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The neural mechanism of skilledmovements, such as reaching, has been considered to differ from that of rhythmicmovement such
as locomotion. It is generally thought that skilled movements are consciously controlled by the brain, while rhythmic movements
are usually controlled autonomously by the spinal cord and brain stem. However, several studies in recent decades have suggested
that neural networks in the spinal cord may also be involved in the generation of skilled movements. Moreover, a recent study
revealed that neural activities in the motor cortex exhibit rhythmic oscillations corresponding to movement frequency during
reaching movements as rhythmic movements. However, whether the oscillations are generated in the spinal cord or the cortical
circuit in the motor cortex causes the oscillations is unclear. If the spinal cord is involved in the skilled movements, then similar
rhythmic oscillations with time delays should be found in macroscopic neural activity. We measured whole-brain MEG signals
during reaching. The MEG signals were analyzed using a dynamical analysis method. We found that rhythmic oscillations with
time delays occur in all subjects during reaching movements. The results suggest that the corticospinal system is involved in the
generation and control of the skilled movements as rhythmic movements.

1. Introduction

The neural mechanism of skilled movements has been
considered to differ from that of rhythmic movement [1].
Skilled movements, such as reaching and grasping, are non-
periodic and are consciously controlled by the brain, while
rhythmic movements such as locomotion are repetitive and
stereotypical. Although rhythmic movements can be con-
trolled voluntarily, these movements are usually controlled
autonomously by the spinal cord and brain stem. A central
pattern generator (CPG) in the spinal cord produces periodic
oscillatory patterns [1, 2].The CPG has been considered to be
associated with the control of rhythmic movement [3–5].

However, it has been suggested that not only the cortical
circuit but also the neural networks in the spinal cord may be
involved in skilled movements [6–12]. Moreover, Rokni and
Sompolinsky demonstrated that various natural movements
can be generated by the linear summation of simple oscilla-
tory components [13]. When considering Fourier theory, it

is reasonable to presume that all of the complicated signals
can be approximated by the linear summation of sine and
cosine signals [14]. The suggestion of generating the various
movements from simple components also corresponds to
the perspective of dynamic systems, suggesting that most
neural activity in the motor cortex will be internal processes
that drive desired movements [15]. A recent study reported
an important phenomenon. The study, based on neural
dynamical analysis, demonstrated that rhythmic oscillations
corresponding to the movement frequency also occur during
skilled reaching movements [16] as rhythmic movements
[16–19]. This implies that diverse skilled movements can
be generated via CPG, similar to the neural mechanism of
rhythmic movements.

However, in the previous study, a very small motor area
in a monkey was measured at a microscopic level. Therefore,
whether the rhythmic oscillations are generated in CPG or
the cortical circuit in the motor cortex causes the oscilla-
tions is unclear. Moreover, the occurrence of the rhythmic
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Figure 1: Experiment paradigm. (a) Illustration of the virtual visual stimuli and MEG acquisition system. MEG signals and hand positions
were recorded simultaneously during reaching movements. Subjects were instructed to perform a center-out reaching task according to
stereographic images on a screen. The target sphere appeared randomly on one of the four corners (upper-left, upper-right, bottom-left, and
bottom-right). The red arrow illustrates the example of the reaching movements when the target is shown at the upper-left. (b) Drawings
showing the sequence of visual stimuli and instructed behaviors. At the beginning of the experiments, a sphere was shown on the center of
the screen. After 4 s, the target was presented for 1 s on one of the four corners. During this time, the subjects were instructed to shift their
index finger from the center to the target and return to the center according to the connecting line bymoving their right arm as fast as possible.
This sequence was repeated during the experiments.

oscillations corresponding to the movement frequency has
not been confirmed in humans.

Various pathways connect the cortex and spinal cord.
The direct corticomotoneuronal (CM) pathway connects
the motor cortex to spinal motoneurons. Indirect pathways
might connect other sensorimotor cortices, such as the
premotor (PM), supplementary (SMA), cingulate (CMA),
and primary somatosensory (S1) areas, to the spinal cord [20].
Therefore, if the rhythmic oscillations occur from the spinal
cord and are delivered to the broad motor-related cortex,
similar rhythmic oscillations with time delays should be
found in macroscopic neural activity (Figures 3(a) and 3(b)).
Here, we examine whether similar rhythmic oscillations with
time delays are exhibited in macroscopic neural activity
during reaching movements in humans. To investigate neu-
ral activity, we measured whole-brain MEG signals during
reaching movements. We analyze the MEG signals using
an analysis method, j principle component analysis (jPCA),
where j implies an imaginary part in a complex conjugate.The
method reveals the dynamical characteristics of the neural
activity [16]. If there are similar oscillatory patterns with time

delay, the projections of the oscillations onto the jPC planes
will be rotated. Therefore, we can easily investigate whether
similar rhythmic oscillations occur or not by examining the
projections. Moreover, the results will indicate whether the
rhythmic oscillations occur from spinal cords or not.

2. Materials and Methods

2.1. Experiment and Data Acquisition. Nine healthy subjects
(age: 19–37 years; five males and four females) participated in
the experiment. All subjects were right-handed (Edinburgh
Handedness Inventory scores were above 80). A 306-channel
whole-head MEG system (VectorView�, Elekta Neuromag
Oy, Helsinki, Finland) was used to measure neural activity
during reaching movements (Figure 1(a)). The MEG system
has 306 sensors grouped in triplets consisting of 2 planar gra-
diometers and 1 magnetometer distributed at 102 locations.
To record arm position, a three-axis accelerometer (KXM52,
Kionix, NY, USA)was attached to the index finger of the right
hand using the Velcro band. The accelerometer signals were
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recorded simultaneously with theMEG signals.The sampling
frequency of the MEG and the accelerometer signals was
600.615Hz.The experimentwas approved by the Institutional
Review Board of the Seoul National University Hospital (IRB
number 1105-095-363). Subjects were instructed to perform
a center-out reaching task according to stereographic images
on a screen. To minimize movement artifacts, a cushion was
placed under the subject’s elbow during the experiment.

At the beginning of the experiments, a sphere was shown
on the center of the screen for 4 s and a target sphere with
a stick connecting it to the center sphere was presented on
one corner for 1 s. The target sphere appeared randomly on
one of the four corners (upper-left, upper-right, bottom-
left, and bottom-right). During this time, the subjects were
instructed to shift their index finger from the center to the
target and return to the center according to the connecting
line bymoving their right arm as fast as possible (Figure 1(b)).
This sequence was repeated during the experiments. For
each subject, 60 trials were measured for each direction. The
distances from the center to the target were ∼20 cm. Because
we used stereographic images to represent the target, the
distance measurement was not accurate. The distances from
the center to the target were identical in all subjects. Because
the directions of the target were randomly presented, we
did not consider the variation of the intertrial interval for
habituation effects. Although the reaction times were slightly
different (see Section 3), there is no strange trial. Further
details are also described elsewhere [21, 22].

2.2. Signal Preprocessing. TheMEG equipment measures the
changes of a magnetic field. Therefore, it is influenced by
external signals, such as line noise, and biological artifacts,
such as cardiac and muscle activity. To reduce the noise in
the MEG signals, the spatiotemporal signal space separation
(tSSS) method was applied [23]. The tSSS separates external
interference signals of the brain by spatiotemporal methods
and eliminates the interference. All data processing was
performed using MATLAB 2008b (Mathworks, Natick, MA,
USA). We used 204 gradiometer signals among the 306
channels for data analysis because the characteristics of
the gradiometer and magnetometer sensors differ and the
signal-to-noise ratio (SNR) of the gradiometers is better
than that of the magnetometers [24]. The MEG signals were
band-pass filtered between 0.5 and 8Hz. The filtering band
was determined by time-frequency analysis based on our
previous study [21]. The MEG signals of the frequency band
represent the characteristics of reaching movements [21]. To
minimize artifacts, independent component analysis (ICA)
was applied, which is implemented in EEGLAB [25]. Artifacts
such as EOG were removed by eliminating the artifact
components. The signals were segmented from −1 to 2 s
after the cue onset. After the segmentation, the MEG signals
were averaged by trials. The averaged MEG signals were
downsampled to 50Hz. jPCAwas applied to the preprocessed
signals. The process of the analysis is explained in the next
section and in Figure 2.

2.3. Dynamical Analysis jPCA. Neural networks in the brain
consist of billions of neurons. Although the activities of

some neurons in the motor cortex will reflect movement
parameters, most neural activities will be an internal process
to generate the motor commands [15]. Therefore, the signals
are difficult to analyze because the patterns of neural activity
are various and complex. To investigate the neural process, a
dynamical analysis method, jPCA, was proposed [16]. jPCA
describes the dynamical relationship between current and
subsequent neural activities on a low-dimensional plane. It
represents the dynamic relationship with rotation according
to the time flow. If there are consistent phase-differences
between neural activities, the projections on the jPC planes
will be rotated; however, if there is no consistent change,
meaningless smallmovementswill be shown.Moreover, if the
sign of the phase-difference changes, the projections will be
rotated in the opposite direction. This reveals the change in
the dynamic relationship between the current and subsequent
neural activities. jPCA is an intuitive method of analyzing
the dynamic characteristics of neural activities. jPCA finds
informative planes and projects the neural data onto the
planes. The projected neural data represents the rotational
structure in the data.

The relationship between the current and next neural
activities can be expressed as follows:

̇

𝑋 = 𝑀𝑋, (1)

where 𝑋 is a matrix of size 𝑛 × 𝑐𝑡 describing the neural
activities. The preprocessed MEG signals as described in
Section 2.2 were applied to jPCA as 𝑋. 𝑛 is the number of
MEG channels (𝑛 = 204). 𝑐 is the number of conditions
(𝑐 = 4), and 𝑡 is the number of time points (𝑡 = 151). ̇𝑋 is
a derivative of 𝑋 and𝑀 represents the relationship between
the neural activity and its derivative.

jPCA applies the traditional principal component analy-
sis (PCA) to reduce the dimensionality of 𝑋 from 𝑛 × 𝑐𝑡 to
𝑘 × 𝑐𝑡 (𝑘 = 6). The reduced neural activity will be expressed
as𝑋red. Equation (1) can be represented as follows:

̇

𝑋red = 𝑀𝑋red. (2)

𝑀 can be calculated by linear regression.𝑀 is a combination
of symmetric transformation and skew transformation. 𝑀
can be divided as follows:

𝑀 = 𝑀symm +𝑀skew, (3)

where𝑀symm and𝑀skew are defined as𝑀symm = (𝑀+𝑀
𝑇
)/2

and𝑀skew = (𝑀 −𝑀
𝑇
)/2.

Equation (2) can be expressed as follows:

̇

𝑋red = 𝑀skew𝑋red. (4)

Because𝑀skew has imaginary eigenvalues, it captures the
rotational dynamics of neural activity. To express complex
eigenvectors 𝑉

1
and 𝑉

2
of𝑀skew on a real plane, the jPC can

be defined as jPC
1
= 𝑉

1
+ 𝑉

2
and jPC

2
= j(𝑉
1
− 𝑉

2
).

The projection onto the jPC can be calculated as𝑋jPCA =
(jPC
1
; jPC
2
) × 𝑋red. Further details are provided in [16].

Our results show the projections on one on each jPC
(Figure 3(d)) or on the two-dimensional space of jPC

1
and

jPC
2
(Figure 4).
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Figure 2: Signal process of jPCA analysis. The segmented MEG signals from 1-2 s before the cue onset were band-pass filtered between 0.5
and 8Hz. After filtering, the MEG signals were averaged by trials. The averaged MEG signals were downsampled at 20ms. Matrices M and
𝑀skew were calculated from downsampled signals. The eigenvectors of𝑀skew produced jPCs. Projections on the jPC plane were illustrated by
multiplying jPCs and𝑋red.

3. Results

Figure 3 shows a simple rhythmic oscillation model that
draws a circle on jPC planes and results from jPCA. To
draw a circle on jPC planes as in Figure 3(c), the rhythmic
oscillations of jPC

1
and jPC

2
should have a similar pattern.

Moreover, the time difference between oscillations should be
consistent as in Figure 3(b). Figure 3(d) illustrates jPCs and
root-mean square (RMS) of the accelerometer signals over
time. Projections on jPC planes are also shown at 0, 100, 200,
300, 400, and 500ms in Figure 3(e).The different colors of the
signals represent the movements of different directions. 0ms
indicates the stimulus onset time. The average movement

onset was 316 ± 58ms (mean ± standard deviation) from
stimulus onset. In contrast, the rhythmic oscillations began at
133±69ms.We compared the onset times between themove-
ments and the rhythmic oscillations using a paired t-test.The
onsets differed significantly (𝑝 < 0.001) between the move-
ments and the rhythmic oscillations. After the presentation
of visual stimuli, the rhythmic oscillations of jPCs occurred
before arm movements, as shown in Figure 3(d). Projections
on jPC planes show clearer results. Before movement onset,
the projections of the neural oscillations were rotated.

Figure 4 shows the projections on jPC planes for each
subject from −100 to 300ms after presentation of visual
stimuli. The duration corresponds to the time taken for
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Figure 3: Illustration of a simple rhythmic oscillation model to draw a circle on the jPC planes and results of jPCA analysis. (a) Delivery of
a rhythmic oscillation to the different area through direct and indirect pathways with different time delays. (b) Oscillations of the different
areas with similar patterns and a consistent time delay. (c) Rotation of the oscillations on the jPC planes. (d) jPCs and root-mean squares
(RMSs) of accelerometer signals with time. The different-colored signals represent the movements in different directions. 0ms indicates the
stimulus onset time. (e) Projections on the jPC planes are shown at 0, 100, 200, 300, 400, and 500ms. The projections were rotated prior to
movement onset. The results suggest that the oscillations are related not only to movement execution but also to movement preparation.

movement preparation. The projection of the oscillation
rotated in the same direction (counterclockwise) for all
conditions (reaching different directions) for all subjects.
To rotate in the same direction for different conditions,

the relation between jPC
1
and jPC

2
should be invariant

irrespective of the movement direction.
Table 1 shows a summary of jPCA. The second row

describes the data variance captured by jPC plane. The mean
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Figure 4: Projections on the jPC planes for all subjects from −100 to 300ms after presentation of visual stimuli. Each subfigure illustrates the
projections from each subject.The different-colored signals represent the movements in different directions.The projection of the oscillation
rotated to the same direction (counterclockwise) for all conditions (reaching of different direction) for all subjects.This suggests that the same
neural dynamics are involved in reaching movements irrespective of reaching direction.

Table 1: Summary of jPCA. Captured variance, data variance captured by the jPC plane; fit by 2 jPCs, fit quality provided by𝑀skew in the
first two jPCs.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Mean ± standard deviation
Captured variance 0.226 0.382 0.180 0.212 0.190 0.231 0.242 0.243 0.212 0.235 ± 0.059
Fit by 2 jPCs 0.164 0.226 0.157 0.168 0.245 0.250 0.237 0.401 0.271 0.235 ± 0.075
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of the data variance was 0.235 ± 0.059. The third row is fit
quality provided by𝑀skew, in the first two jPCs. The mean of
the fit quality from two jPCs was 0.235 ± 0.075.

4. Discussion

In this study, we demonstrated that the neural mechanisms
of rhythmic movements and skilled movements are similar.
We showed that the corticospinal system is involved in the
generation of skilledmovements bymeans of a dynamic anal-
ysis of macroscopic neural data. Although our result does not
concur with previous knowledge, it supports the suggestion
made in recent studies that the spinal cord mediates skilled
movements [6–12].

4.1. Neural Mechanism of Skilled Movements. It is unclear
whether the rhythmic oscillations are generated in the spinal
cord or in the motor cortex. We hypothesize that if the
rhythmic oscillations are derived by the corticospinal system,
oscillations with similar pattern and consistent time delay
should be found in macroscopic neural activity (Figures
3(a) and 3(b)). To investigate this hypothesis, we measured
and analyzed MEG signals during reaching movements in
humans. The results showed that projections on the jPC
planes rotated in all subjects (Figure 4). This means that
the major components of the neural activity have a similar
pattern and consistent time delay. Therefore, it implies the
possibility that skilled movements are generated by the cor-
ticospinal system. Moreover, the projection of the oscillation
rotated in the same direction for all conditions. This suggests
that the same neural dynamics are involved in reaching
movements, irrespective of reaching direction.

Our perspective corresponds to the suggestion of a com-
mon intrinsic structure controlling the reaching movements
[16, 26]. When we consider that the cortex also contributes
to controlling rhythmic movements [7, 27], the neural mech-
anisms of rhythmic movements and skilled movements are
similar.

Despite numerous studies of a CPG in animals, almost
all studies in humans used indirect results [28]. We also did
notmeasure spinal cord activity directly.Therefore, we should
be cautious when interpreting the results. Nevertheless, our
results provide evidence that the corticospinal system is
involved in skilled movement, such as rhythmic movement.

4.2. Neural Oscillations Involved in Movement Generations.
Iteration of descending motor commands and ascending
sensory feedback could be represented by rhythmic patterns.
Therefore, the rhythmic oscillations could be considered
products generated by sensory feedback, such as kinematic
parameter or visual feedback [28–32]. However, our results
show that the rhythmic oscillation occurred prior to move-
ment onset (Figures 3(d), 3(e), and 4). Because sensory
feedback could not generate the oscillations before the
movements, it implies that there is another mechanism of
generating the rhythmic oscillations. It has been suggested
that neural networks in the spinal cord may also be involved
in skilled movements. We hypothesized that if the rhythmic

oscillations are made by CPG and delivered to the broad
motor-related area through direct and indirect pathways,
similar patterns of time delay will be observed at a macro-
scopic level. We verified our hypothesis using the dynamical
analysis method.Therefore, our results suggest that the spinal
cord could be involved in the movement generation.

When a subject is aware of a target position in a motor
planning task, the reaction time required to reach the target
after the go cue was about 240ms [33]. Because the visual
processing requires less than 150ms [34], and the execution-
related time will be about 90ms. In our experiment, the
movement onset time (316ms)may include the time for visual
processing, motor planning, and execution. Therefore, the
difference (76ms) between 316ms and 240ms is related to
motor planning. Thus, 166ms (76 + 90ms) may be required
for movement planning and execution. The rhythmic oscil-
lation occurred 183ms (316 − 133ms) prior to movement
onset, suggesting that the rhythmic oscillations are related to
movement generation.

5. Conclusions

We showed that neural oscillations occur at a macroscopic
level in humans during skilled movements. It seems that
a common intrinsic structure generates the oscillations,
irrespective of movement direction.The intrinsic structure is
involved in not onlymovement execution but alsomovement
generation. The neural oscillations could be generated in the
spinal cord and the oscillations might influence movements
by means of corticospinal interaction. This implies that the
neural mechanism of skilled movements might be similar to
that of rhythmic movements.
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