

# Mapping theme trends and knowledge structures for human neural stem cells: a quantitative and co-word biclustering analysis for the 2013–2018 period

Wen-Juan Wei<sup>1,2</sup>, Bei Shi<sup>3</sup>, Xin Guan<sup>1,2</sup>, Jing-Yun Ma<sup>1,2</sup>, Ya-Chen Wang<sup>1,2</sup>, Jing Liu<sup>1,2,\*</sup>

1 Stem Cell Clinical Research Center, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China

2 National Joint Engineering Laboratory, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China

3 Department of Physiology, China Medical University, Shenyang, Liaoning Province, China

*Funding:* This study was supported by the National Natural Science Foundation of China, No. 81471308 (to JL); the Stem Cell Clinical Research Project in China, No. CMR-20161129-1003 (to JL); the Innovation Technology Funding of Dalian in China, No. 2018J11CY025 (to JL).

### **Graphical Abstract**



#### \***Correspondence to:** Jing Liu, PhD, liujing.dlrmc@hotmail.com.

orcid: 0000-0002-0493-296X (Jing Liu)

doi: 10.4103/1673-5374.257535

Received: November 7, 2018 Accepted: March 6, 2019

## Abstract

Neural stem cells, which are capable of multi-potential differentiation and self-renewal, have recently been shown to have clinical potential for repairing central nervous system tissue damage. However, the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically. In this study, we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word. Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies. Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder. We identified 78 high-frequency Medical Subject Heading (MeSH) terms. A visual matrix was built with the repeated bisection method in gCLUTO software. A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software. The analyses demonstrated that in the 6-year period, hot topics were clustered into five categories. As suggested by the constructed strategic diagram, studies related to cytology and physiology were well-developed, whereas those related to neural stem cell applications, tissue engineering, metabolism and cell signaling, and neural stem cell pathology and virology remained immature. Neural stem cell therapy for stroke and Parkinson's disease, the genetics of microRNAs and brain neoplasms, as well as neuroprotective agents, Zika virus, Notch receptor, neural crest and embryonic stem cells were identified as emerging hot spots. These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.

*Key Words:* nerve regeneration; human neural stem cells; PubMed; bibliometric analysis; biclustering analysis; co-word analysis; strategic diagram analysis; social network analysis; hot research topics; mapping theme trends; knowledge structures; neural regeneration

Chinese Library Classification No. R453; R364

## Introduction

Reynolds and Weiss isolated stem cells from the forebrain of an adult mammal in 1992 (Reynolds and Weiss, 1992), and not long after, neural stem cells (NSCs) were isolated from humans (Svendsen et al., 1998; Vescovi et al., 1999). It is now well-accepted that neurons derived from NSCs continue to form throughout adult life. Additionally, most mammals, including humans, undergo lifelong neurogenesis (Eriksson et al., 1998). NSCs can differentiate into astrocytes, neurons and oligodendrocytes, and possess an unlimited capacity for self-renewal that persists throughout the life of the animal (McKay, 1997; Seaberg and van der Kooy, 2002).

A rapid increase in stem cell research has been observed since the beginning of the 21<sup>st</sup> century. Bibliometrics has been widely used to map the literature on stem cell research. A series of bibliometric analyses of stem cell-related research and applications have been conducted for nervous system diseases such as spinal cord injury, epilepsy (Yin et al., 2012), Parkinson's disease (Li, 2012) and cerebral ischemia. More recently, researchers have endeavored to clarify the cytology, physiology, metabolism and application of human NSCs (hNSCs) (Wang et al., 2018). However, the literature on hNSCs has not yet been systematically studied. Therefore, in the present study, we used bibliometric analysis to identify the research trends associated with hNSCs. Bibliometry allows the deciphering and quantitative analysis of the hot topics in the published literature. Hot topics can be identified by techniques such as co-word analysis and co-citation analysis (Yao et al., 2014). Particularly, coword analysis, which can estimate the relationship between two professional words in related papers, has been most commonly used (Hong et al., 2014). In this study, the extracted professional words were classified using biclustering analysis, which can cluster lines and columns simultaneously (Hartigan, 1972) and perform a partial analysis from a large amount of data. In addition, the relationships between the themes and evolutionary trends were studied by social network analysis and strategic diagram (Zhang et al., 2013). In this way, in addition to journals, countries and influential publications, we also analyzed the internal relationships, characteristics, knowledge structures and theme trends of the NSC-related literature published from 2013 to 2018. Research status and emerging issues were mapped by biclustering analysis on the basis of co-occurring MeSH terms and strategic diagram. In addition, social network analysis was performed to visualize the knowledge structure and relationships between hNSCs and their cytology, physiology, genetics and clinical applications.

# **Data and Methods**

#### Data resource and search strategy

We retrieved and downloaded data from the PubMed database of the US National Center for Biotechnology Information. Medical Subject Heading (MeSH) terms, the medical vocabulary resource created by the National Library of Medicine, is the basis for Index Medicus and the MEDLINE database, and is used for indexing and cataloging articles in the PubMed system. For retrieval, articles were restricted to publication type as Journal Article, species as Humans, and language as English. "Neural Stem Cells" [MeSH] was used as the retrieval term. A total of 2742 articles published from 1 January 2013 to 31 December 2018 were retrieved. Every downloaded publication contained author, title, country, institution, MeSH terms and publication year, saved in XML format.

#### Data extraction and bibliographic matrix building

The bibliographic data were extracted from the PubMed database. The co-occurrence matrices and the term–source

article relationships were created using Bibliographic Item Co-Occurrence Matrix Builder (Li et al., 2015). The contributive characteristics of the countries, journals, publication years and main MeSH terms/subheadings were analyzed using the Bibliographic Item Co-Occurrence Matrix Builder. In addition, the amount of high-frequency main MeSH terms/ subheadings was defined by the threshold value (T), which can be expressed as:  $T = (1+\sqrt[2]{1+8i})/2$ , where i represents the amount of main MeSH terms/subheadings appearing just once (Donohue, 1974). Therefore, the amount of high-frequency main MeSH terms/subheadings was defined according to this expression.

# Biclustering analysis of high-frequency main MeSH terms/subheadings

The high-frequency main MeSH terms/subheadings and PubMed Unique Identifiers of the hNSC-related literature retrieved from PubMed were subjected to biclustering analysis. The main MeSH terms/subtitles were classified according to the term-source article matrix.

Mountain Visualization was performed, and a visual matrix was built with the repeated bisection method in gCLU-TO software (Rasmussen and Karypis, 2004). The peaks in the 3-D terrain are marked by numbers, which represent the clusters analyzed by biclustering. The color, height, volume and location of each peak in the figure were used to illustrate the data for the associated clusters. The relative location of each peak in the figure is the most informative attribute. The internal resemblance of a cluster is represented by the height of each peak. The relative resemblance of a pair of peaks is represented by the distance between them. The number of main MeSH terms/subheadings is proportional to the volume of a peak. Finally, the internal standard deviation of the objects in a cluster is shown by the peak color. Blue denotes high deviation, while red indicates low deviation. For the matrix visualization, the high-frequency main MeSH terms/subheadings are represented by the row labels, and the PubMed Unique Identifiers of source articles are indicated by the column labels, which are located on the left and top of the matrix, respectively. Based on the results of biclustering analysis, the structures of related research focuses were presented and analyzed.

#### Strategic diagram analysis

Based on theme centrality and density, a two-dimensional strategic diagram was built by drawing themes along two axes (Viedma-Del-Jesus et al., 2011). The external cohesion index or centrality, which indicates the central location of the subject in the frame, is represented by the X-axis. Furthermore, the internal cohesion index or density is represented by the Y-axis (Li et al., 2009). Four quadrants were generated by the two axes, and the clusters of main MeSH terms/subheadings were distributed to the four quadrants according to the results of biclustering analysis, constructing with GraphPad Prism 5 software (GraphPad Software Inc., San Diego, CA, USA).

#### Social network analysis

The social network analysis network was established using Ucinet 6.0 software (Analytic Technologies, Louisville, KY, USA) according to the co-occurrence matrix of high-frequency main MeSH terms/subheadings. Subsequently, the knowledge structures in the field of hNSCs were interpreted by social network analysis. The networks of main MeSH terms/subheadings were visualized and presented in two-dimensional maps using NetDraw 2.084 software (Analytic Technologies Co.). The main MeSH terms/subheadings network was represented by nodes, with the co-occurrence frequency shown by the links. The locations of main MeSH terms/subheadings were assessed by measuring the three centralities of each node (*i.e.*, closeness, betweenness and degree) to gain an understanding on the network structure of hNSCs.

#### Results

#### Characteristics of hNSC-related publications

From 2013 to 2018, a total of 2742 papers met the search criteria mentioned above. The number of hNSC-related papers was 489 in 2013, increased to 519 in 2014, and peaked at 558 in 2016, with slight reductions in 2015 (481) and 2017 (522) (**Figure 1A**). The United States made the largest contribution to hNSC-related studies, accounting for 54.05% of the published papers. England and the Netherlands ranked second and third, respectively, in the number of papers (**Figure 1B**).

*PLoS One* (impact factor (IF) = 2.766, 2017) published the greatest number of hNSC-related articles (130, 4.741%), followed by *Stem Cell Reports* (73, 2.662%) (IF = 6.537, 2017) and *Scientific Reports* (61, 2.225%) (IF = 4.122, 2017). The top-ranking 15 journals are shown in **Figure 1C**.

#### Hot research topics based on MeSH term clusters

Among the hNSC-related literature, high-frequency main MeSH terms/subheadings had a cumulative frequency of 40.7962% (Additional Table 1), and were thus considered hot research topics over the past 6 years. The MeSH terms in this 6-year period were analyzed, and five clusters were identified by biclustering analysis (Figure 2). The mountain and matrix visualizations of the main MeSH terms/subheadings are shown in Figure 2. As suggested by the results, 78 high-frequency main MeSH terms/subheadings (Additional Table 1) were classified into five clusters. The 78 high-frequency main MeSH terms/subheadings are presented in Figure 2 (right side), showing the terms in reference to each cluster. The hierarchical trees on the left and top represent the relationships between high-frequency main MeSH terms/ subheadings and between articles, respectively. Furthermore, the representative papers in each cluster were explored by identifying and summarizing the themes. The results of cluster analysis from the high-frequency main MeSH terms/subheadings of hNSC-related studies are given in Table 1.

#### Theme trends of hNSCs

With both high density and centrality, motor themes are

located in the upper right of Quadrant I. Themes with high density but inadequate external interactions are defined as specialized themes in the upper left of Quadrant II. Themes with low density and centrality are usually considered either vanishing or emerging, and are located on the left of Quadrant III. The right part of Quadrant IV contains themes with weak internal maturation but high centrality (Viedma-Del-Jesus et al., 2011). In strategic diagrams, the themes are shown as roundness in different quadrants based on centralities and densities corresponding to external and internal cohesions.

The interpretation of the strategic diagram is presented in **Figure 3A**. The clusters in Quadrant I, as central themes in the general network, are intensely connected with other clusters, with strong internal interactions (high development degree). The clusters in Quadrant II are peripheral but well developed themes, and those in Quadrant III are undeveloped and peripheral. However, the clusters in Quadrant IV are central but undeveloped, though they are slightly mature (Callon et al., 1991).

The roundness area is proportional to the amount of high-frequency main MeSH terms/subheadings for each theme cluster (Figure 3B). Clusters 1 and 2 in Quadrant I represent studies on NSC cytology (Cluster 1: astrocyte, oligodendroglia, neuron, neural crest and spinal cord cytology; cell culture techniques) and NSC biology (Cluster 2: cell movement and proliferation; brain, neuron, astrocyte and neurogenesis biology). These two clusters have core status and are well developed, with high density and centrality. Clusters 0 and 3 in Quadrant III represent studies on NSC pathology and virology (Cluster 0: brain neoplasm metabolism, pathology and genetics; neoplastic stem cell metabolism and pathology; Zika virus biology) and clinical applications of NSCs (Cluster 3: NSCs in Parkinson's, stroke and spinal cord injury therapy; tissue engineering; NSC proliferation and differentiation using drugs). These clusters are immature, i.e., at the edge of the hNSC research field. Cluster 4 in Quadrant IV represents studies on NSC metabolism and signaling (including microRNA in neurogenesis and cell differentiation genetics; signal transduction and transcription factors). It has core status, but is undeveloped. The diagram shows the development and tendency of each hNSC theme cluster in the 6-year period examined.

#### Knowledge structure of hNSCs

Degree, closeness and betweenness were used to build the social network analysis network knowledge structure as centrality parameters (**Figure 4**). Furthermore, the social network analysis network was established on the basis of betweenness centrality. The node size was proportional to the betweenness centrality of main MeSH terms/subheadings, with the line thickness representing the frequency of co-occurrence.

In the network of hNSCs from 2013 to 2018, 23 main MeSH terms/subheadings (yellow and cyan circles in **Figure 4**) had a high degree of centrality, including the top 15 high-frequency ones. Notably, "Neural Stem Cells/cytolo-





#### Figure 1 Characteristics of human neural stem cell-related publications.

(A) The number of publications on human neural stem cells from 2013 to 2018. (B) The number of publications from the top 15 countries. (C) The number of publications in the top 15 journals.



Figure 2 Biclustering analysis of 78 high-frequency main Medical Subject Heading (MeSH) terms/subheadings and articles on human neural stem cells from 2013 to 2018.

(A) Mountain visualization of biclustering of 78 high-frequency main MeSH terms/subheadings and articles. (B) Matrix visualization of biclustering of 78 high-frequency main MeSH terms/subheadings and PubMed Unique Identifiers of the articles. Wei WJ, Shi B, Guan X, Ma JY, Wang YC, Liu J (2019) Mapping theme trends and knowledge structures for human neural stem cells: a quantitative and co-word biclustering analysis for the 2013–2018 period. Neural Regen Res 14(10):1823-1832. doi:10.4103/1673-5374.257535



**Figure 3 Strategic diagrams for human neural stem cell (hNSC)-related research.** (A) Meanings of the four quadrants in the strategic diagram. (B) Strategic diagram of hN-SCs from 2013 to 2018. The size of a signal node represents the number of major Medical Subject Heading (MeSH) terms/subheadings involved in each cluster.

| Table 1 Cluster analysis of high-frequency major |
|--------------------------------------------------|
| Medical Subject Heading (MeSH) terms/subheadings |
| of human neural stem cells                       |

| Cluster | Number of<br>MeSH terms*                                      | Cluster analysis                                                                                                                                                                                        |
|---------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | 31,75,65,54,44,<br>78,11,40,33,22,<br>57,53,48,64             | <ol> <li>Neural stem cell pathology<br/>and virology</li> <li>Brain neoplasm metabolism,<br/>pathology and genetics</li> <li>Neoplastic stem cell<br/>metabolism and pathology</li> </ol>               |
| 1       | 47,73,25,6,9,1,<br>30,28,10,49,55,<br>38,51,74,31             | <ol> <li>Neural stem cell cytology</li> <li>Astrocyte, oligodendroglia,<br/>neuron, neural crest and spinal<br/>cord cytology</li> <li>Cell culture techniques</li> </ol>                               |
| 2       | 27,18,60,56,63,<br>4,3,14,36,62,58,<br>23,21,67,68            | <ol> <li>Neural stem cell physiology</li> <li>Cell movement and<br/>proliferation physiology</li> <li>Brain, neuron, astrocyte and<br/>neurogenesis physiology</li> </ol>                               |
| 3       | 41,76,72,52,66,<br>8,5,34,59,26,17,<br>43,16,7,39,50,71       | <ol> <li>Neural stem cells in<br/>Parkinson, stroke and spinal<br/>cord injuries therapy</li> <li>Neural stem cell proliferation<br/>and differentiation by drug</li> <li>Tissue engineering</li> </ol> |
| 4       | 32,29,13,15,20,<br>61,45,2,12,24,<br>35,70,77,37,42,<br>19,69 | <ol> <li>Neural stem cell metabolism</li> <li>MicroRNA in neurogenesis<br/>and cell differentiation genetics</li> <li>Signal transduction and<br/>transcription factors</li> </ol>                      |

\*Represents the number of high-frequency major MeSH terms/subheadings shown in Additional Table 1.



# Figure 4 Social network structure map for main Medical Subject Heading (MeSH) terms/subheadings for human neural stem cell-related publications.

Social network analysis for 78 main MeSH terms/subheadings from 2013 to 2018. Nodes represent MeSH terms/subheading words, while node size and location indicate the centrality of a word in the social network analysis map. Links represent the connection between two words, and the number or thickness of the lines indicates the co-occurrence frequency of the main MeSH terms/subheading pairs.

#### Table 2 Individual centrality of human neural stem cells

| Rank | Major MeSH terms/MeSH subheadings            | Degree | Betweenness | Closeness | Rank | Major MeSH terms/MeSH subheadings                  | Degree | Betweenness | Closeness |
|------|----------------------------------------------|--------|-------------|-----------|------|----------------------------------------------------|--------|-------------|-----------|
| 1    | Neural Stem Cells/cytology                   | 1110   | 194.785     | 73        | 40   | Neoplastic Stem Cells/pathology                    | 79     | 11.251      | 49.333    |
| 2    | Neural Stem Cells/metabolism                 | 842    | 256.367     | 76        | 41   | Tissue Engineering/methods                         | 58     | 11.843      | 51.5      |
| 3    | Neural Stem Cells/physiology                 | 452    | 134.478     | 69.5      | 42   | Oligodendroglia/metabolism                         | 61     | 17.151      | 53        |
| 4    | Neurogenesis/physiology                      | 599    | 129.811     | 70        | 43   | Cell Proliferation/drug effects                    | 50     | 4.010       | 46        |
| 5    | Neural Stem Cells/transplantation            | 323    | 60.345      | 61.5      | 44   | Brain/pathology                                    | 54     | 15.211      | 52        |
| 6    | Cell Differentiation/physiology              | 520    | 142.634     | 70.5      | 45   | Embryonic Stem Cells/metabolism                    | 53     | 3.258       | 47.5      |
| 7    | Neural Stem Cells/drug effects               | 174    | 23.598      | 55        | 46   | Neural Crest/cytology                              | 45     | 1.530       | 45.5      |
| 8    | Stem Cell Transplantation/methods            | 277    | 50.231      | 60.5      | 47   | Astrocytes/cytology                                | 80     | 24.205      | 53.5      |
| 9    | Neurons / cytology                           | 305    | 61.123      | 63.5      | 48   | Neoplastic Stem Cells/metabolism                   | 57     | 2.554       | 45.833    |
| 10   | Induced Pluripotent Stem Cells/cytology      | 268    | 38.266      | 60        | 49   | Cellular Reprogramming                             | 56     | 15.658      | 52        |
| 11   | Neural Stem Cells/pathology                  | 167    | 62.299      | 59.5      | 50   | Neuroprotective Agents/pharmacology                | 35     | 5.436       | 47.5      |
| 12   | Neurons/metabolism                           | 190    | 29.496      | 57        | 51   | Oligodendroglia/cytology                           | 65     | 6.441       | 50        |
| 13   | Cell Differentiation/genetics                | 140    | 34.307      | 56        | 52   | Cell and Tissue Based Therapy/methods              | 52     | 3.571       | 47        |
| 14   | Neurons/physiology                           | 117    | 21.996      | 54.5      | 53   | Brain Neoplasms/genetics                           | 43     | 1.630       | 44.5      |
| 15   | Neurogenesis/genetics                        | 116    | 32.762      | 57        | 54   | Models, Biological                                 | 50     | 14.189      | 52        |
| 16   | Neurogenesis/drug effects                    | 81     | 13.072      | 51        | 55   | Cell Lineage                                       | 58     | 18.759      | 52.5      |
| 17   | Cell Differentiation/drug effects            | 123    | 14.689      | 52.5      | 56   | Brain/physiology                                   | 52     | 2.727       | 46        |
| 18   | Cell Proliferation/physiology                | 127    | 19.831      | 54        | 57   | Glioblastoma/genetics                              | 38     | 1.233       | 45        |
| 19   | Signal Transduction/physiology               | 116    | 37.024      | 57.5      | 58   | Hippocampus/cytology                               | 54     | 3.885       | 47.5      |
| 20   | Gene Expression Regulation,<br>Developmental | 110    | 16.644      | 54.5      | 59   | Induced Pluripotent Stem Cells/<br>transplantation | 45     | 1.570       | 45.5      |
| 21   | Brain/metabolism                             | 86     | 15.971      | 53        | 60   | Stem Cell Niche/physiology                         | 51     | 4.660       | 47.5      |
| 22   | Glioblastoma/pathology                       | 120    | 26.545      | 54.5      | 61   | Epigenesis, Genetic                                | 54     | 13.749      | 53        |
| 23   | Brain/cytology                               | 132    | 30.207      | 57.5      | 62   | Astrocytes/physiology                              | 39     | 4.312       | 46.5      |
| 24   | Induced Pluripotent Stem Cells/metabolism    | 102    | 16.827      | 53.5      | 63   | Cerebral Cortex/embryology                         | 36     | 0.593       | 44.5      |
| 25   | Pluripotent Stem Cells/cytology              | 120    | 18.106      | 54        | 64   | Brain Neoplasms/metabolism                         | 47     | 7.712       | 48        |
| 26   | Spinal Cord Injuries/therapy                 | 90     | 8.669       | 49.5      | 65   | Alzheimer Disease/pathology                        | 44     | 8.162       | 49        |
| 27   | Cell Movement/physiology                     | 103    | 12.382      | 52        | 66   | Parkinson Disease/therapy                          | 42     | 1.323       | 45.5      |
| 28   | Cell Culture Techniques/methods              | 124    | 26.299      | 55        | 67   | Brain/embryology                                   | 42     | 4.015       | 48        |
| 29   | MicroRNAs/genetics                           | 85     | 15.685      | 51.5      | 68   | Brain/growth & development                         | 43     | 2.273       | 47.5      |
| 30   | Embryonic Stem Cells/cytology                | 92     | 22.193      | 55        | 69   | Receptors, Notch/metabolism                        | 48     | 5.737       | 48        |
| 31   | Neural Stem Cells/virology                   | 50     | 5.374       | 49        | 70   | Hippocampus/metabolism                             | 41     | 4.590       | 47        |
| 32   | MicroRNAs/metabolism                         | 80     | 24.959      | 55.5      | 71   | Signal Transduction/drug effects                   | 37     | 6.085       | 47.5      |
| 33   | Brain Neoplasms/pathology                    | 104    | 16.268      | 52        | 72   | Brain Neoplasms/therapy                            | 28     | 1.492       | 44        |
| 34   | Stroke/therapy                               | 70     | 6.512       | 48.5      | 73   | Spinal Cord/cytology                               | 51     | 9.501       | 50.5      |
| 35   | Nerve Tissue Proteins/metabolism             | 65     | 27.107      | 55        | 74   | Human Embryonic Stem Cells/cytology                | 48     | 6.880       | 50        |
| 36   | Induced Pluripotent Stem Cells/physiology    | 61     | 13.069      | 51.5      | 75   | Zika Virus/physiology                              | 29     | 0.772       | 44        |
| 37   | Transcription Factors/metabolism             | 63     | 11.35       | 52        | 76   | Tissue Scaffolds/chemistry                         | 38     | 1.342       | 46        |
| 38   | Mesenchymal Stem Cells/cytology              | 61     | 3.810       | 47        | 77   | Adult Stem Cells/metabolism                        | 33     | 2.372       | 45        |
| 39   | Neurons/drug effects                         | 45     | 2.520       | 45.667    | 78   | Induced Pluripotent Stem Cells/pathology           | 28     | 2.711       | 45.5      |

Table 3 Descriptive statistics for centrality measures for human neural stem cells

| Centralization | Mean ± SD       | Min    | Max      | Network<br>centralization (%) |
|----------------|-----------------|--------|----------|-------------------------------|
| Degree         | 124.026±174.513 | 28.000 | 1110.000 | 12.472                        |
| Betweenness    | 24.769±42.672   | 0.593  | 256.367  | 8.020                         |
| Closeness      | 52.248±6.825    | 44.000 | 76.000   | 62.910                        |

gy" had the highest degree of centrality (1,110; **Additional Table 1**).

The top two highest betweenness centralities were 256.367 and 194.785 (**Table 2**), corresponding to "Neural Stem Cells/ metabolism" and "Neural Stem Cells/cytology", respectively. They played the most significant mediating roles in the network. Furthermore, since both terms had the highest closeness values (76 and 73, respectively), they were tightly connected with other nodes. In addition to these two main MeSH terms/subheadings, "Cell Differentiation/physiology", "Neural Stem Cells/physiology", "Neurogenesis/physiology", "Neural Stem Cells/pathology", "Neurons/cytology", as well as "Neural Stem Cells/transplantation" also had high betweenness centralities, indicative of their prominent mediating roles in the network. The mean betweenness centrality was (24.769 ± 42.672; Table 3). Furthermore, 11 new nodes (magenta box in Figure 4) at the network edge, including "Stroke/therapy", "Parkinson Disease/therapy", "Neural Crest/cytology", "MicroRNAs/genetics", "Neuroprotective Agents/pharmacology", "Glioblastoma/genetics", "Brain Neoplasms/genetics", "Epigenesis/genetics", "Receptors, Notch/ metabolism", "Embryonic Stem Cells/metabolism" and "Zika Virus/physiology" were emerging hot topics of hNSC-related studies from 2013 to 2018 (Additional Table 2).

# Discussion

NSCs in the central nervous system are capable of self-renewal and multi-potential differentiation. In recent years, NSC therapy has been used to treat many central nervous system diseases, aiming to inhibit or to reverse central nervous system damage. NSCs have been used in clinical practice mainly for direct cell transplantation therapy for central nervous system diseases, for gene delivery for gene therapy, and for modulating growth factors and cytokines for inducing self-differentiation for self-repair. These therapies have been used to treat Parkinson's disease, cerebrovascular disease, brain tumor, spinal cord injury and Alzheimer's disease (Boese et al., 2018; Ludwig et al., 2018; Mooney et al., 2018). Along with the increasing awareness of the potential clinical applications of hNSCs, hNSC-related studies have increased dramatically over the last 6 years, requiring a systematic analysis of knowledge structures and theme trends.

The PubMed database, one of the most important literature databases for the natural sciences, comprises more than 28,000,000 biomedical literature citations from journals in life science, MEDLINE and books online. In the present study, 2742 articles related to hNSCs were retrieved from the PubMed database, and the knowledge structure and progression in this field was investigated using biclustering analysis, co-word analysis, social network analysis and strategic diagram plotting. It is the first time that this method has been used to analyze the research trends of hNSCs in this 6-year period.

The United States ranked first in the number of publications on hNSC-related studies. Among the top 15 journals, it is notable that *PLoS One* has been far ahead, with 130 papers. In addition, *Stem Cell Reports* and *Scientific Reports* were the other major journals publishing hNSCs-related papers. Thus, major future developments in the field of hNSCs will likely be published by these three journals.

To methodically analyze the basic knowledge of hNSCs, we integrated social network analysis with co-word analysis. From co-word analysis, closely-related MeSH terms were grouped into clusters.

Cluster 1 is mainly related to the cytology of hNSCs (including astrocyte, oligodendroglia, neuron, neural crest and spinal cord cytology, and cell culture techniques). NSCs are generated through asymmetric division into neural precursor cells, followed by the same type of division into new functional neurons. The processes occur both in the adult central nervous system and during embryonic neural development. After isolation from primary tissues, NSCs can be cultured under nonadherent conditions in vitro, giving clonally-derived colonies (neurospheres). These cells can also be cultured as two-dimensional adherent monolayers (Adams and Morshead, 2018). NSCs can be differentiated from induced pluripotent stem cells from neurological patients as well as healthy individuals by treatment with small molecules, specific transcription factors, plasmids, microRNAs and other morphogens (Iván Velasco et al., 2014; Leonardo D'Aiuto et al., 2014). Moreover, NSCs can be produced from embryonic stem cells originating from blastocysts by treatment with extracellular matrix proteins, morphogens and other differentiation factors (Bergström and Forsberg-Nilsson, 2012). Human NSCs can be expanded in defined media containing growth factors such as basic fibroblast growth factor and epidermal growth factor, and thereafter cultured as free-floating neurospheres or monolayers (Villa et al., 2000). Li et al. (2016) reported that transduction with L-Myc (LM-NSC008) maintains the self-renewal capacity and multipotency of primary hNSCs. The immortalization with Myc was typified by long-term expansion and karyotype stability.

Cluster 2 is mainly related with the biology of hNSCs (including cell movement and proliferation, as well as brain, neuron, astrocyte and neurogenesis). In the adult mammalian brain, NSCs are located in the hippocampal subgranular zone, lateral ventricular subgranular zone and central canal of the spinal cord. These cells divide and generate new neurons in a process referred to as adult neurogenesis (Yuan et al., 2015). Although hippocampal neurogenesis is sharply attenuated with age (Sorrells et al., 2018), accumulating evidence shows that neurogenesis persists in the striatum (Ernst et al., 2018) and hippocampus (Spalding et al., 2013; Boldrini et al., 2018) in humans over their lifetime. Though neurogenesis takes place at a very low rate in healthy adult mammals, it can be stimulated by central nervous system injury (Yu et al., 2016). NSCs and neurogenic niches have been reported to exist in the central nervous system of adult mammals. Given their critical roles in health and disease, neurogenesis and gliogenesis have been studied extensively. The niche microenvironment regulates NSC survival, proliferation and differentiation under healthy and disease conditions (Pourabdolhossein et al., 2017). For example, NSC proliferation is enhanced by administration of exogenous growth factors such as ciliary neurotrophic factor, hepatocyte growth factor and epidermal growth factor (Ramírez-Castillejo et al., 2006). Clusters 1 and 2 are located in Quadrant I, and are therefore hot research topics that are well developed and centralized.

Cluster 0 is mainly associated with the pathology of NSCs and brain tumors (including brain neoplasm metabolism, pathology and genetic, neoplastic stem cell metabolism and pathology, and Zika virus biology). The stem cell-like cells in brain tumors have been identified and isolated in vitro, although whether these behaviors are associated with their in vivo functions remains unclear (Galli et al., 2004; Singh et al., 2004). As tumor-tropic cells, NSCs can rapidly penetrate normal organs and target metastatic and invasive tumor foci, and reach brain tumors after traversing the blood-brain barrier (Aboody et al., 2013). A first-in-human pilot safety/ feasibility study of NSCs, initiated in 2010 (NCT01172964), showed that NSCs can migrate to distant tumors sites and are non-tumorigenic, thereby demonstrating the safety and ability of NSCs to target tumor foci in the brain for localized chemotherapies (Portnow et al., 2017). Clearly, every NSC source (pool or clone) must be tested for functional and genetic stabilities with increasing passage and time, together with tumor tropism, before clinical use. Notably, the allogeneic clonal HB1.F3.CD NSC line, which is chromosomally stable, has well-documented non-tumorigenicity (Mooney et al., 2018). Now, effective methodologies are needed to image the biodistribution of NSCs in patients. Bhagat et al. (2018) demonstrated that expression of the Zika virus envelope (E) protein leads to the accumulation of hNSCs in the G0/G1 phase of the cell cycle, thereby reducing the brain cell pool and causing microcephaly.

Cluster 3 is mainly related to the clinical applications of hNSCs (including NSCs in Parkinson's, stroke and spinal cord injure therapy, tissue engineering, and NSC proliferation and differentiation using drugs). The aim of NSC-related studies is to develop medical interventions and therapeutic strategies to recover the function and structure of the injured nervous system. As shown by pre-clinical proof-ofconcept studies, NSC-based therapies provide protection against insults (Umeda et al., 2016), and can be used for neuronal replacement (Begum et al., 2015), the production of antibodies (Kanojia et al., 2015) and the targeted delivery of therapeutic agents (Aboody et al., 2013), including prodrug-activating enzymes (Metz et al., 2013). ReNeuron has developed an hNSC-based therapy for post-stroke chronic disability on the basis of early clinical studies (clinicaltrials. gov NCT02117635). In addition, the CTX0E03 cell line from ReNeuron has been assessed in a single-center first-inhuman trial of patients with moderate or severe disability 6 months to 5 years after ischemic stroke. The study revealed therapeutic potential, without safety concerns (Kalladka et al., 2016). At present, a Phase II multi-center trial of cases of upper limb disability 3–12 months after stroke is ongoing in the United Kingdom (clinicaltrials.gov NCT02117635). These studies have helped clarify the functional role of NSCs under normal and pathological conditions, as well as the challenges to their use in neural repair.

Clusters 0 and 3 in Quadrant III are existing hot topics that are undeveloped and peripheral, requiring further indepth studies.

Cluster 4 is mainly linked to the metabolism and signaling transduction pathways of NSCs (including microRNAs in neurogenesis and cell differentiation, signal transduction and transcription factors). NSCs may integrate various homeostatic signals to modulate cellular biology on multiple levels to produce an optimal metabolic response (Knobloch and Jessberger, 2017; Ferreira et al., 2018). During neuronal differentiation, various signaling effectors, including Notch, Sonic hedgehog, bone morphogenetic proteins and Wnt, together with transcription factors such as Sox2, Nanog and Oct4, participate in regulating the pluripotentiality of NSCs (Gkikas et al., 2017; Navarro Quiroz et al., 2018). To date, over 2500 human miRNAs have been identified, and most are expressed in the brain (Shao et al., 2010). The modulating effects of microRNAs on the activities and characteristics of NSCs have been extensively studied. For example, miR-410 (Tsan et al., 2016), miR-9 (Radhakrishnan et al., 2016) and let-7a (Song et al., 2016) have been shown to be involved in NSC differentiation, and miR-184 and miR-134 have been found to participate in progenitor maintenance and the proliferation of neurons (Bian et al., 2013). Furthermore, miR-338-3p (Howe et al., 2017) and the miR-200 family (Beclin et al., 2016) are involved in neuronal maturation and neurogenesis. Connecting miRNAs with specific functions during neural development in humans will help clarify pathological and physiological processes in the central nervous system. In this study, this cluster in Quadrant IV suggests that these current hot topics are undeveloped and centralized.

Here, social network analysis showed that the top six high-frequency MeSH terms also had high degrees of centrality. MeSH terms such as "Neural Stem Cells/metabolism" had maximum direct links to other components and promoted the development of hNSC-related research. For betweenness centrality, "Neural Stem Cells/cytology", "Neural Stem Cells/metabolism", "Cell Differentiation/physiology", "Neural Stem Cells/physiology", "Neurons/cytology", "Neurogenesis/physiology", "Stem Cell Transplantation/methods" and "Induced Pluripotent Stem Cells/cytology" were located at the center of the entire network, indicating that the dominant components were most capable of regulating the co-occurrence of others. Therapy and genetics-related hot topics were along the network edge. Thus, while the cytology and physiology of hNSCs have been widely studied, NSC-related therapeutic and genetic topics are emerging research fields.

The current study is the first to comprehensively analyze hNSC-related publications using bibliometrics. Our results show that hNSCs are still in the primary development stages but have great potential for future applications. Forthcoming studies should focus on the emerging hot spots and undeveloped topics.

There are a few limitations to the present study. First, we only included journal articles, and excluded reviews and other types of literature. Because reviews were excluded, some hot research topics may be missing. Second, the articles and journals were all in English, and therefore, the exclusion of non-English papers may have affected the conclusions. Third, the co-word analysis was performed on the basis of high-frequency MeSH terms, which may have affected the results of clustering analysis, and therefore, some emerging topics may have been missed. Thus, in future studies, analyses combining new emerging topics and multiple databases should be conducted.

In summary, biclustering analysis, social network analysis and strategic diagram were performed on the basis of coword analysis of high-frequency MeSH terms for hNSCs. Undeveloped themes, such as the application of NSCs, tissue engineering, signal transduction, microRNA, NSC pathology and virology, can be considered attractive for future studies. Furthermore, cytology, physiology, metabolism and cell signaling are core themes that have experienced sustained development from 2013 to 2018. NSC therapy for stroke and Parkinson's disease, the genetics of microRNAs, brain neoplasms and epigenesis, as well as neuroprotective agents, neural crest, embryonic stem cells, Zika virus and Notch receptor are emerging hot spots. Our findings should help provide guidance to scientists and clinicians planning hNSC-related research projects.

**Author contributions:** *Study conception, design and data analysis: WJW and BS; paper writing: WJW; language polishing, paper review and editing: JYM, XG, YCW, JL. All authors read and approved the final version of the paper.* 

**Conflicts of interest:** The authors declare that there are no conflicts of interest associated with this manuscript.

**Financial support:** This study was supported by the National Natural Science Foundation of China, No. 81471308 (to JL); the Stem Cell Clinical Research Project in China, No. CMR-20161129-1003 (to JL); the Innovation Technology Funding of Dalian in China, No. 2018J11CY025 (to JL). The funding sources had no role in manuscript conception and design, data analysis or interpretation, paper writing or deciding to submit this paper for publication.

**Copyright license agreement:** The Copyright License Agreement has been signed by all authors before publication.

**Data sharing statement:** Datasets analyzed during the current study are available from the corresponding author on reasonable request.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

**Open access statement:** This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

**Open peer reviewer:** L. Buzanska, Mossakowski Medical Research Centre, Poland.

Additional files:

Additional file 1: Open peer review report 1.

**Additional Table 1:** High-frequency MeSH terms/MeSH subheadings from the included articles on hNSCs.

Additional Table 2: Sub-categories of emerging hot topics.

#### References

- Aboody KS, Najbauer J, Metz MZ, D'Apuzzo M, Gutova M, Annala AJ, Synold TW, Couture LA, Blanchard S, Moats RA, Garcia E, Aramburo S, Valenzuela VV, Frank RT, Barish ME, Brown CE, Kim SU, Badie B, Portnow J (2013) Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med 5:184ra59.
- Adams KV, Morshead CM (2018) Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 170:2-36.
- Beclin C, Follert P, Stappers E, Barral S, Coré N, de Chevigny A, Magnone V, Lebrigand K, Bissels U, Huylebroeck D, Bosio A, Barbry P, Seuntjens E, Cremer H (2016) miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Sci Rep 6:35729.
- Begum AN, Guoynes C, Cho J, Hao J, Lutfy K, Hong Y (2015) Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. Stem Cell Res 15:731-741.
- Bergström T, Forsberg-Nilsson K (2012) Neural stem cells: brain building blocks and beyond. Ups J Med Sci 117:132-142.
- Bhagat R, Prajapati B, Narwal S, Agnihotri N, Adlakha YK, Sen J, Mani S, Seth P (2018) Zika virus E protein alters the properties of human fetal neural stem cells by modulating microRNA circuitry. Cell Death Differ 25:1837-1854.
- Bian S, Xu T-L, Sun T (2013) Tuning the cell fate of neurons and glia by microRNAs. Curr Opin Neurobiol 23:928-934.
- Boese AC, Le QE, Pham D, Hamblin MH, Lee JP (2018) Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther 9:154.
- Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22:589-599.
- Callon M, Courtial J, Laville F (1991) Co-word analysis as a tool for describing the network of interactions between basic and technological research: the case of polymer chemistry. Scientometrics 22:155-205.

- D'Aiuto L, Zhi Y, Kumar Das D, Wilcox MR, ohnson JW, McClain L, MacDonald ML, Di Maio R, Schurdak ME, Piazza P, Viggiano L, Sweet R, Kinchington PR, Bhattacharjee AG, Yolken R, Nimgaonkar VL (2014) Large-scale generation of human ipsc-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 10:365-377.
- Donohue, JC (1974) Understanding scientific literature: a bibliometric approach (pp. 101). Cambridge: The Massachusetts Institute of Technology Press, MA, USA.
- Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.
- Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014) Neurogenesis in the striatum of the adult human brain. Cell 156:1072-1083.

Ferreira AC, Sousa N, Bessa JM, Sousa JC, Marques F (2018) Metabolism and adult neurogenesis: Towards an understanding of the role of lipocalin-2 and iron-related oxidative stress. Neurosci Biobehav Rev 95:73-84.

- Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011-7021.
- Gkikas D, Tsampoula M, Politis PK (2017) Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 74:4097-4120.
- Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67:123-129.
- Hong Y, Yao Q, Yang Y, Feng JJ, Wu SD, Ji WX, Yao L, Liu ZY (2014) Knowledge structure and theme trends analysis on general practitioner research: a coword perspective. BMC Fam Pract 17:10.
- Howe JR, Li ES, Streeter SE, Rahme GJ, Chipumuro E, Russo GB, Litzky JF, Hills LB, Rodgers KR, Skelton PD, Luikart BW (2017) MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation. PLoS One 12:e0177661.
- Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, McConnachie A, Santosh C, Bath PM, Dunn L, Muir KW (2016) Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet 388:787-796.
- Kanojia D, Balyasnikova IV, Morshed RA, Frank RT, Yu D, Zhang L, Spencer DA, Kim JW, Han Y, Yu D, Ahmed AU, Aboody KS, Lesniak MS (2015) Neural stem cells secreting anti-HER2 antibody improve survival in a preclinical model of HER2 overexpressing breast cancer brain metastases. Stem Cells 33:2985-2994.
- Knobloch M, Jessberger S. (2017) Metabolism and neurogenesis. Curr Opin Neurobiol 42:45-52.
- Li F, Li M, Guan P, Ma S, Cui L (2015) Mapping publication trends and identifying hot spots of research on Internet health information seeking behavior: a quantitative and co-word biclustering analysis. J Med Int Res 17:e81.
- Li HY, Cui L, Cui M (2009) Hot topics in Chinese herbal drugs research documented in PubMed/MEDLINE by authors inside China and outside of China in the past 10 years: based on co-word cluster analysis. J Altern Complement Med 15:779-785.
- Li Z, Oganesyan D, Mooney R, Rong X, Christensen MJ, Shahmanyan D, Perrigue PM, Benetatos J, Tsaturyan L, Aramburo S, Annala AJ, Lu Y, Najbauer J, Wu X, Barish ME, Brody DL, Aboody KS, Gutova M (2016) L-MYC expression maintains self-renewal and prolongs multipotency of primary human neural stem cells. Stem Cell Rep 7:483-495.
- Liu Y, Tan B, Wang L, Long Z, Li Y, Liao W, Wu Y (2015) Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury. Int J Clin Exp Pathol 8:3835-3842.
- Ludwig PÊ, Thankam FG, Patil AA, Chamczuk AJ, Agrawal DK (2018) Brain injury and neural stem cells. Neural Regen Res 13:7-18.
- McKay R (1997) Stem cells in the central nervous system. Science 276:66-71.
- Metz MZ, Gutova M, Lacey SF, Abramyants Y, Vo T, Tirughana R, Ghoda LY, Barish ME, Brown CE, Najbauer J, Potter PM, Portnow J, Synold TW, Aboody KS (2013) Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use. Stem Cells Transl Med 2:983-992.

- Mooney R, Hammad M, Batalla-Covello J, Abdul Majid A, Aboody KS (2018) Concise review: neural stem cell-mediated targeted cancer therapies. Stem Cells Trans Med 7:740-747.
- Navarro Quiroz E, Navarro Quiroz R, Ahmad M, Gomez Escorcia L, Villarreal JL, Fernandez Ponce C, Aroca Martinez G (2018) Cell signaling in neuronal stem cells. Cell 7:E75.
- Portnow J, Synold TW, Badie B, Tirughana R, Lacey SF, D'Apuzzo M, Metz MZ, Najbauer J, Bedell V, Vo T, Gutova M, Frankel P, Chen M, Aboody KS (2017) Neural stem cell-based anticancer gene therapy: a first-in-human study in recurrent high grade glioma patients. Clin Cancer Res 23:2951-2960.
- Pourabdolhossein F, Gil-Perotín S, Garcia-Belda P, Dauphin A, Mozafari S, Tepavcevic V, Manuel Garcia Verdugo J, Baron-Van Evercooren A (2017) Inflammatory demyelination induces ependymal modifications concomitant to activation of adult (SVZ) stem cell proliferation. Glia 65:756-772.
- Radhakrishnan B, Alwin Prem Anand A (2016) Role of miRNA-9 in brain development. J Exp Neurosci 10:101-120.
- Ramírez-Castillejo C, Sánchez-Sánchez F, Andreu-Agulló C, Ferrón SR, Aroca-Aguilar JD, Sánchez P, Mira H, Escribano J, Fariñas I (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9:331.
- Rasmussen M, Karypis G (2004) gGluto: an interactive clustering, visualization, and analysis system. CSE/UMN Technical Report TR# 04-021.
- Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707-1710.
- Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784-1793.
- Shao NY, Hu HY, Yan Z, Xu Y, Hu H, Menzel C, Li N, Chen W, Khaitovich P (2010) Comprehensive survey of human brain microRNA by deep sequencing. BMC Genomics 11:409.
- Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004). Identification of human brain tumour initiating cells. Nature 432:396-401.
- Song J, Oh Y, Kim JY, Cho KJ, Lee JE (2016) Suppression of microRNA let-7a expression by agmatine regulates neural stem cell differentiation. Yonsei Med J 57:1461-1467.
- Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A(2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377-381.
- Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219-1227.

- Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T, Caldwell MA (1998) A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 85:141-152.
- Tsan YC, Morell MH, O'Shea KS (2016) miR-410 controls adult SVZ neurogenesis by targeting neurogenic genes. Stem Cell Res 17:238-247.
- Umeda K, Saida S, Yamaguchi H, Okamoto S, Okamoto T, Kato I, Hiramatsu H, Imai T, Kodaira T, Heike T, Adachi S, Watanabe KI (2016) Central nervous system recurrence of desmoplastic small round cell tumor following aggressive multimodal therapy: a case report. Oncol Lett 11:856-860.
- Velasco I, Salazar P, Giorgetti A, Ramos-Mejía V, Castaño J, Romero-Moya D, Menendez P (2014) Concise review: generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion. Stem Cells 32:2811-2817.
- Vescovi AL, Gritti A, Galli R, Parati EA (1999) Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma 16:689-693.
- Viedma-Del-Jesus MI, Perakakis P, Muñoz MÁ, López-Herrera AG, Vila J (2011) Sketching the first 45 years of the journal Psychophysiology (1964-2008): a co-word-based analysis. Psychophysiology 48:1029-1036.
- Villa A, Snyder EY, Vescovi A, Martínez-Serrano A. (2000) Establishment and properties of a growth factordependent, perpetual neural stem cell line from the human CNS. Exp Neurol 161:67-84.
- Wang J, Zhao QJ, Hei B, Wang ZT, Sun YK, Wang T, Cui SJ, Wang PX (2018) Culture and identification of adult autologous neural stem cells from abandoned brain tissues during surgery in patients with intracranial aneurysm. Zhongguo Zuzhi Gongcheng Yanjiu 22:3381-3386.
- Yao Q, Chen K, Yao L, Lyu PH, Yang TA, Luo F, Chen SQ, He LY, Liu ZY (2014) Scientometric trends and knowledge maps of global health systems research. Health Res Policy Syst 12:26.
- Yin Z, Dong Y, Zhang J, Wang L (2012) Use of stem cell transplantation to treat epilepsy: a web of science-based literature analysis. Neural Regen Res 7:2624-2631.
- Yu TS, Washington PM, Kernie SG (2016) Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist 22:61-71.
- Zhang C, Yu Q, Fan Q, Duan Z (2013) Research collaboration in health management research communities. BMC Med Inform Decis Mak 13:52.
  - P-Reviewer: Buzanska L; C-Editor: Zhao M; S-Editors: Wang J, Li CH; L-Editors: Patel B, Haase R, Qiu Y, Song LP; T-Editor: Liu XL



Additional Table 1 High-frequency MeSH terms/MeSH subheadings from the included articles on human neural stem cells

| Rank | . Major MeSH terms/MeSH subheadings          | Frequency | Proportion of | Cumulative     |
|------|----------------------------------------------|-----------|---------------|----------------|
|      |                                              |           | frequency (%) | percentage (%) |
| 1    | Neural Stem Cells/cytology                   | 644       | 4.8744        | 4.8744         |
| 2    | Neural Stem Cells/metabolism                 | 551       | 4.1705        | 9.0448         |
| 3    | Neural Stem Cells/physiology                 | 351       | 2.6567        | 11.7015        |
| 4    | Neurogenesis/physiology                      | 336       | 2.5431        | 14.2446        |
| 5    | Neural Stem Cells/transplantation            | 259       | 1.9603        | 16.2050        |
| 6    | Cell Differentiation/physiology              | 226       | 1.7106        | 17.9155        |
| 7    | Neural Stem Cells/drug effects               | 177       | 1.3397        | 19.2552        |
| 8    | Stem Cell Transplantation/methods            | 163       | 1.2337        | 20.4889        |
| 9    | Neurons/cytology                             | 123       | 0.9310        | 21.4199        |
| 10   | Induced Pluripotent Stem Cells/cytology      | 122       | 0.9234        | 22.3433        |
| 11   | Neural Stem Cells/pathology                  | 98        | 0.7417        | 23.0851        |
| 12   | Neurons/metabolism                           | 90        | 0.6812        | 23.7663        |
| 13   | Cell Differentiation/genetics                | 67        | 0.5071        | 24.2734        |
| 14   | Neurons/physiology                           | 66        | 0.4995        | 24.7729        |
| 15   | Neurogenesis/genetics                        | 63        | 0.4768        | 25.2498        |
| 16   | Neurogenesis/drug effects                    | 62        | 0.4693        | 25.7190        |
| 17   | Cell Differentiation/drug effects            | 61        | 0.4617        | 26.1807        |
| 18   | Cell Proliferation/physiology                | 57        | 0.4314        | 26.6122        |
| 19   | Signal Transduction/physiology               | 57        | 0.4314        | 27.0436        |
| 20   | Gene Expression Regulation,<br>Developmental | 55        | 0.4163        | 27.4599        |
| 21   | Brain/metabolism                             | 54        | 0.4087        | 27.8686        |
| 22   | Glioblastoma/pathology                       | 54        | 0.4087        | 28.2773        |
| 23   | Brain/cytology                               | 52        | 0.3936        | 28.6709        |
| 24   | Induced Pluripotent Stem<br>Cells/metabolism | 52        | 0.3936        | 29.0645        |
| 25   | Pluripotent Stem Cells/cytology              | 52        | 0.3936        | 29.4581        |
| 26   | Spinal Cord Injuries/therapy                 | 51        | 0.3860        | 29.8441        |
| 27   | Cell Movement/physiology                     | 51        | 0.3860        | 30.2301        |
| 28   | Cell Culture Techniques/methods              | 49        | 0.3709        | 30.6010        |
| 29   | MicroRNAs/genetics                           | 45        | 0.3406        | 30.9416        |
| 30   | Embryonic Stem Cells/cytology                | 45        | 0.3406        | 31.2822        |
| 31   | Neural Stem Cells/virology                   | 44        | 0.3330        | 31.6152        |
| 32   | MicroRNAs/metabolism                         | 41        | 0.3103        | 31.9255        |
| 33   | Brain Neoplasms/pathology                    | 40        | 0.3028        | 32.2283        |
| 34   | Stroke/therapy                               | 39        | 0.2952        | 32.5235        |
| 35   | Nerve Tissue Proteins/metabolism             | 36        | 0.2725        | 32.7959        |
| 36   | Induced Pluripotent Stem<br>Cells/physiology | 35        | 0.2649        | 33.0609        |
| 37   | Transcription Factors/metabolism             | 33        | 0.2498        | 33.3106        |
| 38   | Mesenchymal Stem Cells/cytology              | 32        | 0.2422        | 33.5528        |

#### NEURAL REGENERATION RESERACH



| 39 | Neurons/drug effects                              | 32 | 0.2422 | 33.7950 |
|----|---------------------------------------------------|----|--------|---------|
| 40 | Neoplastic Stem Cells/pathology                   | 32 | 0.2422 | 34.0372 |
| 41 | Tissue Engineering/methods                        | 30 | 0.2271 | 34.2643 |
| 42 | Oligodendroglia/metabolism                        | 29 | 0.2195 | 34.4838 |
| 43 | Cell Proliferation/drug effects                   | 29 | 0.2195 | 34.7033 |
| 44 | Brain/pathology                                   | 29 | 0.2195 | 34.9228 |
| 45 | Embryonic Stem Cells/metabolism                   | 28 | 0.2119 | 35.1347 |
| 46 | Neural Crest/cytology                             | 27 | 0.2044 | 35.3391 |
| 47 | Astrocytes/cytology                               | 27 | 0.2044 | 35.5434 |
| 48 | Neoplastic Stem Cells/metabolism                  | 27 | 0.2044 | 35.7478 |
| 49 | Cellular Reprogramming                            | 26 | 0.1968 | 35.9446 |
| 50 | Neuroprotective Agents/pharmacology               | 26 | 0.1968 | 36.1414 |
| 51 | Oligodendroglia/cytology                          | 26 | 0.1968 | 36.3382 |
| 52 | Cell and Tissue Based Therapy/methods             | 25 | 0.1892 | 36.5274 |
| 53 | Brain Neoplasms/genetics                          | 25 | 0.1892 | 36.7166 |
| 54 | Models, Biological                                | 25 | 0.1892 | 36.9058 |
| 55 | Cell Lineage                                      | 25 | 0.1892 | 37.0951 |
| 56 | Brain/physiology                                  | 25 | 0.1892 | 37.2843 |
| 57 | Glioblastoma/genetics                             | 24 | 0.1817 | 37.4659 |
| 58 | Hippocampus/cytology                              | 24 | 0.1817 | 37.6476 |
| 59 | Induced Pluripotent Stem<br>Cells/transplantation | 24 | 0.1817 | 37.8292 |
| 60 | Stem Cell Niche/physiology                        | 23 | 0.1741 | 38.0033 |
| 61 | Epigenesis, Genetic                               | 23 | 0.1741 | 38.1774 |
| 62 | Astrocytes/physiology                             | 22 | 0.1665 | 38.3439 |
| 63 | Cerebral Cortex/embryology                        | 22 | 0.1665 | 38.5104 |
| 64 | Brain Neoplasms/metabolism                        | 22 | 0.1665 | 38.6770 |
| 65 | Alzheimer Disease/pathology                       | 22 | 0.1665 | 38.8435 |
| 66 | Parkinson Disease/therapy                         | 21 | 0.1589 | 39.0024 |
| 67 | Brain/embryology                                  | 21 | 0.1589 | 39.1614 |
| 68 | Brain/growth & development                        | 21 | 0.1589 | 39.3203 |
| 69 | Receptors, Notch/metabolism                       | 20 | 0.1514 | 39.4717 |
| 70 | Hippocampus/metabolism                            | 20 | 0.1514 | 39.6231 |
| 71 | Signal Transduction/drug effects                  | 20 | 0.1514 | 39.7744 |
| 72 | Brain Neoplasms/therapy                           | 20 | 0.1514 | 39.9258 |
| 73 | Spinal Cord/cytology                              | 20 | 0.1514 | 40.0772 |
| 74 | Human Embryonic Stem Cells/cytology               | 19 | 0.1438 | 40.2210 |
| 75 | Zika Virus/physiology                             | 19 | 0.1438 | 40.3648 |
| 76 | Tissue Scaffolds/chemistry                        | 19 | 0.1438 | 40.5086 |
| 77 | Adult Stem Cells/metabolism                       | 19 | 0.1438 | 40.6524 |
| 78 | Induced Pluripotent Stem<br>Cells/pathology       | 19 | 0.1438 | 40.7962 |



# Additional Table 2 Sub-categories of emerging hot topics

| No. | Emerging hot topics                 | Sub-categories | Characteristics            |
|-----|-------------------------------------|----------------|----------------------------|
| 1   | Zika Virus/physiology               | Cluster 0      | Peripheral and undeveloped |
| 2   | Neural Crest/cytology               | Cluster 1      | Central and developed      |
| 3   | Stroke/therapy                      | Cluster 3      | Peripheral and undeveloped |
| 4   | Parkinson Disease/therapy           | Cluster 3      | Peripheral and undeveloped |
| 5   | Neuroprotective Agents/pharmacology | Cluster 3      | Peripheral and undeveloped |
| 6   | MicroRNAs/genetics                  | Cluster 4      | Central and undeveloped    |
| 7   | Glioblastoma/ genetics              | Cluster 4      | Central and undeveloped    |
| 8   | Brain Neoplasms/ genetics           | Cluster 4      | Central and undeveloped    |
| 9   | Epigenesis/ genetics                | Cluster 4      | Central and undeveloped    |
| 10  | Receptors, Notch/metabolism         | Cluster 4      | Central and undeveloped    |
| 11  | Embryonic Stem Cells/ metabolism    | Cluster 4      | Central and undeveloped    |

