associated with
benign pituitary adenomas, causes gigantism or acromegaly (3,
4). Besides, GH excess can increase the risk of developing cancer,
cardiovascular diseases, diabetes and osteopathy, and is
associated with a reduction in lifespan (5, 6). The leading
medical therapies for excessive GH consist of the use of
somatostatin receptor ligands (SRL), as somatostatin is the
main GH inhibitor (reviewed in detail below), and in the
limitation of GH actions using antagonists of the GH-receptors
(5, 7). However, it has been reported that some acromegaly
patients become "partially resistant" to SRL treatment (8). In GH
Frontiers in Endocrinology | www.frontiersin.org 2
deficiency, recombinant and long-acting GH formulations are
commonly used as replacement therapies for growth disorders
(6, 9). Moreover, recombinant human IGF-1 replacement has
been useful in reversing the adverse conditions associated with
GH deficiency or GH insensitivity in children (10, 11). GH
treatment was also found useful in treating some catabolic
conditions such as AIDS wasting and cystic fibrosis (2, 9, 12,
13). In addition to its clinical relevance as a key molecule of the
GH/IGF axis (Figure 1), GH is a pleiotropic hormone involved
in several vital processes in vertebrates. These processes include
nutrition, metabolism, reproduction, physical activity,
neuroprotection, immunity, osmoregulation and even social
behavior (14–21). The biological actions of GH as a major
growth and metabolic modulator has been utilized in different
fields including the livestock industry (22) and aquaculture (23–
25). These reinforce the multidisciplinary interest on GH and the
need for progress in GH knowledge across vertebrates. The
identification of additional novel regulators of somatotrophs,
FIGURE 1 | Schematic representation of the neuroendocrine (GHRH/Somatostatin–GH–IGF) axis and its main hormonal regulators. The hypothalamic stimulator
GHRH and the inhibitor somatostatin mainly control GH synthesis and secretion by the pituitary somatotrophs. GH stimulates, mostly in the liver, the secretion of
IGF–1, which acts in autocrine, paracrine, and endocrine manners in different somatic tissues to control diverse physiological processes, including protein synthesis,
cell proliferation and metabolism. Both GH and IGF–1 could regulate its levels through the long–loop and short–loop feedback mechanisms, while GH and GHRH
and somatostatin could regulate their levels via an ultra–short–loop feedback mechanism. Endogenous factors arising outside (shown in two boxes on the right side)
of the hypothalamo–pituitary–liver axis could elicit stimulatory (green font), inhibitory (red font) or dual roles (orange font) to regulate pituitary GH. Figure created with
BioRender.com tools.
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GH synthesis and secretion has many beneficial outcomes. Some
of the relatively recently identified stimulators of pituitary GH
secretion or production include adropin, klotho and the
fibroblast growth factors, and the inhibitors include irisin and
the nucleobindin-encoded peptides nesfatin-1 and nesfatin-1–
like peptide. The recent advancements in GH biology, including
the regulation of GH receptors (GHR) and its signal
transduction, as well as GH secretion, have been extensively
reviewed in vertebrates including fish (5, 7, 14, 15, 18, 21, 26–29).
The goal of this review is to serve as a one-stop resource for
readers who seek beginner to intermediate level knowledge on
the comparative aspects of GH endocrinology in vertebrates.
GH SYNTHESIS

GH is mainly produced and secreted by the somatotrophs of the
adenohypophysis (anterior pituitary). Generally, the modulation
of these processes begins with the activation of G-protein
coupled receptors (GPCRs) in the somatotrophs (Figure 2).
The extracellular binding of GHRH to a transmembrane
GPCR induces the intracellular linking of a heterotrimeric G
protein (composed by a, b and g subunits) to the GPCR (5, 30,
31). The binding of guanosine triphosphate (GTP) to the G
protein induces the dissociation of the G protein and GPCR.
That results also in the decoupling of Ga and Gbg-subunits (32).
In the case of a GH stimulator, the activated Ga-subunit (Ga), in
turn, stimulates the adenylyl cyclase (AC) activity (33). Accordingly,
Frontiers in Endocrinology | www.frontiersin.org 3
the subunit involved is recognized as a stimulatory Ga (Gas).
Conversely, the binding of a GH suppressor (somatostatin)
activates an inhibitory Ga-subunit (Gai), which reduces the
activity of AC (31, 33, 34). This enzyme catalyzes the conversion
of adenosine triphosphate (ATP) into cyclic adenosine
monophosphate (cAMP) (35). Once AC is activated, the rise of
cAMP levels enables the binding of cAMP to the two regulatory
subunits present in the tetrameric protein kinase A (PKA), allowing
both the dissociation and activation of the two PKA-catabolic
subunits (30). At this point, these activated catabolic subunits can
act as serine-threonine kinases to phosphorylate a wide range of
substrates, including membrane, cytosolic and nuclear proteins (30,
35, 36). Within these target substrates, the cAMP-responsive
element-binding protein CREB stands out as a critical modulator
of the cAMP-PKA-dependent transcriptional regulation in the
somatotrophs (1, 31, 36). The phosphorylation of CREB at Ser-
133 by PKA allows its binding with the cAMP response element
(CRE) (30). CRE acts as a transcription factor of different cAMP-
regulated genes, including the pituitary-specific positive
transcription factor 1 (pit-1), which in turn stimulates the
expression of GH gene (Figure 2) (15, 31, 37–39).

On the other hand, it has been reported that activated PKA can
limit the levels of cAMPby either the stimulation of phosphodiesterases
(PDE) (Figure 2), or through the desensitization of some GPCRs
(36, 40–42). Besides, some GH regulators inhibit mRNA encoding
their own receptors indicating that hormone desensitization also
happens at the transcriptional level in somatotrophs, as observed
in rats (43) and in a non–human primate (44). However, no such
FIGURE 2 | Simplified overview of the cAMP/PKA/CREB pathway in the control of GH synthesis and secretion in somatotrophs. The modulation of GH synthesis
starts with the activation of GPCRs and the control of the activity of the adenylyl cyclase (AC) enzyme by the action of either stimulatory Ga (Gas) or inhibitory (Gai)
subunits. The activation of AC increases cAMP levels, which activates the protein kinase A (PKA). CREB is one of its targets, and phosphorylated CREB can
stimulate the expression of the transcription factor pit–1, which upregulates GH mRNAs. The stimulation of phosphodiesterases (PDE) by PKA could elicit a negative
feedback, limiting cAMP levels. The activation of adenylyl cyclase and the protein lipase C (PLC) induced by GHRH causes the rise in either cAMP or IP3,
respectively, stimulating the calcium (Ca2+) influx, which in turn potentiates the exocytosis and release of GH. This mechanism involves the activation of Na+ channels
to depolarize the plasma membrane to regulate Ca2+ influx by Ca2+–channels, and the mobilization of Ca2+ from the endoplasmic reticulum. It was reported that
cGMP could stimulate GH release independently of cAMP. Otherwise, the limitation of cAMP levels and the activation of K+ channels reduce the secretion of GH.
Figure created with BioRender.com tools.
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desensitization of a GH–inhibitory GPCR was observed in
European eel (45), suggesting species–specific differences in how
hypothalamic factors affect somatotrophs in mammals and teleost
fish. Sex steroids regulate the fish responsiveness to both GH
stimulators and inhibitors (14, 46, 47), and it is expected that the
responsiveness of fish somatotrophs to hypothalamic factors
follows a seasonal pattern associated with the sexual and
gonadal maturation typical of each species. The distribution of
pituitary endocrine cells in fish and the anatomical configuration
of this gland allow the direct innervation from the hypothalamus
(48, 49). This anatomical feature allows a large number of different
neuroendocrine factors to be able to modulate the function of fish
somatotrophs (14, 38, 50). For example, the innervation of the fish
pituitary by adrenergic nerve fibers leads to the direct inhibition of
GH secretion by norepinephrine in goldfish pituitary cells (51, 52).
Meanwhile, in birds and mammals, norepinephrine only causes
an indirect, minor effect on GH secretion that is likely dopamine–
dependent (53). Thus, the regulation of somatotrophs evolved to
be less complex during vertebrate evolution [reviewed by Gahete
et al. (38)].
GH SECRETION

The rise in cAMP induced by the activation of AC modulates the
Ca2+ channels to increase calcium influx, thus facilitating the
exocytosis and release of GH during its stimulation (14, 35, 42,
50). During GH suppression, the negative regulation of AC
blocks the Ca2+–channels, reducing the release of GH (31, 33).
Themechanism behind these is regulated by Ca2+–channels. It lies in
the activation of Na+ channels to depolarize the plasma membrane,
or in the activation of K+ channels to hyperpolarize it, which is
further regulated by the increase and decrease of cAMP, respectively
(54, 55). In addition, decoupled Gbg–subunits can modulate the
protein lipase C (PLC). The activation of PLC leads to an increase in
inositol triphosphate (IP3), stimulating the mobilization of Ca2+

from the endoplasmic reticulum (56) and enhances GH release.
Furthermore, PLC in turn activates protein kinase C (PKC) (35, 44),
which will also contribute to increased calcium influx by the
depolarization of the membrane (Figure 2) (57, 58). The PLC/
PKC pathway seems to be the primary intracellular modulator of
some of the stimulatory actions of GHSs in mammalian and fish
somatotrophs (35, 44, 59–62). During GH inhibition, in addition to
the negative regulation of AC already discussed, the PLC/PKC
pathway is also used to block the Ca2+ influx (8).

The stimulation of GH release is also mediated by cyclic GMP
(cGMP) in a cAMP–independent mechanism, probably
associated with nitric oxide (NO) levels (14, 50, 63). The NO/
cGMP cascade could be linked to the AC/cAMP/PKA pathway
as PKA can phosphorylate the soluble guanylyl cyclase (sGC)
(64). Due to this, the NO/cGMP pathway also appears to be
involved in the actions of GH inhibitors on somatotrophs (65).
Other signaling pathways are involved in mediating the
inhibition of GH secretion. Some examples include the
phosphatidylinositol 3–kinase/protein kinase B (PI3K/AKT)
and the mitogen–activated protein kinase (MAPK) pathways
Frontiers in Endocrinology | www.frontiersin.org 4
(26, 55). The different mechanisms involving cAMP, PLC/PKC,
NO/cGMP, and PKA, contribute to modulate Ca2+ influx and
the secretion of GH in vertebrates including fish. The secretion of
GH in both fish and mammals follows a pulsatile, circadian
pattern, with relatively higher release during the dark phase (7,
13, 14, 28, 38). Besides, sexual dimorphism in GH secretion was
observed in rats (66) and humans (67, 68), with large nocturnal
GH pulses and low inter–peak levels in males, and a higher
interpeak and more sustained secretion in females (38). This
differential GH secretion is a key determinant of the gender–
specific patterns of growth and metabolism in rodents (69). GH
sexual dimorphism was also reported in fish (14). This could be
explained, in part, by the sex differences in hormonal regulators
of somatotrophs in various species.
MAIN HORMONAL REGULATORS
OF SOMATOTROPHS—GHRH
AND SOMATOSTATIN

Two brain (hypothalamus)–derived modulating factors, the
stimulator GHRH and the inhibitor somatostatin (70), act as
the primary central regulators of both synthesis and secretion of
pituitary GH (Figure 1) (1, 7, 14, 15, 20, 21, 26, 34, 38). The
hypothalamic GHRH was initially discovered from a human
pancreatic tumor associated with acromegaly (71, 72). Later,
GHRH was identified in non–mammals, and it was shown that
fish GHRH is homologous to mammalian GHRH (73). GHRH is
mainly expressed in the brain and testes in numerous vertebrates,
including reptiles, birds and mammals (74), as well as in fish
(73). Its main receptor is the GHRH–R (42, 75). Although it is
detected in different tissues in mammals, GHRH–R is mainly
expressed in pituitary cells (42). In goldfish, GHRH–R is
expressed in the brain and pituitary (73). It was initially thought
that GHRH–like peptides do not affect GH secretion in fish (50).
Later, it was discovered that those GHRH–like peptides are indeed
homologs of the mammalian PACAP (73). In the same article, the
real fish homologous to mammalian GHRH was reported, and it
was observed that GHRH increased both cAMP and GH secretion
in goldfish pituitary cells (73). Similar GH–stimulatory effects of
GHRH was identified in amphibians (76), reptiles (77, 78), birds
and mammals (42, 78, 79).

Like GHRH, somatostatin is also a hypothalamic peptide, but
inhibits GH secretion in vivo and in vitro in rats (80). Different
forms of somatostatin, including the mammalian homolog,
cortistatin, have been identified in vertebrates (38, 81). As
reviewed by Sheridan and Hagemeister (26), it is now
recognized that various somatostatin forms are expressed in
different tissues and it is not restricted to the hypothalamus.
Somatostatin exerts its effects in somatotrophs through up to five
subtypes of GPCRs, the SST–Rs (26, 34, 55). The inhibitory
actions of somatostatin on GH release have been widely observed
in different fish (14, 26). Somatostatin blocks the transcription
and translation of GH in cultured somatotrophs from rainbow
trout (82), as well as blunts the stimulatory effects of other factors
such as GnRH, dopamine and PACAP (14). GH in fish is under a
February 2021 | Volume 11 | Article 614981
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dominant inhibitory control compared to mammals. That
means, in the absence of somatostatin, the basal GH secretion
reaches the maximum, and the stimulatory factors are ineffective,
as observed in the turbot (83). In frogs and turtles, it was thought
that somatostatin has no direct effects on somatotroph
regulation, but it can block the in vitro stimulatory effects of
TRH in amphibians and reptiles (38). Somatostatin strongly
inhibits both GH mRNA and secretion from iguana pituitary in
vitro, while the same dose and duration failed to modulate GH in
chicken and rat pituitary cultures (78). In mammals, the role of
somatostatin is a more complex topic. In male rats, somatostatin
appears essential in generating GH secretion rhythmicity, as
reviewed by Tannenbaum (84). Considering that somatostatin
neurons can directly or indirectly inhibit the activity of GHRH
neurons, MacGregor and Leng proposed a mathematical model
to explain the hypothalamic control of GH secretion (85).
However, results from other mammals, including female rats
[Reviewed by Gahete et al. (38)], challenge the role of
somatostatin in regulating GH rhythmicity. More recently, it
has been demonstrated that somatostatin irregularly inhibits
GHRH neurons in male and female mice, inducing sex–
specific oscillatory patterns in the GHRH neural electrical
activity (86). The sexual dimorphism in the GHRH oscillatory
patterns induced by somatostatin seems dependent on the
different actions of both glutamate and GABA neurons, and
these differences could explain the distinctive GH secretion
pattern between male and female mice (86). This topic
certainly deserves further investigation in the future. In
humans, it has been proposed that somatostatin regulates the
magnitude of GH release but is not involved in controlling the
rhythmicity of GH secretion (38, 87). In addition to their
inhibitory effects, at both low and high doses, somatostatin
stimulates the secretion of GH in primary porcine somatotrophs
(38, 81, 88). On the other hand, SST–Rs can dimerize with other
GPCRs such as ghrelin or dopamine receptors, altering the
signaling of different factors and consequently, the regulation of
GH (61, 89–91). Furthermore, it has been observed that
somatostatin can modulate the secretion of GHRH (92), which
contributes to this complex regulation. Overall, by eliciting
multiple effects detailed above, somatostatin is recognized as the
primary inhibitor of GH in vertebrates (7, 14, 15, 26, 38).

In addition to GHRH and somatostatin, there are several
additional regulators of GH. For example, gonadal steroids can
regulate GHRH effects in mice (69), contributing to the sexually
dimorphic secretion of pituitary GH. Indeed, the gonadal steroids
secreted during both sexual and gonadal maturation induce a clear
seasonal pattern in the GH plasma levels in aquatic species (14,
93–95). Other factors including IGF–1, GH itself, ghrelin and
synthetic GH secretagogs (GHSs) can modulate the synthesis and/
or release of GH by somatotrophs in vertebrates (Figure 1) (5, 7,
15, 25, 59). The levels of IGF–1 in normal situations act as a sensor
and feedback regulator of the GH/IGF system. IGF–1, which is
mainly expressed in the hepatic tissue, can directly inhibit GH
secretion in the somatotrophs offish (18, 50, 96, 97), birds (98, 99)
and mammals (28, 87, 92, 100), through a long–loop negative
feedback (by acting on the pituitary and/or on GHRH in the brain,
Frontiers in Endocrinology | www.frontiersin.org 5
Figure 1), but also indirectly by enhancing the hypothalamic
release of somatostatin (5). In addition, IGF–1 is involved in a
wide range of physiological processes including protein synthesis,
cell proliferation and differentiation (17, 101), and is considered
the other major endocrine and local effector of the GH/IGF axis.
Besides, GH itself can send feedback signals to the brain (short–
loop feedback), or could act in an autocrine or paracrine manner
within the pituitary (ultra–short–loop), to limit its synthesis and
release by somatotrophs (Figure 1). Both GHRH and
somatostatin are also capable of eliciting ultra–short–loop
feedbacks within the brain. The exact identification of whether
IGF–1 or GH induces the negative feedback in an in vivomodel is
a complex issue (38), but the inhibitory actions of GH in
mammalian somatotrophs has been demonstrated both in vitro
and in vivo (28). Although GH treatment increased GH in grass
carp pituitary cells (50), other studies have demonstrated that GH
inhibits GH release in rainbow trout pituitary in vitro (102). A
recent in vivo study in gilthead sea bream showed that the
administration of a sustained–release formulation of
recombinant bovine GH significantly reduced pituitary GH
mRNA (25). In that research, at 6 weeks post–injection, the
reduction of GH mRNA was independent of circulating IGF–1
levels, supporting the negative feedback of GH in this species. To
our knowledge, the ultra–short–loop has not been well
characterized in the other groups of vertebrates, and future
research will undoubtedly help to understand the auto–
regulation of GH.

As mentioned earlier, the gradual decrease in complexity in
the regulation of somatotrophs during vertebrate evolution (38)
has led to a large number of factors regulating somatotrophs in
fish, while a relatively shorter list of neuroregulators exists in
mammals (14, 38). However, it is important to note that
complexity exists in mammals. Somatostatin neurons can
inhibit, directly or indirectly, the activity of GHRH neurons
(103). It has been reported that GHS–receptors (GHS–Rs) can
dimerize with other GPCRs, including the SST–Rs (61). The
heterodimer formation (i.e. GHS–Rs:SST–Rs) could alter
the signaling of the GPCRs, and thus its effects, as reported on
the regulation of insulin release in rodent pancreatic cells (89). In
this sense, chimeric molecules with the ability to bind with
both SST–Rs and dopamine receptors induced more potent
inhibition of GH release in human pituitary somatotroph
adenoma cells (90, 91). Whether this enhanced potency is due
to the heterodimerization of the receptors is still unknown.
Additional research is needed to fully understand the
implication of this mechanism in the regulation of GH secretion
in somatotrophs cells along vertebrates. In addition to the dual
regulation of mammalian somatotrophs (i.e. GHRH vs.
somatostatin), a wide variety of other factors also modulate the
synthesis and secretion of GH in vertebrates. The classical
regulators of GH secretion in amphibians, reptiles, birds,
humans and fish were reviewed by different authors in the past
(14, 29, 38, 50), and more recently the knowledge on the effects of
nutritional status, diet composition and environmental factors on
the GH system in fish has been updated (21, 97, 104). In the
present review, while revisiting the classic and main regulators of
February 2021 | Volume 11 | Article 614981
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somatotrophs function in vertebrates, our focus is also on new and
emerging bioactive molecules and hormones that regulate GH
synthesis and/or secretion. We considered the role of these
secondary GH regulators and clustered them as groups of GH–
stimulatory neurotransmitters (Table 1), neuropeptides (Table 2)
and peripheral factors (Table 3), as well as the inhibitory
molecules (Table 4). The “up” arrows in these tables indicate a
stimulatory effect, while the “down” arrows point to an inhibition.
We expand on some of the major regulators below. A very
detailed discussion of specifics of each of these factors is beyond
the scope of this review. The readers are encouraged to consult
several recent reviews of specific topics, and some are cited in
this article.

OTHER STIMULATORS OF GH
Pituitary Adenylate Cyclase–Activating Polypeptide
(PACAP)
PACAP was originally isolated from the ovine hypothalamus due
to its AC–stimulatory effects in rat pituitary cells (167). PACAP
presents two molecular forms (PACAP27 and PACAP38) (167,
168) that are expressed in the brain and other peripheral tissues
Frontiers in Endocrinology | www.frontiersin.org 6
(169). Initially, it was thought that in fishes and other non–
mammals, both GHRH and PACAP were encoded in the same
gene, whereas in mammals, they originated from different
precursors (14, 170). However, later it was reported that in
both non–mammals and mammals, PACAP and GHRH are
encoded in different genes (169). Regarding receptors, three
different subtypes (i.e. PAC1–R, VPAC1–R, and VPAC2–R)
have been identified, and they can activate diverse pathways,
including the signaling through AC (169). PACAP is a key GH–
release stimulator, which acts through the increase of Ca2+ influx
in fish and amphibians (15, 38, 96, 170–172). In this sense,
PACAP has been postulated as the GHRH ancestor in less
evolved vertebrates (50, 170, 173). Contrarily, GHRH exerts a
stronger stimulation of GH release than PACAP in chicken
somatotrophs (174), and the same occurs in mammals
including humans (170). The role of PACAP in the secretion
of GH in mammals is controversial (38, 173). It has been
observed that while PACAP stimulates GH gene expression in
birds, it has no such effects in rodents (78). Therefore, as
previously reviewed by Gahete et al. (38), the role of GHRH
and PACAP could have evolved during the evolution of
TABLE 1 | Summary of positive regulators of pituitary GH: Neurotransmitters.

Neurotransmitters Groups Roles References

Dopamine Fish ↑ GH mRNA (PKA–dependent) in tilapia (105)
↑ GH secretion both directly and somatostatin–dependent in goldfish (106, 107)
↑ GH secretion in common carp (108)

Amphibian, reptiles and birds Little ↑ or no effect on GH (109, 110)
Mammals ↑ GH secretion in an isolated case of human acromegaly, but generally ↓ GH (111), Table 4

Serotonin Mammals ↑ GH secretion (somatostatin/GHRH–dependent) (28, 38)
Fish and birds Opposite results also observed Table 4

Acetylcholine Mammals ↑ GH secretion (112, 113–116)
Birds Opposite results observed in chicken Table 4

Amino acids and derivatives Fish Glutamate ↑ GH secretion in rainbow trout (117)
Cysteamine ↑ GH secretion through somatostatin–depletion in grass carp (118, 119)

Mammals Argninine ↑ GH mRNA and secretion in rat (120, 121)
Cysteamine ↑ GH secretion through somatostatin–depletion in sheep (122)
February 2021 | Volume 11
TABLE 2 | Summary of positive regulators of pituitary GH: Neuropeptides.

Neuropeptides Groups Roles References

Cholecystokinin (CCK) Fish ↑ GH secretion directly and indirectly (by reducing somatostatin) in goldfish (123–125)
Mammals ↑ in vitro GH secretion in rat (126)

↓ GH in vivo in sheep Table 4
Activin Fish ↑ GH release in perifused pituitary fragments of goldfish (127)

↓ GH mRNA in zebrafish Table 4
Mammals ↑ GH mRNA and secretion in rat, with exceptions (128), Table 4

Adropin Fish ↑ GH mRNA in pituitary cells of tilapia (129)
Kisspeptin Fish ↑ GH secretion in pituitary cells from goldfish (130, 131)

Mammals ↑ GH secretion in peripubertal rats (132)
↑ GH secretion in fasted sheep (ghrelin–NPY dependent), but could also ↓ it (133), Table 4

Fibroblast Growth Factor (FGFs) Mammals ↑ GH secretion in rat pituitaries and human adenoma cultures (134)
Chemokine derived factor 1 (SDF1, aka CXCL12) Mammals ↑ GH mRNA and secretion in rat (135, 136)
Endothelins Mammals ↑ GH secretion – ghrelin dependent– in bovine (137, 138)
Galanin Fish ↑ GH release in vivo or in vitro in coho salmon and goldfish (139)

Birds ↑ GH secretion acting directly on the pituitary (140)
Mammals ↑ GH release directly and indirectly (141–145)

LH Fish Essential for GH synthesis and release in grass carp (50, 146)
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vertebrates. While both GHRH and PACAP exert equipotent
action regulating GH in amphibians and reptiles, in birds and
mammals, PACAP only plays a secondary role, with GHRH
being the main GH stimulator in those groups (170).

Neuropeptide Y (NPY)
NPY was first isolated from the pig brain (175) and is a member
of a family of peptides that includes three (i.e. peptide Y, peptide
YY, and the pancreatic polypeptide) additional GPCR agonists
(176–178). NPY was identified later in different fish species (179,
180). In mammals NPY has been located in the brain (176),
although NPY immunoreactivity was detected in several tissues
in vertebrates, including the fish pituitary (179, 180). NPY is
recognized as one of the most important regulators of energy
homeostasis and food intake in both fish and mammals (178,
180). Besides, NPY acts on fish somatotrophs to increase GH
secretion both in vitro and in vivo (181–183). To our knowledge,
there are no published reports on the involvement of NPY
on GH regulation in birds, reptiles and amphibians. The role
Frontiers in Endocrinology | www.frontiersin.org 7
of NPY in mammals is controversial, and appears species–
specific: stimulates GH secretion in swine (184) and cows
(185), in rodents NPY reduced GH (186), increased it (187), or
had no effects on the secretion of GH (188). A more recent
work reported that NPY stimulates the secretion of GH through
its action at the hypothalamic level by the control of
GHRH and somatostatin in sheep (133). Additional work is
necessary to clarify whether NPY exerts a direct action on
mammalian somatotrophs.

Thyrotropin–Releasing Hormone (TRH)
TRH, the first hypothalamic hypophysiotropic factor characterized,
was initially isolated from the porcine and ovine hypothalamus in
1969 (189, 190). TRH is mainly expressed in the hypothalamus of
fish, amphibians, birds and mammals, and has been detected in a
number of peripheral tissues in reptiles (74). TRH binding was
initially observed in the plasma membrane of the anterior pituitary
extracted from cattle (191), and the receptor was later identified as
a GPCR in mice (192). Although the main role of TRH is the
TABLE 3 | Summary of positive regulators of pituitary GH: Peripheral factors/other factors.

Neuropeptides Groups Roles References

Leptin Fish ↓ GH mRNA Table 4
Mammals ↑ GH secretion directly and indirectly (i.e. somatostatin) in pig perifused pituitaries (147, 148)

↑ GH secretion in sheep (149)
↑ GH secretion in anterior pituitary explants of fasted bovids (150)
The lack of leptin receptor ↓ both GH mRNA and protein in mice (151)
Administration ↑ increases pituitary GH content in leptin–deficient obese mice model (152)

Klotho Mammals ↑ GH secretion in vitro and in vitro in rodents, and in human GH–secreting adenomas (134)
Atrial and ventricular natriuretic peptides Fish ↑ GH release in tilapia cultured pituitaries (153)
February 2021 | Volume 11 | A
TABLE 4 | Summary of negative regulators of pituitary GH.

Molecules Groups Roles References

Catecholamines [norepinephrine (NE),
epinephrine and dopamine]

Fish NE and epinephrine ↓ basal GH release from pituitary cells of goldfish (106)
Birds NE ↓ GHRH–effects in chicken pituitary (110)
Mammals NE ↓ basal and GHRH–stimulated GH release in cultured ovine pituitary cells (154)

Dopamine ↓ GH mRNA and secretion in sheep, cattle and human neonates, but
opposite role also observed

(143, 155, 156),
Table 1

Serotonin Fish ↓ GH in vitro secretion in goldfish (157)
Birds ↓ GH secretion –hypothalamus–dependent– in chicken (158)
Mammals Opposite role observed Table 1

CCK Mammals ↓ GH in sheep, but opposite role observed in rat (159), Table 2
Fish Opposite role observed in goldfish Table 2

Oxytocin Mammals ↓ GH secretion in rat (160)
Activin Fish ↓ GH expression in cultured pituitaries of zebrafish (96)

Opposite role observed in goldfish Table 2
Mammals ↓ GH mRNA in rat, but opposite role also observed (161), Table 2

Leptin Fish ↓ GH mRNA in tilapia (162)
Mammals Opposite role observed Table 3

Kisspeptin Mammals Endogenous kisspeptin can ↓ GH secretion through GPR54 in sheep, but
opposite role also observed

(163)

Fish Opposite role observed in goldfish Table 2
Irisin Fish ↓ GH mRNA and secretion in tilapia in vitro (164)
Intermedin/Adrenomedullin–2 Mammals ↓ GHRH–stimulated GH release in rat dispersed pituitary cells (165)
Acetylcholine Birds ↓ GH secretion –hypothalamus–dependent– in chicken (168)

Mammals Opposite effect observed Table 1
Nesfatin–1 and NLP Mammals ↓ GH mRNA and protein in rat pituitary cells (166)
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stimulation of the synthesis and release of the thyroid stimulating
hormone (TSH) to control the thyroid gland (192), TRH influences
the secretion of other pituitary hormones (38). In fact, TRH
increases GH expression or secretion in some fish species (14,
50), amphibians (193), reptiles (78), birds (78, 194) and mammals
(78, 195). In chickens, TRH stimulates GH with a potency similar
to that of GHRH (99). On the other hand, TRH could also
indirectly stimulate GH through thyroid hormones (see below).

Thyroid Hormones (THs)
THs exist in two forms, the predominant circulating T4, and the
biologically active T3 (196), which are essential components of
the pituitary–thyroid axis (192). In mammals, it is well known
that TRH induces the synthesis of TSH by the pituitary, which in
turn induces the synthesis and release of T4 by the thyroid gland.
Then, T4 can be enzymatically converted by deiodinases to T3 in
different tissues, including the brain and liver (192, 196). THs
can regulate the transcription of different target genes, mainly
through their interaction with nuclear receptors (TRs) (196, 197).
THs can also modulate gene expression through non–genomic
actions involving the activation of different signaling pathways
(196, 198). In fish, TRs have been found in the pituitary (50), and
little evidence exists on the non–genomic actions of THs in these
species [recently reviewed by Deal and Volkoff (196)]. The
transcriptional regulation induced by the THs contributes to the
modulation of various physiological processes, including
development, growth and metabolism. In fact, THs stimulate the
synthesis and release of pituitary GH in some fish (199, 200) and
rats (201–204), though contrary or no effects have been observed in
other fish species, reptiles or birds (15, 196). Not much is known
about the TH regulation of GH in reptiles and amphibians (205),
and the discrepancies in TH effects on GH regulation among fish
have been recently summarized by Deal and Volkoff (196).

To our knowledge, the reasons behind the inconsistencies in
the regulation of GH by THs are not fully understood. A
combination of two different factors could have contributed to
these contradictory results. As previously discussed by Giustina
and Wehrenberg (206), the maintenance of basal GH secretion,
to some extent, depends on the stimulation of somatotrophs by
THs. Otherwise, when the concentration of THs exceeds the
physiological level, it can increase the secretion of somatostatin
and decrease GHRH, eventually causing a downregulation of
pituitary GH (206). On the other hand, it has been reported that
THs can stimulate the synthesis and release of hepatic IGF–1 in
both fish and mammals (207–209), which through the long–loop
negative feedback (Figure 1) could elicit a suppression of
pituitary GH secretion. Based on these, the different effects of
TH on GH observed in various species are likely caused by the
high doses of THs used in those studies (i.e. excess vs.
physiological levels), or by its effects on hepatic IGF–1. This
aspect requires future confirmation through additional research.

Corticotropin–Releasing Hormone (CRH)
CRH, also known as corticotropin releasing factor (CRF), was
first identified in ovine hypothalamus (210) and later in other
vertebrates, including fish and amphibians (211). Although
Frontiers in Endocrinology | www.frontiersin.org 8
recognized as a hypothalamic hormone, CRH was located in
other human tissues (212, 213). CRH exerts its actions through
GPCRs (214). In the pituitary, CRH stimulates the secretion of
adrenocorticotropic hormone (ACTH) (180, 213) and can
induce the release of other pituitary hormones such as a–
melanocyte–stimulating hormone (a–MSH) and b–endorphin
(215). Similarly, CRH is recognized as a GH–release stimulator
in non–mammals (38). While CRH stimulates GH in reptiles
(77) and in European eel, but had no effects in turbot (83). CRH
is a potent stimulator of TSH release from the pituitary of
amphibians, fish and birds [reviewed by De Groef (216)].
Some of the CRH effects could be attributed to its indirect
action via thyroid hormone stimulation. Although CRH was
not considered a stimulator of GH in mammals (217), a
paradoxical increase of GH in response to CRH was observed
in patients with pituitary adenomas (38) and this is a topic under
consideration in current research (218, 219).

Gonadotropin–Releasing Hormone (GnRH)
GnRH was first isolated in the early 1970s from the porcine
hypothalamus (220). As recently reviewed by Duan and Allard
(221), GnRH has been identified in a wide range of vertebrates,
including fish, amphibians, reptiles, birds and mammals. This
hypothalamic factor exerts its action in the pituitary cells through
the activation of GPCRs and the signaling by PLC and cAMP
pathways (222, 223). As a result, GnRH regulates the secretion of
FSH and LH and is recognized as a critical modulator of the
reproductive axis (224). Goldfish somatotrophs express GnRH
receptors (225, 226). GnRH stimulates the secretion of GH in
goldfish (227–229), tilapia (105) and Ricefield eel (230), but not in
some others as found in African catfish or rainbow trout (231,
232). However, it was observed in pituitary cell culture of rainbow
trout, GnRH stimulates GH secretion only in the presence of IGF–
1 (233). GnRH could indirectly stimulate somatotroph function
through the paracrine action of LH, which can also act as a
stimulator of GH as reported in grass carp (50, 146) (Table 2). The
regulation of GH by GnRH is a species–specific response
depending on the presence of IGF–1 or other factors such as
LH, or the type of receptor involved. Although it was postulated
that the GH secretagogue actions of GnRH could be restricted to
fish (38), recently it was found that GnRH stimulates GH secretion
in the iguana, and both GH mRNA and GH secretion in chickens
(78). Besides, GnRH combined with enkephalin increased GH
secretion in rat pituitary cells (234), and long–term treatment with
GnRH in humans caused an increase in height in precocious
puberty (235).

Bombesin (BB)
Bombesin was first isolated from the skin of frogs in 1970 (236).
BB immunoreactivity was found in reptiles (237), and two
homologs, GRP and neuromedin B, were found in birds and
mammals (238, 239). BB expression was also found in different
fish species (240, 241), as is the case of the forebrain and pituitary
of goldfish (241). Among other functions, BB stimulates the
secretion of gastric acid and pancreatic enzymes (238) and is
involved in the modulation of the stress response (239). As an
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activator of GPCRs (242), it has been reported that BB stimulates
GH secretion in rat both in vivo (243) and in vitro (244).
Contrarily, other authors found that BB reduced GH secretion
in rats by the stimulation of somatostatin release (245). This
controversial response could be associated with the presence of
estrogens, as it was reported that bombesin inhibits GH secretion
in normal rats but exerts stimulatory role in estrogenized rats
(246). In contrast, BB stimulated GH secretion in cultured
bovine pituitary cells (112). In goldfish, the perifusion of
pituitary with BB significantly increased GH secretion (241). In
the same species, BB increased GH release and inhibits the
expression of somatostatin (123, 124), and it has been
postulated that the actions of BB in the regulation of GH in
these species could be mediated by somatostatin (14). However,
whether BB can regulate GH synthesis and secretion in other
fish, amphibians, reptiles and birds is unknown.

Ghrelin
Ghrelin was originally reported in 1999 (247), as the first and
only known endogenous ligand of the growth hormone
secretagogue receptor 1a (GHS–R1a) (248). It was purified
from the stomach extracts of rats, and was later identified in a
number of species from humans to invertebrates. The N–
terminal region of ghrelin is very highly conserved across
species, and in most species, the third serine has an octanoyl
group (249). This highly conserved region with the acyl group is
considered to be the bioactive core of ghrelin, and it is critical for
ghrelin binding to its receptor (249). GHS–R1a, currently known
as the ghrelin receptor, is expressed in the pituitary somatotrophs
and allows the direct action of ghrelin on these cells to induce
GH synthesis and secretion. Ghrelin is known to stimulate GH
secretion in many species including rats (250, 251), humans (252,
253), birds (103, 254), and fish (255–260). These effects are either
in vitro, supporting the ability of ghrelin to act directly on
somatotropes, or in vivo, by acting directly or through
influencing the multitude of other GH regulators (14, 50). The
binding of acylated ghrelin to its receptor triggers a cascade of
intracellular events, including the stimulation of phospholipase
C, inositol triphosphate and calcium pathways (261, 262).
Overall, almost two decades since its discovery, ghrelin is now
considered as one of the most important hormonal regulators of
GH in vertebrates.

Other Stimulators
In this review, we have tabulated the neurotransmitters (Table 1),
neuropeptides (Table 2) and the peripheral factors (Table 3).
Their specific effects in different species or groups are also
furnished in these tables. In addition to the factors already
discussed, a wide variety of other minor factors have been
shown to exert a GH stimulatory role. For example, it has been
recently reported that the peptide hormone adropin, which
participates in the regulation of vascular function and energy
homeostasis in mammals, stimulates GH gene expression in the
pituitary of tilapia (129). To our knowledge, it is unknown
whether adropin participates in the regulation of GH secretion
in other groups of vertebrates. On the other hand, it has been
Frontiers in Endocrinology | www.frontiersin.org 9
observed that the transmembranal protein klotho, originally
recognized as an ageing–suppressor in mice, increases GH
secretion both in vitro and in vitro in rodents, as well as in
human GH–secreting adenomas (134). Moreover, klotho is a
modulator of the IGF–1 signaling pathway. It can inhibit the
peripheral actions of IGF–1, and block the negative feedback of
IGF–1 on pituitary GH secretion (92). Consequently, klotho has
been postulated as a new player in the regulation of GH/IGF axis
in mammals (92). However, the potential role of klotho in the
regulation of GH secretion in other groups of vertebrates,
including fish, is unknown. Besides, klotho can also regulate the
signaling pathway of the fibroblast growth factor (FGF) (134). The
same authors have also observed that FGF increased GH secretion
in both rat pituitaries and human adenoma cultures (134). While
it is unknown whether FGF exerts a direct action on GH
regulation in other vertebrates, it has been recently observed
that FGF increases the secretion of ghrelin in zebrafish (263).
Thus, it is expected that FGF could also influence (at least
indirectly) GH levels in fish. Certain amino acids, including
aspartic acid, glutamic acid and arginine, although recognized as
classical regulators of GH, was thought not to act directly on
somatotrophs (264–266). However, new in vitro studies have
shown that some amino acids exert their effects directly at the
pituitary level (Table 1). However, it is important to note that
some molecules may have species–specific roles and exert
inhibitory actions, as detailed in Table 4. In addition to the
endocrine regulators of GH discussed here, a large number of
pharmacological compounds were employed to study the
regulation of GH in somatotrophs. We have summarized the
main pharmacological stimulators (Table 5) of the major signaling
pathways involved in the regulation of both the synthesis and
secretion (Figure 2) of GH. For further details on the use of these
molecules, and the most effective doses or concentration ranges
reported, please refer to the literature cited in the table.
OTHER GH INHIBITORS

Other factors with an inhibitory role on GH are summarized in
Table 4. Note that some molecules may have species–specific
roles and exert the opposing actions, as detailed in Tables 1–3.
For example, it has been reported that irisin, which is recognized
as a metabolic peptide in mammals, inhibits both GH mRNA
and secretion in cultured pituitary cells of tilapia (164). It is
unknown whether irisin has a direct modulatory role on GH
synthesis and secretion in other vertebrates. An inverse
association between GH and irisin levels has been observed in
humans, as the administration of recombinant human GH in
young patients with Turner syndrome increased the circulating
levels of irisin (281). We have reported that two novel metabolic
peptides, nesfatin–1 and nesfatin–1–like peptide, are negative
modulators of the synthesis of pituitary GH in mammals (166).
Although their receptors are still unknown, it is expected that
these peptides act through GPCR (282). It has been shown that
both nesfatin–1 and nesfatin–1–like peptide regulate GH in the
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rat somatotrophs through the AC/PKA/CREB signaling pathway
(166), suggesting that the mechanism of action of nesfatin–1 and
nesfatin–1–like peptide involves a GPCR associated with an
inhibitory Ga–subunit (Gai). As discussed in the previous
section, numerous pharmacological inhibitors were also used
for the study of GH and somatotrophs (Figure 2). These are
listed in Table 6.
Frontiers in Endocrinology | www.frontiersin.org 10
PERSPECTIVES

While GH is a key endocrine regulator of somatic growth, it is also
involved in the regulation of other vital processes in vertebrates. Thus,
GHhas implications in health, disease and even in animal production,
and the fine–tuned control of GH synthesis and secretion is still a hot
research topicmore than75years after itsdiscovery (1).NumerousGH
TABLE 5 | Selection of GH signaling pathway stimulators.

Target/category Molecules Doses References

G protein Activator of stimulatory Ga subunits (Gas) Cholera toxin 0.025–25 ng/mL, 3 nM (267, 268)
Blocker of inhibitory Ga subunits (Gai) Pertussis toxin 10–300 ng/mL (135, 165)

Adenylyl cyclase Forskolin 0.01–10 µM (43, 105, 146, 173, 267, 269, 270)
PKA Cell permeable cAMP analogs 8–bromo–cAMP 0.3–5 mM (172, 268, 271)

8–pCPT–cAMP 40–500 µM (166, 272)
Inhibitors of phosphodiesterases IBMX 0.001 mM–10 µM (267, 269, 271)

Rolipram 10 µM (269)
CREB TUDCA 200 µM (273)
Calcium levels Ionophores A23187 3–30 µM (172, 268)

Ionomycine 10 µM (171, 274)
Voltage–sensitive calcium channels (VSCC) Bay K8644 10 nM–10 µM (172, 274)
Inhibitors of Ca2+–ATPase (SERCA) Cyclopiazonic acid and BHQ 10 µM (274)

Thapsigargin 100 nM (88, 262)
Activators of Ca2+ release channels Caffeine 10 mM (274)

Ryanodine 0.01–100 nM (275)
Nitric oxide route SNAP 0.01–1000 nM (148)

L–AME 1 mM (65)
PLC m–3M3FBS 10 µM (276)
PKC PMA 0.1–1 µM (59, 83, 277)

DiC8 10 µM (278)
PI3K sc3036 10 µM (279)
JAK2 Coumermycin A1 1 µM (280)
February
TABLE 6 | Selection of GH signaling pathway inhibitors.

Target/category Molecules Doses References

G protein Blocker of stimulatory Ga subunits (Gas) Suramin, and its analogs 10 µM (283)
Activator of inhibitory Ga subunits (Gai) Pasteurella multocida toxin 1 nM (284)

Adenylyl cyclase MDL–12330A 0.03–30 µM (88, 172, 262)
PKA Blockers H89 100 nM–30 µM (105, 172, 262, 268)

Rp–cAMP and DPT–PKI 50 µM–1 mM (230, 268)
Phosphodiesterase activator MR–L2 1–10 µM (285)

CREB 2–naphthol–AS–E–phosphate 25 µM (286)
Calcium levels Cell permeable Ca2+–chelator BAPTA–AM 10–50 µM (135, 171, 274)

Voltage–sensitive calcium channels (VSCC) Nifedipine and Verapamil 1–100 µM (130, 230, 262, 271)
Ca2+ antagonists CoCl2 and CdCl2 0.1–2 mM (88, 271)

Activator of Ca2+–ATPase (SERCA) CDN1163 10 µM (287)
Inhibitors of Ca2+ release channels TMB–8 100 µM (274)

Xestopongin C 1 µM (275)
Nitric oxide route NMMA 0.3–1 mM (148, 268)

NAME 10 µM (65)
PLC U–73122 5–50 µM (88, 230, 262)
PKC GF109203X 20 µM (230)

Phloretin 25 µM (262)
BIM 2 µM (268)

PI3K Wortmannin 10–100 nM (146, 164)
LY294002 10 µM (164)

JAK2 AG490 100 µM (146)
MEK1/2 PD98059, U0126 10 µM (62, 134, 164)
p38 MAPK SB202190 20 µM (146)

SB203580, PD169816 10 µM (164)
Transcription Actinomycin D 8 µM (129)
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regulators have been discovered and more progress in our knowledge
onGHand somatotrophbiology is expected in the future.Definitively,
the progress in our knowledge of GH and its transfer and application
will benefit the society in many ways. The same reasons support the
need for more basic, clinical and comparative endocrinology research
on GH biology in vertebrates.
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16. Arámburo C, Alba–Betancourt C, Luna M, Harvey S. Expression and
function of growth hormone in the nervous system: A brief review. Gen
Comp Endocrinol (2014) 203:35–42. doi: 10.1016/j.ygcen.2014.04.035
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