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Despite the success of artificial intelligence (AI), we are still far away from AI that
model the world as humans do. This study focuses for explaining human behavior from
intuitive mental models’ perspectives. We describe how behavior arises in biological
systems and how the better understanding of this biological system can lead to
advances in the development of human-like AI. Human can build intuitive models from
physical, social, and cultural situations. In addition, we follow Bayesian inference to
combine intuitive models and new information to make decisions. We should build
similar intuitive models and Bayesian algorithms for the new AI. We suggest that the
probability calculation in Bayesian sense is sensitive to semantic properties of the
objects’ combination formed by observation and prior experience. We call this brain
process as computational meaningfulness and it is closer to the Bayesian ideal, when
the occurrence of probabilities of these objects are believable. How does the human
brain form models of the world and apply these models in its behavior? We outline
the answers from three perspectives. First, intuitive models support an individual to use
information meaningful ways in a current context. Second, neuroeconomics proposes
that the valuation network in the brain has essential role in human decision making.
It combines psychological, economical, and neuroscientific approaches to reveal the
biological mechanisms by which decisions are made. Then, the brain is an over-
parameterized modeling organ and produces optimal behavior in a complex word.
Finally, a progress in data analysis techniques in AI has allowed us to decipher how the
human brain valuates different options in complex situations. By combining big datasets
with machine learning models, it is possible to gain insight from complex neural data
beyond what was possible before. We describe these solutions by reviewing the current
research from this perspective. In this study, we outline the basic aspects for human-
like AI and we discuss on how science can benefit from AI. The better we understand
human’s brain mechanisms, the better we can apply this understanding for building new
AI. Both development of AI and understanding of human behavior go hand in hand.

Keywords: computational meaningfulness, intuitive models, brain’s valuation network, artificial general
intelligence, neuroeconomics
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INTRODUCTION

The development of artificial intelligence (AI) and its application
to the engineering has been tremendous in the 2000s, and
particularly during the past 10 years. Much of this progress has
come from advances in “deep learning,” which refers to multilayer
network-style models that emulate the working principles of the
brain. Today, AI can outperform humans on certain narrow
tasks previously thought to require human expertise, such as
playing chess, poker and Go (Schrittwieser et al., 2020), object
recognition (LeCun et al., 2015), natural language understanding
(He et al., 2021), and speech recognition (López et al., 2017;
Bengio et al., 2021). In addition, self-driving cars, goods transport
robots, and unmanned aircrafts will soon be a part of normal
traffic (Hancock et al., 2019). Despite these successes, we are
still far away from artificial general intelligence (AGI), which is
a broader type of AI that can learn to perform at or above the
human level across a wide variety of tasks (Legg and Hutter,
2007). This is in comparison to currently available narrow AI
models that can do specific tasks better than humans, but cannot
generalize to many different tasks. There are various types of AGI,
but in this study, we ficus on AGIs comparable to human-like
intelligence. The current computers still struggle to emulate the
high flexibility of human mind. The human mind has evolved to
excel at flexibility solving many different problems approximately
rather than solving a small number of specific problems precisely
(Gershman, 2021a). On the contrary, today’s AI can solve specific
problems accurately and quicker than humans.

Moreover, human can learn based on a few examples,
whereas AI needs huge amount of learning trials to reach
comparable performance (Bengio et al., 2021). This study focuses
in explaining human behavior from intuitive mental models’
perspectives. We describe essential features of human reasoning
from the current computational resource rational model of
mind. This approach proposes that the humans are intuitive
statisticians and meaningfulness calculators, who use Bayesian
computation to model contexts under uncertainty (Gershman
et al., 2015; Friston et al., 2021). Bayesian theory provides
a principled way for calculating a conditional probability. In
its core is the Bayes’ theorem that states that the conditional
probability of an event, based on the occurrence of another event,
is equal to the likelihood of the second event given the first
event multiplied by the probability of the first event (Barber,
2012). In the context of human decision making, the Bayesian
theory posits that the brain is a prediction machine that is
automatically matching incoming sensory data with an inner
model of the world based on prior experience (Cohen et al., 2017;
Friston et al., 2021). Bayesian decision theory involves many
different approaches; however, in this study, we focus on human
intuitive reasoning from Bayesian theory perspective, when an
individual tries to find optimal solutions by using computational
meaningfulness. By computation, we mean the process by which
the brain changes its own mental model of the world (Tegmark,
2017) based on information from the environment to behave in
optimal ways. We hypothesize that this is accomplished by Bayes’
rules with some approximation inference, such as sampling.
We call this brain process as computational meaningfulness

because Bayesian computation as the current, ongoing context
is included into the estimation of the probability distribution of
the task object.

In this study, we discuss research related to artificial
intelligence, behavioral sciences and neurosciences, and how
these fields can help us in pursuing human-like AGI. Our
selection of literature includes works which combine human’s
tendency to interpret behaviorally relevant aspects of the
environment based on the intuitive mental models; computation
based on Bayesian theory and AI. In addition, we have chosen
literature that represent neuroscience studies that demonstrate
the properties of the human brain’s valuation and default
network as essential computational adaptive biological device.
The selected literature includes seminal and topical works
related to all the key concepts that make the computational
meaningfulness framework and its components. In Table 1,
we have listed the key concepts that we consider essential
toward pursuing human-like AGI and are discussed in this
this study. Our rationale of the concepts is as follows.
First, to make sense of the environment, a human (or an
artificial agent) needs mental models of the world, which
include intuitive physics, psychology, and culture. These are
the priors that are needed for probabilistic predictions for
events and actions. Second, the mental models can be
learned by observing and acting on the world, which can
be achieved via reinforcement and self-supervised learning
techniques. Having the mental models, optimal decisions are
made via Bayesian inference and meaningful reasoning to
estimate posterior probabilities. Mental models are updated
as needed to improve predictions (i.e., reduce prediction
errors) for future actions. At the core of this framework
is the Bayesian reasoning, which we consider as the most
promising and plausible mechanism for contextual decision
making and reasoning. Third, in human brains, many of the
above complex computations are performed in a “hardware”
which in neuroscience are known as default mode and valuation
networks. We consider brain as an over-parametrized modeling
organ that performs Bayesian computations via approximate
sampling principle.

This study is organized as follows. We start from intuitive
mental models (Section “Intuitive Mental Models”) that are at
the core of the ability of AGI to generalize over different tasks.
Then, we describe how such models are created and applied to
make predictions in rich and complex environments (Sections
“Intuitive Mental Models” and “Brain as a Prediction Machine”).
We make connections with neuroscientific and neuroeconomics
research. Sections “Intuitive Mental Models” and “Brain as a
Prediction Machine” serve mostly as an overview of the literature
and the theoretical concepts. The key concepts are listed in
Table 1 with corresponding section numbers included. In Section
“Comparing Brain Model With Current AI Models,” we look
at shortcoming of current AI models and compare then with
brain models. Finally, in “Discussion,” we discuss the major gaps
in current AI models, our findings, sketch the path for future
research, and the importance of computational meaningfulness.
We end with a summary and conclusions in a Section of
Summary and Conclusions.
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TABLE 1 | Key concepts from artificial intelligence, behavioral sciences and neurosciences from Bayesian theory perspective as discussed in this study.

Concept Description Impact and relationship to Bayesian
theory

References

Intuitive physics (Section “Intuitive
Physics”)

Physical, immutable constraints of the
environment and world.

Mental models (priors) of the world.
Predictions are based on combining
prior beliefs with upcoming events.

Battaglia et al., 2013; Lake
et al., 2017

Intuitive psychology (Section “Intuitive
Psychology”)

Understanding of self and others in the local
environment.

Lake et al., 2017; Sapolsky,
2018

Intuitive culture (Section “Intuitive
Culture”)

Contextual constraints for behavior and
principles of the environment on large scale.

Sapolsky, 2018

Reinforcement learning (Section
“Reinforcement and Self-Supervised
Learning”)

Mechanism to learn from actions and their
rewards.

Creation, usage, and updating of the
mental models. Computation of
posterior probabilities of events using
sensory information and priors.

Lake et al., 2017; Silver
et al., 2021

Self-supervised learning (Section
“Reinforcement and Self-Supervised
Learning”)

Mechanism to learn by observing the world. Sekar et al., 2020; Levine,
2022

Bayesian inference (Section “The
Bayesian Brain and Meaningful
Reasoning”)

Mechanism to combine incoming data with
mental models (priors).

Gershman et al., 2015;
Sanborn and Chater, 2016

Meaningful reasoning (Section “The
Bayesian Brain and Meaningful
Reasoning”)

Contextual decision-making strategies in
varying situations.

Jaynes, 2003; Suomala,
2020

Default mode network (Section “Brains
as Over-Parameterized Modeling Organ
and the Role of Default-Mode
Network”)

Integrates high-dimensional information and
keeps track of ongoing events and contexts.

Neurophysiological mechanisms of
decision making. Does
over-parametrized, contextual
computations with Bayesian sampling.

DuBrow et al., 2017;
Yeshurun et al., 2021

Valuation network (Section “The Brain’s
Valuation Network”)

Computes and predicts the relative value of
items and decisions.

Genevsky et al., 2017;
Magrabi et al., 2021

INTUITIVE MENTAL MODELS

The environments a person encounters contain an almost infinite
amount of information. Therefore, the information that reaches
the brain is often highly ambiguous. The current research
emphasizes that the human brain resolves this uncertainty by
using contextual information and prior experiences (Gershman,
2021a). Prior experiences are combination of intuitive mental
models in the brain and learned new knowledge and skills relating
to the world acquired through experience.

Prior experiences are causally structured representations
coded in the brain. These representations are organized by the
information of the world by according to the general principles
that allows them to generalize across the varied scenarios in the
new contexts (Spelke and Kinzler, 2007). Whereas the previous
studies have emphasized that the representations are based on
the pattern recognition, but the current research emphasizes that
the representations are better understood in terms of the dynamic
models with limited data (Lake et al., 2017). Thus, a human can
use and learn to enrich mental models in flexible and suitable
ways in varied contexts. A person does not learn the names and
other concepts of objects in a vacuum but in relation to a context
and other objects. Prior experiences are based on theory-like
dynamic mental models in a person’s mind. These mental models
help a person to constrain information flow and choose most
essential information in each situation by inductive bias (Baum,
2004; Suomala, 2020; Gershman, 2021a).

Dynamic mental models include causal roles and functions of
objects. Causality can also bind some features of objects together,
explaining why some features such as “can fly,” “has wings,” and
“has feathers” co-occur across objects, whereas others do not
(Lake et al., 2017). Human-level scene understanding involves
composing a story that explains the observations, drawing upon
and integrating the ingredients of intuitive physics, intuitive
psychology, and intuitive culture. Pure perception without these
objects’ functions and causal and other relationships (like co-
occurrence) between these objects, can lead to revealing errors.
The understanding of objects’ functions in a specific context is
lacking in today’s AI. When the image captions are generated by a
deep neural network, it gets the key objects in a scene correct, but
fails to understand the relationships between objects and people
in the image, or the causal relationships between the objects. In
other words, the deep neural network does not build the right
dynamic model of the data (Lake et al., 2017).

Inductive bias is a person’s predisposition to use prior
experiences to interpret a context in optimal way. Learning
new things requires expectations about the essential things of
each situation in relation to the irrelevant things. Therefore,
the use of inductive biases is an indispensable property of
rationality of human’s mind (Gershman, 2021a). Already, babies
have developed clear mental models and inductive biases, which
helps them to learn to behave in their environments. Babies have
intuitive mental models about physics, psychology, and culture.
A child begins to learn to like certain fairy tales as early as fetal
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age, as Anthony DeCasper has shown in his famous “The-Cat-in-
the-Hat” study (DeCasper and Spence, 1986).

Next, we describe three essential intuitive models, which
guide children’s behavior and learning at the early stage of
the development. These intuitive models are related to physics,
psychology, and culture. We use the term intuitive here to refer
to a type of commonsense knowledge or “start-up software”
that humans learn during their development toward adulthood
and which allows us to learn new tasks and adapt information
(Lake et al., 2017; Bengio et al., 2021). While constraints set by
physics are fixed and same for all humans, cultural aspects are
flexible and depend both on location (i.e., country) and time
(i.e., era). Nevertheless, all factors can be considered intuitive
in a sense that together they form mental models relevant for
humans. To create mental models themselves, the following two
key mechanisms have been suggested and applied successfully
in the AI research: Reinforcement and self-supervised learning,
which require observing and acting on environment. These
are discussed in Subsection “Reinforcement and Self-Supervised
Learning”.

Intuitive Physics
Young children and even infants have a rich mental model
of intuitive physics. These mental models allow them to know
primitive object concepts. They understand on implicit level
that an object will persist over time, that objects are solid and
coherent. In addition, they can expect that inanimate objects
to follow the principles of persistence, continuity, and cohesion
(Spelke, 1990). Moreover, infants believe that the objects should
move along smooth paths, not wink in and out of existence
(Spelke, 1990). Equipped with these intuitive mental models
about physics, children begin to make accurate predictions,
learn more quickly, and behave in optimal ways. Although a
task may be new for a child, physics still works the same way
(Lake et al., 2017).

These predictions guide later learning and at around 6 months,
infants have already developed different predictions for soft
bodies, rigid bodies, and liquids. Whereas unity and organization
for objects include a relation of unity and organizations
governing their parts, concepts of substances do not include
these properties (Rips and Hespos, 2015). At the early stage of
the development, children have learned that while solid objects
cannot to go through barriers, liquids can go (Rips and Hespos,
2015). During the first year, infants have gone through several
transitions of comprehending basic physical concepts such as
collisions, support, and containment (Lake et al., 2017).

According to the intuitive physics approach, people
reconstruct a perceptual scene using internal model of the
objects and their physically relevant properties. These properties
are, for example, mass, surface friction, elasticity, gravity,
friction, and collision impulses. The intuitive physical state
model is approximate and probabilistic, and oversimplified and
incomplete in many ways relative to physical ground truth (Lake
et al., 2017). Still, it is rich enough to support peoples’ optimal
behavior in their contexts and to support to embrace new more
diverse and precise mental models. These intuitive physic models
enable flexible adaptation to a wide range of everyday scenarios

and judgments and support people to make hypothetical or
counterfactual predictions in a way that goes beyond perceptual
cues (Lake et al., 2017).

Intuitive physical model approach has proven correct in
experiments, in which wooden blocks from the game Jenga has
been used. In these experiments, the adult participants (Battaglia
et al., 2013) and infants (Téglás et al., 2011) predict how a
tower will fall. The findings show consistently that the infants
can predict the movements of the wooden blocks according
to similar ways than adults. Whereas an infant can learn and
predict the movements of wooden blocks based on few examples,
AI (PhysNet) requires extensive training—between 100,000 and
200,000 scenes—to answer the question will the tower fall or not?
(Lake et al., 2017). Thus, a human requires far less repetitions
as AI to perform any particular task and can generalize to many
novel complex scenes with no new training required.

Intuitive Psychology
A second intuitive mental models in the early development are
related to intuitive psychology. By applying these models, infants
understand that other people have mental states like beliefs and
goals, and this understanding strongly constrains their learning
and predictions.

Pre-verbal infants can distinguish animate agents from
inanimate objects. This distinction is likely based on early–
present detectors for sensory cues, such as the presence of eyes,
motion initiated from rest, and biological motion (Schlottmann
et al., 2006; Lake et al., 2017). Such cues often detect agency
and infants also expect the agents to have goals, and to
take efficient actions toward those goals. In addition, infants
assume that the agents behave contingently and reciprocally
(Spelke and Kinzler, 2007).

One essential part of an intuitive psychological model is
the theory of mind, which helps children to understand the
intentions of other people (Tomasello, 2014). Theory of mind
helps a child to participate with others in collaborative activities
with shared goals and intentions (Tomasello et al., 2005). These
models can be socially directed, and these models allow a child
to infer who are good and who are bad, or which virtual agent
are good and bad. For example, infants begin to discriminate
antisocial agents that hurt or hinder others from neutral agents
at around 3 months of age (Lake et al., 2017).

Crucially, unlike in intuitive physics, model-based reasoning
in intuitive psychology can be nested recursively to understand
the social interactions and this way, we can reason about agents
thinking about other agents (Lake et al., 2017). In this way,
the intuitive psychology provides a child a basis for an efficient
learning from others, especially in teaching settings with the
goal of transforming culturally important knowledge efficiently.
Thus, it is safe to argue that the infants expect agents to
act in a goal-directed, efficient, and socially sensitive fashion
(Spelke and Kinzler, 2007; Lake et al., 2017) by using intuitive
psychological models.

Lake et al. (2017) are agnostic with regard to the origins of
physical and psychological intuitive mental models. Whether
they are innate, enriched, or rapidly learned, they are likely
essential foundation to a later development and learning.
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However, current psychological (Tomasello et al., 2005;
Tomasello, 2014) and neurobiological research (Geary, 2005;
Sapolsky, 2018) emphasize that the most essential ingredient of
the human mind is a unique motivation to share psychological
and cultural states with others. These socially and culturally
shared intentions are utterly intertwined with physical and
psychological aspects of human mind (Sapolsky, 2018).

Thanks to evolution, humans are born with priors about
ourselves, world and how to learn, which determine what
categories of skills we can acquire and what categories of
problems we can solve. These priors are the reason why humans
can acquire certain categories of skills with remarkable efficiency.
These priors range from low (e.g., sensorimotor), meta (spatio–
temporal continuity) to high-level (e.g., theory of mind and 3D
navigation) (Chollet, 2019). Therefore, we add intuitive culture
as third ingredient as an essential part of human mental models.
Next section describes it more specifically.

Intuitive Culture
Whereas the early developed intuitive physics and psychology of
infants are likely limited to reasoning about objects and agents
in their immediate vicinity, the cultural values, artifacts, habits,
and ideals develop later with interactions of child and other
people and official institutions. However, the cultural dimensions
of environment might be as essential in later ages of the
development as the intuitive physics and psychology have at early
ages. Unlike physics, which remains same for all humans and all
times, the mental models related to culture depend strongly on
where and when the development takes place.

The human brain as whole support an individual to organize
and control his or her life in the ways that will enhance the
expected standard of living in the culture in which each individual
lives. This ability to “cast oneself as a player in scenarios emerging
from various choices available at any given moment” (Geary,
2005, p. 200). These various choices are cultural possibilities,
which are available for individuals. A unique aspect of this
evolved ability is that human can formulate an autonoetic mental
model of potential future states and to manipulate these models
in ways that enable the simulation of control-related behavioral
strategies (Geary, 2005). Thus goal-setting and meaningful
interpretations of cultural contexts are essential aspects of human
life, and these goals can help humans to prefer long-term options
more than short-term ones. Thus, people choice by comparing
the current situation to an autonoetic mental representation of a
“perfect world” (Geary, 2005, p. 234). The perfect world is one in
which the individual can organize and control his or her life in
the ways that will enhance the expected standard of living.

We assume that the cultural situations might have similar
effects than intuitive physics and psychology for human’s
behavior. For example, thinking about meeting in office activate
quickly and intuitively arrives at mental models about colleagues,
tools, discussion topics, and other work-related issues (DuBrow
et al., 2017). However, if you open the door of the office and
see that there is birthday cake on the table, balloons in the
air and you will hear happy music playing, you immediately
and quickly infer and forms mental model of birthday party
(DuBrow et al., 2017). Work and birthday contexts are cultural

entities, which have strong effects for our behavior. In the similar
way, when you think about the weekend, the summer holidays,
and the next step in your career development, your brain can
quickly and intuitively forms the mental models about these
cultural contexts. This is possible because you have grown up in
a particular culture where there is a meaningful interpretation
of these contexts.

Lake et al. (2017) described the intuitive physics and
psychology as essential core ingredients of human intelligence,
learning and thought. However, they emphasize that these are
hardly the only ingredients needed for human-like rationality.
Their article is like a roadmap for human-like AGI and they
assume that the intuitive physics and psychology is good starting
point to build this kind of AI. What is missing from this approach,
however, is the recognition that children’s developmental core
ingredients of cognition are shaped by their culture-specific social
and material environment. Children’s early and ontogenetically
persistent experiences with their cultural environment affect what
kind of intuitive mental models’ children develop (Clegg and
Corriveau, 2017). Therefore, we added third ingredient, intuitive
culture described above, which we assume is one essential source
of human-like optimal behavior.

Reinforcement and Self-Supervised
Learning
Actions, either by oneself or others often results in feedback
(rewards), which guide the learning. Learning via rewards is
known as the reinforcement learning and it has been suggested
recently that reward signal itself is enough for generating
intelligence (Silver et al., 2021). With suitable rewards, the
reinforcement learning paradigm could explain the intelligence
on all levels, including perception, motor control, social
interaction, language and—most importantly—generalization
between different tasks (Silver et al., 2021). A successful agent
needs to acquire behaviors that exhibit all these skills while
learning to maximize the rewards in the world. Singular major
goals, such survival (or success) in general in the world implicitly
require the ability to achieve a wide variety of subgoals, and
the maximization of one high-level reward should therefore be
enough to yield an artificial general intelligence for wide range of
rewards. The importance of the culture and social interaction in
building world models cannot be underestimated as the effect of
culture spans very long timespans in both human developments,
but also in evolution (Friston et al., 2021). We argue that in this
view, the culture where the agent lives, has central importance in
defining what are the high-level rewards that drive development
of intelligence. This contextual information necessarily affects
and guides the decisions.

As the reinforcement learning is based on rewards, it often
requires a very large number of interactions and iterations.
This type of learning method tends to produce task-specific,
specialized systems that are often brittle outside of the narrow
domain they have been trained on (Bengio et al., 2021). For
humans, the values associated with decisions are computed in
special valuation network of the brain (see Subsection “The
Brain’s Valuation Network”); hence, there is a connection with
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computations of reward signals in reinforcement learning (see
Subsection “Intuitive Psychology”).

On the other hand, rewards are not always necessary and
learning can also occur in self-supervised manner by simply
observing the environment without explicit rewards. This
framework is known as self-supervised learning, which has been
highly successful in recent AI research and considered as a
promising path toward powerful AI (Bengio et al., 2021; Levine,
2022). A self-supervised learning agent adopts supervisory signals
that are inferred from the structure of the world (or data) itself.
For example, by masking the individual words in sentences,
small patches in images or short segments in speech, deep neural
network models can learn representations of fundamental rules
of the underlying data (Baevski et al., 2022). The recent successes
of self-supervised learning include the development of advanced
language models, where the neural network learns the meaning of
words and the basic structure of the written language (He et al.,
2021; Weidinger et al., 2021). Such networks can be then applied
to targeted supervised tasks (e.g., text classification) or to generate
new text (Brown et al., 2020). Self-supervision has also resulted
into state-of-art speech recognition models by learning directly
from speech in multiple languages (Baevski et al., 2020). Together
with the reinforcement learning, self-supervised learning is a
powerful way to learn underlying rules of the data and construct
the intuitive mental models of the environment. In the next
section, we describe how the brain works from multidimensional
information-processing perspectives.

BRAIN AS A PREDICTION MACHINE

The intuitive mental models allow us to explain why humans
are good at solving novel tasks fast with only few examples.
However, how does the brain apply and update such models?
How does the brain handle the vast richness of the input data?
The intuitive models themselves are useless without an efficient
method to make valid predictions based on those models. Next,
we concentrate on these properties of the brains from new
neuroeconomics science perspective. Neuroeconomics highlights
how the brain controls human decision making and behavior
by using key ideas from psychology, economics, neuroscience,
and computational models. In the vein of consilience and
multidisciplinary, this approach helps to understand the
processes that connect sensation and action by revealing the
neurobiological mechanisms by which decisions are made and
build predictive models relating to human behavior (Wilson,
1999; Glimcher et al., 2004).

Whereas the classical, behavioral, and neuroscientific research
rely on relatively small-scale interpretable models which include
only two or three explanatory variables, neuroeconomics
emphasizes the prediction models, which allow multiple variables
and parameters in these models (Yarkoni and Westfall, 2017;
Jolly and Chang, 2019; Hasson et al., 2020). Despite the
classical models have discovered keen formal explanations of
human behaviors (Von Neumann and Morgenstern, 2007),
their disadvantage is that they make it difficult to predict
human decision making and behavior in a real-life context

outside a laboratory (Hasson et al., 2020). However, the recent
methodological advances in neuroscience have demonstrated
how the information in the brain is encoded with very high
dimensionality with respect to both space and time (Haxby et al.,
2014; Jolly and Chang, 2019). Next, we discuss human decision
making covering Bayesian hypothesis, default and valuation
networks, and high dimensionality perspectives.

The Bayesian Brain and Meaningful
Reasoning
Bayesian model specifies how to update probabilistic beliefs
about causal structures of a context in the light of new data.
According to Bayesian inference, an individual begins with a
set of hypotheses of varying probability (the prior distribution).
These hypotheses are based on the person’s beliefs (mental
models) about the state of a situation. Then s/he evaluates these
hypotheses against the evidence or new information about the
context. Then s/he uses Bayes rule and updates the probability
of the hypotheses based on the evidence and this yields a new
set of probabilities called the posterior distribution (Denison
et al., 2013). Through Bayesian reasoning, one can use observed
data to update an estimate of the probability that each of
several possible structures accurately describes the environment
(Gershman and Niv, 2010).

An important function of the brain is to make the observations
understandable and meaningful to support an individual’s
behavior optimal ways. How this is possible based on a formal
Bayesian computation? It is generally assumed that the Bayesian
model cannot control the complexity of the reality. Thus,
Bayesian inference is not tractable in general, has been claimed
(Gershman and Niv, 2010). Here, the person cannot search
exhaustively through all the possible hypotheses relating to the
state and dynamic of the situation. A number of decision options
negatively affects choice as computational performance of a
human decreases rapidly with the size of the search space leading
to a phenomenon referred as “choice overload” (Murawski and
Bossaerts, 2016). However, the applications of Bayesian inference
in computer science and statistics approximate these calculations
using different kinds of mathematical approximation methods
(Denison et al., 2013; Gershman, 2021a). These developed
approximation methods help an agent to exploit the complex
structure of real-world problems. Approximate inferential
methods include procedures that use Monte Carlo sampling,
bounding methods, and methods that decompose problems into
simpler sets of subproblems (Gershman et al., 2015). In addition,
likely one of the most common approximating strategies of a
human are Bayesian inference by sampling hypotheses which can
also explain why human choices are typically not optimal nor
follow actual probabilities. Rich, realistic tasks, in which there is a
lot of contextual information available to guide sampling, are just
those where the Bayesian sampler is most effective (Sanborn and
Chater, 2016). By using this approximation, the sample-based
inference converges toward the true posterior as more hypotheses
is sampled. The previous studies have found that humans use
this strategy across several domains, including category learning,
causal reasoning, and perception (Gershman et al., 2015).
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It is important to emphasize that the probability judgment
in Bayesian sense is not necessarily purely syntactic or
computational. Rather, it is sensitive to semantic properties of
the combination formed by observation and prior experience,
e.g., probability judgments are sensitive to semantic properties
of the joint distribution (Gershman, 2021b). The interpretation
of the objects and their relationships (e.g., co-occurrence or
joint probability) are closer to the Bayesian ideal when the
occurrence of probabilities of these objects are believable or
meaningful. Hence, it is better to think of probabilities in
Bayes’ model as degrees of belief rather than descriptions of
randomness (the frequencies of repeating events) (Gershman,
2021a). For example, in the study by Cohen et al. (2017), the
participants made judgments about the medical conditions after
they got information about the results of a diagnostic test.
They found that the people diverged considerably from Bayes’
rule when the probabilities were unbelievable. For example,
a medical test with a false positive rate of 80% would be
considered unbelievable, because no such test would ever be
used in the real world. Similarly, a 50% frequency of occurrence
for pneumonia would be considered unbelievable, because it
is not the case that every other person you meet has had
pneumonia. A similar deviation from the logical reasoning
has been observed in syllogistic reasoning, where beliefs about
the plausibility of statements influence truth judgments (Revlin
et al., 1980). However, arguing that the people revise their
beliefs in a way that is consistent with Bayesian inference
does not necessarily imply that a human work through the
steps of Bayes’ rule in their daily life. It is simply not sensible
and useful from either a formal or a practical standpoint
to evaluate all possible hypotheses each time when new
data are observed.

Furthermore, the semantic properties of judgment are relating
to plausible reasoning (Jaynes, 2003). Let us assume that there is a
broken window of a jewelry shop and a criminal-looking person
is near a broken window. Then a police officer comes to the scene
and sees the broken window and the criminal-looking person
close to this window. In this situation, she inferences almost
immediately that a criminal looking person is the guilty. Jaynes
(2003) emphasizes that the police’s decision making is neither
deductive nor inductive, but it is plausible reasoning. Despite
the plausible reasoning is not necessarily sure, it has a very
strong convincing power, and a human decides and inferences
this way all the time.

We argue that the plausible reasoning is same as a
meaningful reasoning (Suomala, 2020) in which a human
uses past experiences, like personal history, cultural habits,
and learnings during education, relating a specific context
and makes meaningful interpretation about this context by
combining the observations with prior experiences according
to Bayesian rule. In this way, the model considers the
limitations of human mind/brain. The prior mental models
help to constrain the most typical and most meaningful
decision-making strategies in the different situations (Suomala,
2020). Hence, human behavior is biased to culturally and
socially transmitted values. Then, each person anticipates the
future situations according to meaningfulness, and this leads

to the domain-specific decision-making strategies. For this
reason, we argue that the intuitive culture is an essential part
of mental models.

Because of the complexity of environments, a human need to
represent information efficiently and this often leads to cognitive
biases distortions in reasoning and representations (Korteling
et al., 2018). Researchers have documented many ways in which
individual judgments and decision making depart from rational
choice and information processing (Milosavljevic et al., 2012).
Despite these cognitive biases contain errors with respect to
an objective description of reality, they may be optimal from
the subjective perspective of the computational system. From
the subjective perspective of human’s mental models, the use of
cognitive biases is not an error at all. Rather, it is an indispensable
property of complex biological and artificial inferential system
(Lieder and Griffiths, 2020; Gershman, 2021a).

As conclusion, meaningfulness is defined as the set of
constraint a human’s brain can make with respect to the
distinctions between observations (stimuli). Thus, the
computational meaningfulness is the results of the subject’s
efforts to interpret the properties of context in which s/he behave.
Ratneshwar et al. (1987) suggest that the meaning of observation
is a function of human’s ability to differentiate stimuli from one
another on a given set of observations. To do that, humans need
the capacity to concentrate on the most meaningful features of
the environment to behave optimal ways in his/her environments
(Ratneshwar et al., 1987; Suomala, 2020).

Brains as Over-Parameterized Modeling
Organ and the Role of Default-Mode
Network
The main task of the brain is to extract dynamic,
multidimensional information about the world to produce
rich, context-dependent behaviors, and decisions (Gallistel
and Matzel, 2013; Hasson et al., 2020). It is genetically
specified information-processing organ for the construction
of a contextual probabilistic representation of the world. Each
cubic millimeter of human cortex contains roughly 50,000
neurons that may have connections and supports for thousands
adjustable synapses with their neighboring and distant cells. This
yields a massive set of adjustable parameters; about 300 million
in each cubic millimeter of cortex, and over 100 trillion synapses
across the entire brain (Hasson et al., 2020). We can assume, that
a human brain, based on this huge multidimensional processing
of information, as a wildly over-parameterized modeling organ
(Conant and Ross Ashby, 1970; Hasson et al., 2020).

Because of the complex and temporally extended nature of
observations, incoming stimuli should activate a broad and
diverse set of brain regions, especially the brain regions that have
encoded the previous experiences. Moulton and Kosslyn (2009)
hypothesized that the hippocampus, which is involved in episodic
memory retrieval, prefrontal cortices involved in top–down
processing and the retrosplenial complex involved in associative
processing, are regions which retain prior experiences of a person
[see also Hassabis et al. (2007)]. The naturalistic experiments
have showed that the default mode network (DMN), involving
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such regions as medial prefrontal cortex, precuneus, and angular
gyrus, play central role in integrating new information with the
prior knowledge to form distinct high-level event representations
(DuBrow et al., 2017; Kauttonen et al., 2018; Yeshurun et al.,
2021). The DMN is considered a major hub for actively
processing incoming external information and integrating it with
prior knowledge in the social world (Yeshurun et al., 2021).

The traditional way to study human behavior is to focus
on two or three artificial explanatory parameters. The basic
assumption has been that humans’ have capacity to utilize
all available information in the situations created in the
experiments. Apparent risk of applying low-dimensional models
is that apparent importance of a variable within a model
may be inaccurate due to the other unobserved variables. The
development of machine learning methods and neuroeconomics
have expanded the scope of human behavior research from simple
experiments to the more real-life contexts, in which a participant
process multidimensional real-like information (Kauttonen et al.,
2015; Jolly and Chang, 2019; Hasson et al., 2020). In this
way, it is possible to make more accurate predictive models
to better match the human behavior, as discussed in the next
section. Using computational models will likewise enable both
researchers in neuroeconomics and engineers to capture this high
dimensionality of human’s decision making to create human-
like AI.

The human brain must integrate prior experiences and
observations flexibly and efficiently to decide optimal behavior.
We argue that the brain’s valuation network is plausible
candidate for this work because the activation patterns on this
region also predicts an individuals’ and groups of individuals’
behavior outside of the experiments (Genevsky et al., 2017).
The neuroimaging studies have demonstrated that the valuation
networks are involved in computing relative values of real
(e.g., microloans, Genevsky et al., 2017) and abstract things
(e.g., moving dots, Magrabi et al., 2021). The brain creates
meaning when it uses the valuation network for integrating about
aspects of prior experiences and observations. While DMN is
the hub for keeping track and integrating ongoing information,
the valuation network is specialized in computing values. By
finding meaningful decisions and behavior, the brain needs
to use approximations and very likely applies Bayesian rule.
Evaluating different options in a specific context is costly in time
and other resources; thus, the intuitive mental models help a
person to concentrate most meaningful options and this way to
allocate the scare mental biological resources to decision making
(Gershman et al., 2015).

The Brain’s Valuation Network
Growing evidence from neuroeconomics shows that there are
general decision networks in the brain, which count the total
valuation of different objects and their relationships using a
common neurophysiological “currency” (Levy and Glimcher,
2012; Lim et al., 2013). This serves the same purpose as loss
functions applied in training artificial intelligence systems to
compare predicted values vs. real values (e.g., cross-entropy and
mean-squared error). Whereas several objects and their dynamic
interactions with their attributes are involved in these contexts,

this complexity makes it almost impossible to isolate and measure
the contribution of each object in isolation. However, the brain’s
valuation network completes this demanding task and forms a
net value of commodities and other items in different contexts
from subject’s prior experience perspectives. The activation
profile’s changes in this valuation network correlate with an
object’s values in a wide class of objects, from simple visual
association tasks (Magrabi et al., 2021), biological needs like
food (Levy and Glimcher, 2012), clothing (Lim et al., 2013),
and money (Glimcher, 2014) to abstract the cultural values
like charitable donations (Genevsky et al., 2013) and microloan
appeals (Genevsky and Knutson, 2015).

Functional magnetic resonance imaging (FMRI) measures
the hemodynamic response related to neural activity, when the
participants are lying inside a large camber and see different
stimuli during FMRI-experiment. The FMRI measures the blood
oxygen level-dependent (BOLD) signal, which varies by different
regions in the brain such that blood delivered to an active brain
region requires more oxygen than the blood delivered to an
inactive region. By using FMRI, it is possible to measure the
ratio of an oxygenated to a deoxygenated hemoglobin, when
the oxygenated blood produces a stronger magnetic field than
non-oxygenated blood (Ashby, 2011). This technology provides
researchers the opportunity to study neural activity in the human
brain almost real time. Hence, it is no wonder that neuroimaging
by FMRI has grown to become the dominant measurement
technique in the neuroscience and neuroeconomics (Ruff and
Huettel, 2014; Suomala, 2018). It is a non-invasive way of
monitoring the mechanisms that underlie how people valuate
stimuli, including marketing and health messages, with the
potential to shape the thoughts and behaviors of a large
population of people (Doré et al., 2020).

Several studies have shown that the responses within regions
of the brain associated FMRI-based studies are essential, when the
goal is to find forecasting models of human behavior (Genevsky
et al., 2017). Consensus of the neuroeconomics research is that
the valuation network is formed of the medial prefrontal cortex
(MPFC) and ventral striatum (VS). Some of the studies have
also connected precuneus to this network, which also serves as
the core of the DMN. The MPFC is located in the middle of
the frontal lobe and has extensive connections to other areas of
the brain. Instead, the striatum is located in the areas below the
cortex. The striatum has many connections to the MPFC, and
they act together when a human forms total value of some stimuli.

Next, we review the selected seminal, empirical studies
in which the activation patterns of data collected from the
brain during the FMRI-experiments has demonstrated strong
predictive power for human’s behavior also outside of laboratory.

Valuation Network Signal as a Robust Predictor of
Human Behavior
The properties and anatomy of the valuation network were
verified in series of FMRI studies in 2010s. The studies listed
in Table 2 demonstrated not only the existence of the valuation
network but also how its signal can predict the human behavior
in realistic tasks. The predictive power of valuation network
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TABLE 2 | Selected neuroscience studies that demonstrate the existence of the brains’ valuation network and how its signal can predict real behavior of humans.

Predicted behavior Key results References

Sunscreen usage Neural signals in the MPFC predicted changes in sunscreen use 1 week after scanning. Prediction
was 23% more accurate compared to self-reported attitudes and intentions.

Falk et al., 2010

Inclination to quit smoking Neural signals in the MPFC predicted reduction of smoking 1 month after scanning. Neural
prediction was better at population level than self-reports.

Falk et al., 2011, 2012

Online music purchases of
adolescents

Activation patterns in brain’s valuation network predicted consuming of previously unknown popular
songs and the success of new songs.

Berns and Moore, 2012

Chocolate sales in supermarket Brain activation patterns in valuation network forecasted better the real supermarket sales of
chocolate bars than the participants’ behavioral judgment.

Kühn et al., 2016

Online microloan money lending Both NAcc and MPFC activities predicted individual lending choices and NAcc activity forecasted
loan appeal success on the Internet. The predictive power of neural signals was greater than those
of the behavioral choices.

Genevsky and Knutson,
2015; Genevsky et al.,
2017

Value estimates of abstract
objects

Valuation network incorporates the contextual information and valuation is a dynamic, continuously
updated process.

Magrabi et al., 2021

signal is often better than the behavioral measurements and self-
reports. We argue that the understanding valuation network
is valuable in designing human-like AGI. In the following, we
briefly summarize these experiments and their key findings.
These studies present converging evidence that high-dimensional
neural data measured with FMRI carries information that
accurately predicts behavior of population.

The studies by Falk and colleagues were the first to directly
demonstrate link between the valuation network signals and real
behavior. In the study by Falk et al. (2010), the participants were
exposed to persuasive messages concerning risks of sun exposure.
Moreover, neural signals in the MPFC predicted variability
in sunscreen usage among participants more accurately than
self-report measures like intentions and attitudes measures
explained alone. By using a cross-validation, the study revealed
that MPFC activation predicted 23% more of the variance in
behavior than did self-reported attitudes and intentions to wear
sunscreen 1 week following the experiment. Next, Falk et al.
(2011, 2012) examined smokers’ neural responses to antismoking
advertisement campaigns and subsequent smoking behavior.
Consistent with the findings of the sunscreen study, the MPFC
activation patterns in the participants’ brain (n = 28), when they
exposure to anti-smoke message in the scanner, more accurately
predicted participants’ inclination to quit smoking 1 month after
the initial FMRI than traditional behavioral measurements (Falk
et al., 2011). In addition, the activity in the same region of
the MPFC that predicted individual smoker’s behavior change
during message exposure predicted population-level behavior
in response to health messages and provided information that
was not conveyed by participants’ (n = 31) self-reports (Falk
et al., 2012). Neural activity in MPFC predicted the population
response, whereas the self-report judgments did not. These
results extend the use of FMRI to predict behavior, as opposed
to simply predicting immediate effects showing that the critical
valuation area in the brain (MPFC) may serve as an indirect
marker of future behavior change.

In 2016, Kühn and colleagues did FMRI experiment to test
what kind of chocolate commercials promote most sales in
the grocery store (Kühn et al., 2016). Researchers showed six
versions of a well-known chocolate brand to the participants

(n = 18) in the FMRI-scanner. After FMRI-scan, the participants
in the study were asked behaviorally which advertisement they
liked the most. After the FMRI data was acquired chocolate
brand were tested at a point-of-sale of the product in a German
supermarket; thus, allowing a direct comparison of the sales
between the different advertisements tested. Again, the sample’s
mean brain activation patterns in valuation network forecasted
better the real sales of chocolate bars in supermarket, whereas the
participants’ behavioral judgment did not (Kühn et al., 2016). The
predictive power of the valuation network was confirmed also
for adolescents by Berns and Moore (2012) for music purchases.
In this study, the teenage participants (n = 28) did listen 60
previously unknown popular music clips in the FMRI-scanner.
Songs from 165 relatively unknown artists were used to test
the effect of new songs on the participants’ brain, and to test
whether the neural signals are predictive of success of songs in
the real market. After listening to each song, the participants
rated the song based on how familiar it was and how much
they liked it; thus, the researchers had both behavioral and
neurophysiological data from the participants’ preferences of new
songs. The correlation between behavioral subjective song ratings
with sales data was near zero (r = 0.11). However, the activation
within the striatum—one essential region of valuation network in
the brain—was significantly correlated to the sales. This research
demonstrated that not only the signals in valuation-related
networks of the human brain are predictive of one small sample’s
purchase decisions but also predictive of population effects.

Genevsky and Knutson (2015) sought to link brain activity in
laboratory samples (n = 28) to forecasted microloan success on
the Internet. Researchers found that while both essential region
of the valuation network NAcc (The Nucleus Accumbens; part
of the Striatum) and MPFC activities in response to microloan
appeals predicted the individual lending choices within a sample,
only the sample’s average NAcc activity forecasted loan appeal
success on the Internet. Noteworthy, the forecasting power of
the sample’s average NAcc activity was greater than the sample’s
behavioral choices (i.e., whether they like to invest or not).
However, the sample’s ratings of positive arousal in response
to the loan appeals continued to forecast loan appeal success
on the Internet (Genevsky and Knutson, 2015). In the same
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vein, crowdfunding study (Genevsky et al., 2017) confirmed the
essential results of microloan appeal success study. Findings
demonstrate that a subset of the neural predictors in the valuation
network of individual choice can generalize to forecast market-
level microloan appeal and crowdfunding outcomes—even better
than choice itself.

Finally, a recent study by Magrabi et al. (2021) demonstrated
that the valuation network incorporates the contextual
information and valuation is a dynamic, continuously
updated process. Unlike the previous studies, because of
the increased complexity of the research question, the stimulus
involved abstract dynamical objects (dot clouds) instead of
a realistic task. In the FMRI-scanner, participants (n = 24)
were presented with a dot stimulus varying in the following
two constituent perceptual attributes: Motion direction and
dot colors. Each attribute level was associated with a specific
monetary gain or loss. In the FMRI scanner, the participants
had to identify the attribute values and integrate them as
the sum of attribute values indicated the overall value of the
stimulus and then either accept or reject the monetary offer.
The researchers found that the computation of particular
attribute values was accomplished in a dynamic manner
within the same network comprising posterior cingulate cortex
(PCC), posterior inferior temporal gyrus (PIT), and ventral
striatum. The results indicate that the attribute values are
computed in an interdependent and contextualized manner,
such that the attribute values are not computed sequentially
and in isolation. Instead, there is a constant exchange of
information in which value predictions are continuously updated
and re-evaluated.

From the Activation Patterns of the
Valuation Network to the Whole-Brain
Patterns
We described above the studies that demonstrated the central role
of the brain’s valuation network in human’s decision making and
behavior. These studies found that considering information from
the valuation network of the brain explains significant variance
in out-of-sample message/stimuli effects. However, there also
theoretical critiques (Camerer, 2013; Hayden and Niv, 2021)
and empirical findings (Doré et al., 2020), which broaden the
brain’s valuation networks approach. The deeper analysis of these
critiques is out of the scope of this article; however, we review
shortly the empirical findings of Doré et al. (2020) from machine
learning and engineering perspectives.

Essential assumption of predictive models of human and
other complex system behavior is, that the classical empirical
explanatory models cannot predicts systems behavior with only
a few explanatory variables (Yarkoni and Westfall, 2017; Jolly and
Chang, 2019). In the same vein, the current study by Doré et al.
(2020) showed that signals from whole-brain patterns—detected
by FMRI—associated with reward valuation beyond activity in
the valuation network (i.e., striatum and MPFC). Moreover,
the study shows that a reward-related pattern of whole-brain
activity is related to health message sharing on social media
through a population.

Despite the valuation network in the brain has millions of
neurons and has properties of an over-parameterized systems, we
do not know at this moment, how much brain signals we need
to take in the account to build optimal and predictive human
behavioral model. Whereas Genevsky et al. (2017) have shown
(see above the microloan appeal study) that the signals from the
striatum detected by FMRI predicts better the human choice than
the signals from whole brain on population level, Doré et al.
(2020) showed, on the contrary, that the signals from the whole
brain are more predictive of the human behavior on social media
at the population level.

As conclusion about FMRI-studies relating to the predictive
models, we make two conclusions from engineering (AI research)
perspectives. First, it is safe to assume that human brain can
operate on many different contexts and multiple timescales. If we
like to predict human behavior, we need to understand, how does
this complex biological system work and current neuroimaging
tools—especially FRMI—gives an opportunity to understand the
logic of this complex organ. When this rich, high-dimensional
data is analyzed with current machine learning methods and
compared against AI model candidates, we are closer in resolving
how neural processing (particularly valuation) works. Second,
the human brain makes predictions based on its values or
its subjective experiences from previous events of meaningful
behavioral practices in different environments. Whereas it is
difficult to know, what are most meaningful behavioral practice
in a current situation, we can detect these values from brain, if
we present the most essential real-life stimuli for subjects in the
FMRI experiments. There is still an open question, do we need
to whole brain or can we concentrate on specific parts, such as
valuation and default mode networks, when we try to build better
predictive model of human behavior.

COMPARING BRAIN MODEL WITH
CURRENT ARTIFICIAL
INTELLIGENCE-MODELS

Information representations in the brain are dynamic mental
models, which include causal roles and functions of objects.
These mental models help a human understand different scenes
in meaningful ways. These mental models cover intuitive physics,
intuitive psychology, and intuitive culture. Scene understanding
by using dynamic mental models in a specific context is
lacking in today’s narrow AI models. Here, we have focused
to study especially for the brain’s valuation network, which
support individuals to behave and make decisions in optimal
ways. However, we also considered the extent to which the
brain is involved in decision making in addition to the
valuation network (see Doré et al., 2020). Most of the human
behavior is a function of a person’s subjective experience of
meaningfulness and situational factors, e.g., cultural values and
artifacts. Next, we discuss the current state of AI and its
limitations and how neuroeconomics and understanding of the
brain models could help us overcome these limitations and
advance development of AI.
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Bottlenecks and Limitations of Current
Artificial Intelligence Models
The first generation of AI models were constructed based on
idea that it can utilize all available information by exhaustive
enumeration of all relevant properties of the context. The
promise of this approach was that it is possible to develop
AI that might 1 day both explain and replicate aspects of
human intelligence (Gershman et al., 2015). However, these
classical models did not consider, that each complex system—
biological or artificial—not only uses the resources (exhaustive
enumeration) but must allocate the resources in a sensible way
(Lieder et al., 2018; Steverson et al., 2019). The current approach
for an intelligent behavior emphasizes that the rationality is
the efficient allocation of resources. When sampling (search
for new information) is costly and an individual believes that
most gains or losses are small, as in many everyday tasks; then,
rational behavior can be to sample as few as one or a few
high-posterior probability hypotheses for each decision from
Bayesian perspective (Gershman et al., 2015).

In the face of the complex situation and solving real-
world decision making, the new resource-rational approach has
emphasized the role of intuitive mental models that might
be developed by computer-based reasoning systems to cut
through the complexity of decision making. Like in cognitive
science, a probabilistic renaissance swept through mainstream
AI research, in part by pressures for performing reliable
inference about likelihoods of outcomes in applications of
machine reasoning to such high-stakes domains as medicine
(Gershman et al., 2015). Attempts to mechanize the probability,
especially Bayesian inference, for decision and learning led to
new insights about probability and stimulated thinking about
the role of related strategies in human cognition. For example,
the advances in AI led to the formulation of rich network-based
representations, such as Bayesian networks, broadly referred to
as probabilistic graphical models (PGMs) (Koller and Friedman,
2009). In particular, a belief updating process was developed to
efficiently update parameters of the network using parallel and
distributed computations (Friston et al., 2021). Belief updating
is a process that transforms prior beliefs into posterior beliefs
when new information is observed and it is a core mechanism of
Bayesian reasoning. Some studies have identified potential neural
mechanisms of Bayesian belief updating in human brain at least
for spatial attention task (Vossel et al., 2015). It remains to be seen
if this also holds for more complex decision’s tasks.

In the recent years, machine learning has been able to
solve difficult pattern recognition problems. Such developments
have put the notions of backpropagation, using large data
sets and probabilistic inference with classical decision-making
theory (Von Neumann and Morgenstern, 2007) at the heart
of many contemporary AI models. Together with increasing
computational power and data set availability have led for AI
successes in the recent years. Speech and natural language
understanding, self-driving cars, automated assistants, and
mastering complex games like Go are some examples of the
success of these approaches (Gershman et al., 2015; Schrittwieser
et al., 2020; Bengio et al., 2021; He et al., 2021). Although these AI-
applications have reached human-level performance on several

challenging benchmarks, they are still far from matching human-
level behavior in other ways. Deep neural networks typically
need much more data than people do to solve the same types of
problems, whether it is learning to recognize a new type of object
or learning to play a new game. For example, while humans can
learn to drive with few dozen hours of practice, self-driving cars
need millions of (simulated or real) hours and still lack behind
human performance in handling surprising situations (Lake
et al., 2017). Or when learning the meanings of words in their
native language, children easily make meaningful generalizations
from very sparse data. In contrast, AI based deep reinforcement
learning systems still have not come close to learning to play new
games like Atari as quickly as humans can (Lake et al., 2017).

The main challenge in AI-development is to move from the
classical view of a rational agent who maximizes the expected
utility over an exhaustively enumerable state–action space to a
model of the decisions faced by resource–rational AI systems
deployed in the real world, which place severe demands on real-
time computation over complex probabilistic models (Gershman
et al., 2015). The intuitive models, as described in “Intuitive
Mental Models,” allow humans concentrate to most meaningful
aspects and behave optimal ways in different contexts. Although
great steps have been made in the development of AI, people
are still learning from fewer data—often to see just one or a few
examples—and form dynamic mental models in richer and more
flexible ways than AI (Bengio et al., 2021).

The current AI systems have bottlenecks when working in
real-world setting. First, they are prone to outliers and can make
trivial mistakes (from a human perspective), such as self-driving
car confusing regular stop-signs posts and those printed on
billboards1 or being held by a human,2 image-classifier getting
fooled by written texts3 and failing to recognize partially occluded
objects (Hendrycks et al., 2021). Adding a structured noise
invisible to humans into images can lead to a complete failure in
the state-of-the-art image recognition models (Ren et al., 2020).
Second, AI models can be biased, resulting in underpowered
predictions with possible toxic outcomes (Seyyed-Kalantari et al.,
2021; Weidinger et al., 2021). Such flaws can be considered as
symptoms of lacking intuitive, commonsense world models that
would allow AI to have more complete understanding of the
world and generalize over novel situations (Bengio et al., 2021).

Brain Models and Importance of the
Valuation Network
As we have described in this article, human brain is evolved
to grasp and learns basic understanding of systems of abstract
concepts—represented as intuitive theories in the brain for
physics, psychology, and culture. Thus, a human brain can
understand easily the physical objects and substances, intentional
agents, and their causal interactions in time and space (Lake
et al., 2017). The current computational rational model of brain
proposes that humans decide and behave by using principles
of Bayesian model in the uncertain and ambiguity contexts
(Gershman et al., 2015; Suomala, 2020; Friston et al., 2021).
1https://futurism.com/the-byte/tesla-slamming-brakes-sees-stop-sign-billboard
2https://nautil.us/deep-learning-is-hitting-a-wall-14467
3https://distill.pub/2021/multimodal-neurons
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Furthermore, the current approach in neuroeconomics is that
the human brain’s goal might be to learn about the structure and
functions of environment rather than simply maximize a reward
(Denison et al., 2013). This learning approach is consistent
with the idea that brain computes values for environmental
objects, particularly if we consider meaningfulness and new
information as essential dimensions of valuation in addition
to maximizing expected utility in traditional economic sense
(Camerer, 2013; Gershman et al., 2015). This learning approach is
not an alternative for traditional models, rather it may be viewed
as an extension of them.

We believe that the future generations of AI will look
different from the current state-of-the-art neural networks,
because it may be endowed with an intuitive physics, an
intuitive psychology, and an intuitive culture (Lake et al., 2017).
Studies have shown that the small samples of participants’
brain activation profiles in valuation network can predict real
behavioral chance in a real context outside of laboratory on
individual levels (Berkman and Falk, 2013) and on population
level (Falk et al., 2012; Genevsky et al., 2017). We argue that
in reverse engineering, the mechanisms of brain’s valuation
and default mode networks will inform the development of
human-like AGI. These neural systems hold solutions of dealing
with high-dimensional input, keeping track and integrating
ongoing contextual information and computing relative values
to make informed decisions. Computations of the valuation
network in particular could be the solution of advancing AI.
For example, is there a biological equivalent for gradient-based
backpropagation algorithm that uses valuation and prediction
errors to guide behavior and learning? In Section “Brain as
a Prediction Machine,” we described how studies have shown
that this brain network has critical role, when a human
decides and behaves. We need further research to better
describe the mechanisms of the brain’s valuation network in an
engineering way.

Despite the recent achievements of AI, people are better than
machines in solving a wide range of difficult computational
problems in their real-life contexts and behaving in (subjectively)
optimal ways by taking advantage of information in inherently
complex, uncertain, and continuously streaming inputs.
Capturing more human-like, flexible behavior, AGI systems
might first need to adopt the brain’s capability to form dynamic
mental models with the intuitive models and the valuation-like
networks described above.

DISCUSSION

We think it is very unlikely that a revolutionary artificial
intelligence will emerge through engineering and computer
science alone. Observational findings coming from neuroscience
and behavioral sciences are also needed to develop new
algorithms that can lead us closer to human-level artificial
general intelligence.

Although great steps have been made in the development of
AI, for example, in machine vision (e.g., self-driving cars), text
and speech understanding (e.g., virtual assistants), and playing

games (e.g., chess, poker and Go), AI is still far from human
ability to learn as efficiently and master multiple different tasks
(Bengio et al., 2021; Gershman, 2021a). People are still learning
from fewer data—often to see just one or a few examples—
and form dynamic mental models in richer and more flexible
ways than AI. We believe that the future generations of AI may
be endowed with intuitive physics, intuitive psychology, and
intuitive culture (Tomasello et al., 2005; Lake et al., 2017). While
these do not necessarily cover all intuitive models that humans
can possess, these are sufficient starting point in development
of a human-like AGI. The current AI models can be prone to
trivial mistakes and biases. This is a symptom of current AI
models missing contextual and commonsense understanding of
the world in both local and broad senses. For example, for a
self-driving car to adapt from operating in sunny California
to winterly Scandinavia needs to grasp both different physical
conditions and rules (laws) of the environment. Therefore, we
argue that the intuitive culture that covers large-scale nuances of
the environment is very important.

We can pinpoint the following three major gaps between
the current AI models and human optimal behavior.
First, AI is effective in solving recognition problems but
incompetent in building causal models of the world that support
explanation, understanding, and prediction. Especially, the scene
understanding and the relationships of objects’ functions in
a specific context is lacking in today’s AI. For example, when
image captions are generated by a deep neural network, it gets
the key objects in a scene correct, but fails to understand the
relationships between objects and people in the image, or the
causal relationships between the objects (Gershman, 2021a).
However, a human can apply dynamic mental models. Second,
AI cannot generalize its knowledge to new tasks and situations.
When an infant can learn and predict the movements of wooden
blocks based on few examples, AI (PhysNet) requires extensive
training—between 100,000 and 200,000 scenes—to answer
the question, “Will the tower fall or not?” (Lake et al., 2017).
Thus, a human can generalize to many novel complex scenes
with only few training samples or trials. Third, a current AI
neglects the contextual information in its applications whereas
a human’s brain constantly benefits the information in a
specific context. This poses a big problem since context carries
often critical information that can greatly affect the decision.
Training a new AI model for each context is not feasible,
instead the context needs to be inherently build-in within the
model.

Computational meaningfulness offers a potential unifying
framework for the study of optimal behavior of artificial agents.
The parts of this framework that we consider essential for
development of such agents are listed in Table 1. We argue that
valuation and default mode networks which have gained lots
of interest in neuroscience research past decade offer a novel
viewpoint for the development of AI. We argue that studying
and reverse-engineering the related neural computations are
needed in the development of new algorithms for both intuitive
model learning and usage. With this work, we aim to bring this
research to the attention of engineers working on AI and make
connections between the fields.
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The human brain as resource rational agents that seek to
form dynamic mental models by effectively apply Bayes’ rule
and approximate algorithms that support meaningful actions
in each situation (Cohen et al., 2017; Gershman, 2021b). This
process incorporates the costs of computation and consider in
optimal way the human’s specific biological, social, and cultural
needs. When the science uncovers this process and its elements
better than today, we can apply this process at least partially
through engineering design to build better human-like machines,
including AGI. Thus, the science of human decision making,
e.g., neuroeconomics is the foundation of next generation of
AGI. Neuroeconomics often considers decision making in real-
life scenarios, which incorporates also cultural aspects. We should
concentrate on how such decisions are computed by the brain.
Essential question in future is how the brain’s computation can
be captured in engineering terms. We have described studies (see
Section “Brain as a Prediction Machine” and Table 2) in which
these ideas are being fruitfully applied across the disciplines
of human behavior, but we admit that a genuine unifying
theory about human decision making and its application to AGI
remains mostly a promise for the future. Especially, the question
about the mechanisms of the brain for cost-sensitive meaningful
computation in valuation networks and it’s applied to AGI will be
essential in future (Gershman et al., 2015).

The better we understand human’s brain mechanisms, the
better we can apply this understanding for building algorithms
and models that gets us closer to human-like AGI. On the
other hand, the science also benefits the development of
AGI by applying theoretical and methodological ideas from
algorithms development and big data analysis. According to
Glaser et al. (2019) AI can help neuroscience at least in the
following ways: Solving engineering problems (e.g., building
better predictive models), identifying predictive variables (e.g.,
apply regularization and find causal relationship), benchmarking
simple models (e.g., linear vs. non-linear), and serving as a model
of the brain to compare against algorithms. Due to the complexity
of large datasets that can be both non-linear and recurrent, it is
necessary to apply machine learning methods that can extract
meaningful relationships and structure (Glaser et al., 2019). It
has become evident that the classical statistical modeling, such
as general linear regression, that rely on inference rather than
predictive power, is insufficient when trying to find working
principles of brain (see, e.g., Jolly and Chang, 2019).

Finally, we acknowledge that the limitation that the
computational meaningfulness framework we described here is
still a concept and not an algorithm or computational model that
can be directly applied to create a next-generation AI models.
Instead, we hope that intuitive models, contextual Bayesian
inference, and valuation and default mode networks will enhance
dialogue between research fields and inspire development of new
generation of computational algorithms in engineering.

SUMMARY AND CONCLUSION

In this study, we have discussed the key concepts for
development of human-like artificial general intelligence (AGI).
These concepts include learning intuitive mental models via
reinforcement and self-supervised learning, and using and
updating these models via Bayesian inference. We also discussed
about the default mode and valuation networks of the human
brain engaged in keeping track of ongoing events, contexts,
and evaluating the relative values of things and decisions. We
have pinpointed major shortcomings of the currently available
AI models related to lacking intuitive mental models, inflexible
generalization between tasks and lack of contextual information
relevant for optimal decisions. We argue that the intuitive culture
is a necessary element of a human-like AGI as it defines the
contexts for optimal decisions of real-life actions. We also argue
that reverse-engineering the core working principles of default
mode and valuation networks is the key to unlocking mechanism
behind contextual, high-dimensional input signals processing,
and computation of value (reward) signals. This requires a close
interplay between engineering, computer science, neurosciences,
and behavioral sciences with collection of big observational
datasets, e.g., via FMRI. Making distinction between observations
in the environment and concentrating on the most meaningful
features are essential for the optimal behavior in the environment.
We call this framework, which applies intuitive models and
Bayesian inference principles to make contextual decisions,
as computational meaningfulness. We hypothesize that the
computational meaningfulness allows machines to reason and
make decisions like those by humans and it is a promising path
to human-like AGI.
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