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Diabetic peripheral neuropathy (DPN) is one of the most common forms of peripheral
neuropathy, and its incidence has been increasing. Mounting evidence has shown that
patients with DPN have been associated with widespread alterations in the structure,
function and connectivity of the brain, suggesting possible alterations in large-scale
brain networks. Using structural covariance networks as well as advanced graph-
theory-based computational approaches, we investigated the topological abnormalities
of large-scale brain networks for a relatively large sample of patients with DPN (N = 67)
compared to matched healthy controls (HCs; N = 88). Compared with HCs, the
structural covariance networks of patients with DPN showed an increased characteristic
path length, clustering coefficient, sigma, transitivity, and modularity, suggestive of
inefficient global integration and increased local segregation. These findings may
improve our understanding of the pathophysiological mechanisms underlying alterations
in the central nervous system of patients with DPN from the perspective of large-scale
structural brain networks.

Keywords: cortical thickness, diabetic peripheral neuropathy, graph theory, structural covariance networks,
integration, segregation

INTRODUCTION

Diabetic peripheral neuropathy (DPN), as one of the most common forms of peripheral
neuropathy, affects approximately 30–50% of the diabetic population worldwide. Typical clinical
manifestations of this disease include positive sensory symptoms in the feet, such as tingling,
prickling, and pain, as well as negative symptoms, such as numbness, leading to considerable
disability and suffering (Feldman et al., 2017). Although DPN has long been deemed as a disease
solely of the peripheral nervous system, mounting evidence has suggested that central nervous
system abnormalities also play important roles in the maintenance and development of this
disease (Selvarajah et al., 2011, 2014b; West et al., 2015; Halb et al., 2017). Indeed, patients with
DPN have been associated with widespread alterations in the structure (Selvarajah et al., 2014b;
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Zhang et al., 2020), function (Tseng et al., 2013; Li et al.,
2018; Segerdahl et al., 2018; Venkataraman et al., 2019) and
connectivity of the brain (Cauda et al., 2009a,b, 2010; Cui et al.,
2015; Segerdahl et al., 2018), suggesting possible alterations in
large-scale brain networks.

Graph theory offers a useful tool for characterizing the
topological organization of large-scale brain networks. Using
graph theoretical approaches, previous studies have shown that
the brain networks of healthy subjects possess an economical
small-world topology (i.e., high clustering coefficient and low
path length), an architecture that enables both the specialization
and the integration of distributed networks at low wiring
costs (Bullmore and Sporns, 2009). In previous neuroimaging
studies, altered small-world topology has been observed in
various brain diseases, such as Alzheimer’s disease, schizophrenia,
amyotrophic lateral sclerosis, and attention-deficit/hyperactivity
disorder, reporting a suboptimal lattice-like network organization
with an increased clustering coefficient and an increased path
length (He et al., 2008; Zhang et al., 2012, 2019; Cao et al.,
2013). Networks as such have been shown to be associated
with reduced signal propagation speed and synchronizability
compared with small-world networks, resulting in less efficiency
in global integration (Strogatz, 2001). Of note, studies in some
pain conditions demonstrated aberrant topological properties,
such as an increased clustering coefficient and a decreased
local efficiency (Liu et al., 2012, 2018), suggesting that long-
term peripheral nociceptive input could have an effect on the
topology of large-scale brain networks. Therefore, given that
DPN is usually associated with neuropathic pain, one may expect
topological alterations in the brain networks in patients with
DPN, such as an increased clustering coefficient and decreased
efficiency parameters.

In recent years, gray matter structural covariance, defined as
the correlation of some morphological index between pairs of
brain regions, has offered a useful means to construct large-scale
structural brain networks (i.e., structural covariance networks).
A key assumption of this method is that morphological
correlations are related to axonal connectivity between brain
regions with shared trophic, genetic, and neurodevelopmental
influences (Alexander-Bloch et al., 2013). It has been
demonstrated that structural covariance networks correspond
well with functional networks and tractography-based white
matter networks within the framework of graph theoretical
analysis (Hosseini et al., 2016; Bruno et al., 2017). By contrast, the
construction of structural covariance networks needs relatively
lower computational loads and is arguably less sensitive to
noise (Bethlehem et al., 2017). To the best of our knowledge,
no study to date has examined the structural covariance
networks in DPN. Given that previous studies have documented
significant alterations in gray matter morphology in patients
with DPN (Zhang et al., 2020), structural covariance network
analysis that assesses the coordination patterns of gray matter
morphology may provide new insights into the pathophysiology
of this disease.

In the present study, we aimed to investigate the topological
abnormalities of structural covariance networks for a relatively
large sample of patients with DPN (N = 67) compared to matched

healthy controls (HCs; N = 88). Specifically, by assessing the
interregional correlation of cortical thickness, we constructed the
structural covariance networks for each group. Several global
network parameters, such as small-world indices, modularity
and efficiency measurements, as well as a few regional network
parameters, such as the nodal degree and nodal clustering
coefficient, were then extracted and compared between the two
groups. We hypothesized that the structural covariance networks
of patients with DPN would show altered global network
parameters such as an increased path length and clustering
coefficient, overall suggestive of a less integrated yet more
segregated network organization.

MATERIALS AND METHODS

Subjects
Sixty-seven type-2 diabetes mellitus patients with a diagnosis of
DPN and 88 HCs were recruited consecutively from Xiangya
Hospital, Central South University (see Zhang et al., 2020,
Hum Brain Mapp). The diagnosis of DPN was made according
to the American or Toronto consensus criteria (Boulton
et al., 2011). The inclusion criteria for DPN patients were
as follows: right-handed; an age range from 30 to 68 years;
and stable glycemic control (HbA1c 9.36 ± 2.14%). Patients
were excluded from the study if they had (1) other diabetic
neuropathies or nondiabetic neuropathies; (2) hypoglycemic
unawareness; (3) neurological, psychiatric or cerebrovascular
diseases; (4) prior substantial head trauma or tumors; or (5)
alcoholism or drug abuse. The inclusion criteria for the HCs
were as follows: (a) no chronic pain conditions or analgesic
medications for treatment of pain; (b) no history of head
trauma, surgery or brain tumors; (c) absence of neurological
and psychiatric diseases; (d) no alcoholism or drug abuse.
Demographic details and clinical assessment of all participants
are shown in Table 1. This prospective study was approved by the
Medical Research Ethics Committee of Xiangya Hospital, Central
South University, and written informed consent was obtained
from all subjects.

TABLE 1 | Demographic data of the participants.

DPN patients (N = 67) HC (N = 88) P-value

Mean age in years (SE) 56.076(1.03) 55.580(0.83) 0.654

Male/female 39/28 56/32 0.472

HbA1c (%) [mmol/mol] 9.359 (2.135) − −

BMI 23.585 (3.241) − −

Duration of diabetes 8.202 (5.377) − −

NSS 4.240 (3.003) − −

NDS 1.800 (1.698) − −

DN4 2.290 (2.452) − −

SE, standard error; BMI, body mass index; NSS, neuropathy symptom
score; NDS, neuropathy disability score; DN4, douleur neuropathique en 4
questionnaire. Continuous variables were analyzed with independent two-sample
t-test; categorical data were analyzed with a Chi-squared test. The significance
level for the comparisons was set at p < 0.05.
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MRI Analysis
MRI Data Acquisition
Three-dimensional T1-weighted MRI scans were obtained
on a 3.0 T Siemens Magnetom Prisma MR system using
a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence. Detailed scan parameters were as follows:
repetition time = 2,300 ms, echo time = 2.98 ms, inversion
time = 900 ms, flip angle = 9◦, thickness = 1.0 mm, no
gap, 176 sagittal slices, field of view = 256 mm × 256 mm,
matrix = 256 × 256, voxel size = 1.0 × 1.0 × 1.0 mm3, and
sequence scan time = 5.2 min.

Cortical Thickness Measurement
The T1-weighted MRI scan of each subject was preprocessed
using the FreeSurfer package (version 6.0.0) with its standard
preprocessing pipelines (Wang et al., 2018). Briefly, an initial
surface was derived through the segmentation of the white
matter and the tessellation of the gray/white matter boundary.
Through the performance of an automated topological correction
operation, the initial surface was further refined to yield a
topologically correct gray/white matter surface, which hereafter
was referred to as the white surface. Subsequently, the white
surface was deformed outward using a deformable surface
algorithm to identify the pial surface. For all subjects, both
the pial surface and the white surface were visually inspected
for errors and manually corrected according to the software
guidelines if necessary. After the generation of these surface
models, the cortical thickness of each subject was obtained by
calculating the distance between the white matter surface and
the pial surface using the T-average algorithm. Before statistical
analysis, the cortical thickness maps were resampled onto the
standard space (fsaverage template).

Network Analysis
Construction of Structural Covariance Networks
The cortical thickness map of each subject was parcellated into 68
brain regions (with 34 regions on each hemisphere) according to
the Desikan-Killiany atlas1. The average cortical thickness of each
cortical region was extracted and taken as the cortical thickness
for the corresponding region. A linear regression analysis was
performed for each cortical region to remove the effects of age,
sex and global mean cortical thickness. The residuals of this
regression, hereafter referred to as corrected cortical thickness,
were used to construct structural covariance networks. For each
group, a 68 × 68 correlation matrix, R = [rij] (i, j = 1, 2. . . N,
here N = 68), was obtained by computing Pearson’s correlation
coefficients across individuals between the corrected cortical
thickness of every pair of regions. Subsequently, the correlation
matrix was thresholded to obtain a binary adjacency matrix,
A = [aij] (i, j = 1, 2,... N, here N = 68), where aij was retained
as an edge (set equal to 1) if rij was greater than a threshold T, and
aij was not retained (set equal to 0) if rij was less than T. Here, the
threshold T was always greater than 0; thus, negative values for rij
were set equal to 0. To remove self-loops, the diagonal elements
of the binary adjacency matrix were set equal to 0. The resultant

1http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation

adjacency matrix A represented a binary undirected graph G (N,
E). Here, N is the number of nodes which represent brain regions
and E is the number of edges which represent undirected links
between nodes corresponding to the nonzero elements in A.

Network Parameters
Our study extracted and compared some global and regional
network parameters between the two groups, such as small-world
properties, network efficiency, transitivity, modularity and nodal
characteristics (Rubinov and Sporns, 2010).

Small-World Properties
The clustering coefficient, path length, gamma, lambda, and
sigma are commonly used parameters for quantifying the small-
world topology of a network. Briefly, the clustering coefficient
of a node is defined as the ratio of the number of existing
edges to the number of all possible edges that are directly
adjacent to the node. The clustering coefficient of a network is
defined as the average of clustering coefficients across nodes and
reflects network segregation. The shortest path length between
two nodes is defined as the least number of edges that separates
them. The characteristic path length of a network is defined
as the average shortest path length that connects any two
nodes and reflects network integration. To examine the small-
world properties, the clustering coefficient and characteristic
path length are normalized to the corresponding mean values
of matched random networks (Maslov and Sneppen, 2002). The
small-world index (sigma) can then be obtained as the ratio of
the normalized clustering coefficient (gamma) to the normalized
characteristic path length (lambda).

Network Efficiency, Transitivity, and Modularity
The global efficiency is the inverse of the harmonic mean of
the shortest path lengths across nodes in a network and is
one of the most elementary indicators of integration. Local
efficiency is defined as the average inverse shortest path length
between a node and its direct neighbors and indicates the
efficiency of information transfer within neighborhoods. The
transitivity is similar to the clustering coeficient, but it is
normalized by the whole network rather than by each node.
Thus, the transitivity is not affected by nodes with a low degree.
The modularity quantifies the degree to which a network is
decomposed into subdivisions (modules) with maximal within-
module connections and minimal between-module connections
(Meunier et al., 2010).

Nodal Characteristics
The nodal degree, nodal clustering coefficient and nodal
betweenness centrality were used to identify the regional
alterations in the structural covariance networks. Nodal degree
is defined as the number of connections that a node has with
rest nodes of the network, which is considered a measure of
the node’s interaction within the network. Nodal betweenness
centrality is defined as the number of shortest paths between any
two nodes in the network that pass through a given node. Before
group comparison, the nodal degree, nodal clustering coefficient
and nodal betweenness centrality were normalized by the average
network degree, clustering coefficient and betweenness centrality,
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respectively. Hubs of a network are nodes that play a pivotal
role in the control of information flow within the network. In
our study, a node was considered a hub if its nodal betweenness
centrality was at least 1.5 standard deviations higher than the
average network betweenness centrality.

Statistical Analysis
Cortical Thickness
Vertex-wise contrasts of cortical thickness maps were performed
between DPN patients and HCs using the SurfStat package2.
Specifically, each contrast was entered into a vertex-wise
generalized linear model (GLM) with group, sex, age, and
intracranial volume (ICV) as covariates. The results were first
thresholded vertex-wise at p < 0.005 and then corrected for
multiple comparisons at the cluster level using random field
theory (RFT). The significance level for clusters was set at p< 0.05
after multiple-comparison correction. It should be noted that the
individual cortical thickness map was smoothed with a 20 mm
heat kernel prior to the statistical analysis.

Network Parameter Differences
All network parameters were compared between the two groups
using the graph analysis toolbox (Hosseini et al., 2012). In this
study, a wide range of network densities, namely, 0.15 ≤ D ≤ 0.40,
was chosen for subsequent network analyses. The lower limit of
the range was the minimum value where the networks of both
groups were not fragmented. The upper limit of the range was
the maximum value where the networks of both groups had
a small-world index > 1.2 (Hosseini et al., 2013). Then, non-
parametric permutation testing (1,000 repetitions) was used to
test the statistical significance of the DPN-related differences in
global and regional network parameters. Briefly, the network

2http://www.math.mcgill.ca/keith/surfstat/

parameters were calculated for each network at each density.
Between-group differences in the network parameters were then
calculated to create a permutation distribution of difference
under the null hypothesis. For each network parameter, the
actual difference between DPN patients and HCs was placed
in the corresponding permutation distribution to obtain the
significance level. Furthermore, the area under the curve (AUC)
was computed as a summary metric to evaluate the overall group-
level differences across all densities. The significance level was
set at P < 0.05 for group differences in global and regional
network parameters.

RESULTS

Decreased Cortical Thickness in DPN
Compared with HCs, patients with DPN showed significantly
decreased cortical thickness in widespread cortical regions
(Figure 1). According to the Desikan-Killiany atlas, these
regions involved the bilateral insular cortex; inferior frontal
gyrus (including the pars orbitalis and pars triangularis) and
lateral orbitofrontal gyrus; posterior and middle cingulate
gyri; precuneus; superior frontal gyrus; inferior, middle, and
superior temporal gyri; fusiform and parahippocampal gyri;
entorhinal cortex; right post- and precentral gyri; and right
supramarginal gyrus.

Global Network Analysis
Network parameters of the structural covariance networks for
the two groups were calculated at a range of network densities
(0.15–0.40) (Figure 2), which yielded fully connected networks
with sigma > 1.2. For only a few network densities, the
structural covariance networks of patients with DPN had a higher
characteristic path length, clustering coefficient, transitivity,

FIGURE 1 | Cortical regions showing significantly decreased cortical thickness in DPN patients compared with HCs (RFT-corrected P < 0.05).
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FIGURE 2 | Changes in global network parameters as a function of network density. (A) Characteristic path length, (B) clustering coefficient, (C) transitivity, and (D)
sigma in HCs and in DPN patients.

sigma (Figure 3), lambda, gamma (Supplementary Figure S1),
and local efficiency and a lower global efficiency (Supplementary
Figure S2) than those of HCs. Summary AUC analyses of
these indices revealed a significantly increased characteristic path
length (P = 0.0410), clustering coefficient (P = 0.0190), transitivity
(P = 0.0220), lambda (P = 0.0390), gamma (P = 0.0060), sigma
(P = 0.0060), and local efficiency (P = 0.026) and decreased global
efficiency (P = 0.037) in the structural covariance networks of
patients with DPN compared with HCs.

For all the network densities, the structural covariance
networks of patients with DPN had higher modularity than
those of HCs (Figure 4). Subsequent AUC analysis revealed
a significant modularity increase (P = 0.003) in the structural
covariance networks of patients with DPN compared with HCs.

Regional Network Analysis
Compared with HCs, we found a decreased nodal degree
in the left pars orbitalis (Figure 5A) and a decreased
clustering coefficient in the left entorhinal cortex (Figure 5B) in
patients with DPN.

Network Hub Analysis
Compared with HCs, a different number and distribution of
network hubs were found in patients with DPN. Specifically,
we identified more hubs in the DPN group (six hubs) than in
the HC group (four hubs). The four hubs in the HC group
included the left pars orbitalis, the left rostral anterior cingulate
cortex, the right cuneus and the right transverse temporal
gyrus (Figure 5C). The six hubs in the DPN group included
the left banks of the superior temporal sulcus, the left caudal
middle prefrontal gyrus, the left fusiform gyrus, the left pars
triangularis, the right transverse temporal gyrus and the right
insula cortex (Figure 5D).

DISCUSSION

By assessing the interregional correlation of cortical thickness,
the present study investigated the topological abnormalities of
the large-scale structural brain networks in DPN. Compared
with HCs, the structural covariance networks of patients with
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FIGURE 3 | Differences between HCs and DPN patients in global network parameters as a function of network density. The 95% confidence intervals and group
differences in the (A) characteristic path length, (B) clustering coefficient, (C) transitivity, and (D) sigma. The ∗ marker denotes the difference between HCs and DPN
patients; the ∗ signs lying outside of the confidence intervals indicate the density where the difference is significant at P < 0.05. The positive values indicate DPN
patients > HCs, and negative values indicate DPN patients < HCs.

FIGURE 4 | Changes in modularity (A) and between-group differences in modularity (B) as a function of network density. The ∗ marker denotes the difference
between HCs and DPN patients; the ∗ signs lying outside of the confidence intervals indicate the density where the difference is significant at P < 0.05.
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FIGURE 5 | Cortical regions with a decreased nodal degree in the left pars orbitalis (A) and a decreased nodal clustering coefficient in the left entorhinal cortex (B) in
DPN patients compared with HCs. The distribution of network hubs in HCs (C) and DPN patients (D). IFGorb, inferior frontal gyrus pars orbitalis; r-ACC, rostral
anterior cingulate cortex; TTG, transverse temporal gyrus; cmPFC, caudal middle prefrontal gyrus; IFGtri, inferior frontal gyrus pars triangularis; STSbanks, banks of
the superior temporal sulcus.

DPN showed an increased characteristic path length, clustering
coefficient, sigma, transitivity, and modularity, suggestive of
inefficient global integration and increased local segregation. In
addition to the alterations in global network parameters, regional
network parameters of some brain areas were affected, showing
a decreased nodal degree and nodal clustering coefficient in
the patients with DPN compared with HCs. In addition, we
also found that the number of hubs in the patients with DPN
increased and anatomical location shifted, mainly in pain and
cognition-related brain regions. These findings may improve our
understanding of the pathophysiological mechanisms underlying
alterations in the central nervous system of patients with DPN
from the perspective of large-scale structural brain networks.

Decreased Cortical Thickness in DPN
Patients
Compared with HCs, patients with DPN showed significantly
decreased cortical thickness mainly in some sensorimotor and
pain-related brain regions. These findings are consistent with

previous studies on DPN, showing cortical volume reduction
in the postcentral gyrus and cingulate cortex and widespread
cortical thickness reduction in the insula, cingulate cortex,
prefrontal cortex and precentral gyrus (Selvarajah et al., 2014b;
Zhang et al., 2020). Morphological alterations in these brain
regions might be the anatomic substrates underlying the
sensorimotor and pain-related impairments in DPN.

DPN-Related Alterations in Global
Network Parameters
The structural networks in both the DPN and HC groups
displayed the small-world configuration, characterized by
high clustering coefficients and low characteristic path lengths
linking individual network nodes. However, compared with
HCs, the structural networks of DPN patients showed increased
characteristic path length, increased clustering, increased
transitivity, increased local efficiency, and decreased global
efficiency. The finding of increased characteristic path length and
decreased global efficiency in patients with DPN may indicate
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impaired global integration, and is supported by our previous
DTI study, showing widespread FA decreases throughout white
matter tracts in patients with DPN (Zhang et al., 2020). In
fact, increased characteristic path length and decreased global
efficiency has been shown to be associated with decreased
long-range connections (He et al., 2008, 2009). Since long-range
connections are believed to form the basis of many cognitive
processes (He et al., 2009; Meijer et al., 2020), and the previous
clinical study have shown that the patients of DPN exhibited
disturbances in visuospatial, verbal, and multi-tasking aspects
of executive function, which is a group of higher cognitive
control processes (Rucker et al., 2014). We therefore speculate
that the observed increase in characteristic path length and
decrease in global efficiency may underlie the abnormal cognitive
functions in DPN (Cui et al., 2015). Meanwhile, increased local
features is associated with the increased short-range connections
among neighboring regions, suggested that the information
processing is traversing more restrictedly within a clique of
densely interconnected regions, i.e., an abnormally strong local
segregation. Previous study showed that networks with increased
local characteristics have better fault tolerance ability in the face
of external attacks (Latora and Marchiori, 2001). In this work,
the increased local segregation in the DPN group might reflect a
compensatory action to suppress the influence of disease on the
brain networks. Taken together, alterations in global parameters
indicate that the topological organization of the brain networks
in DPN patients is suboptimal, manifesting as inefficient global
integration and increased local segregation.

DPN-Related Alterations in Regional
Network Parameters
Compared with HCs, we found a decreased nodal degree in
the left pars orbitalis and a decreased clustering coefficient in
the left entorhinal cortex in DPN patients. Since the present
study showed decreased cortical thickness in the left pars
orbitalis and entorhinal cortex, the decreased nodal degree
and clustering coefficient may arise from the decreased cortical
thickness of the two regions. Functionally, the pars orbitalis
is part of the orbitofrontal network, which is associated with
emotion processing in general and specifically with encoding the
significance and value of stimuli (Du et al., 2020). The entorhinal
cortex is an important structure of the medial temporal lobe and
plays a key role in the interaction between the neocortex and
the hippocampus in support of declarative and spatial memory
(Piguet et al., 2018). Indeed, previous studies have reported that
the prevalence of mood disorders in DPN patients is higher
than that in diabetic patients without DPN and that symptoms
of both anxiety and depression commonly coexist in patients
with DPN (Selvarajah et al., 2014a). Furthermore, patients with
long-standing diabetes have been shown to be associated with
impairments in acquisition and retrieval processes of spatial
memory (Patel and Udayabanu, 2013). Therefore, one might
speculate that decreased regional network parameters in the pars
orbitalis and entorhinal cortex may be the neuropathological
basis of the impairments in emotion regulation and spatial
memory in patients with DPN.

Network Hub Analysis
The DPN patients and HCs also differed in the number and
distribution of network hubs. Four network hubs were found in
HCs, whereas six hubs were identified in DPN patients. Some
hubs in HCs are not retained in DPN patients, such as the left
pars orbitalis and left rostral anterior cingulate cortex. In our
study, the DPN patients showed significantly decreased cortical
thickness in the pars orbitalis and cingulate cortex, suggesting
that the disappearance of these hubs might arise from cortical
thinning in these regions. In fact, the pars orbitalis and anterior
cingulate cortex are functionally connected, and both participate
in emotion regulation (Du et al., 2020). As such, alterations
in these brain regions may underlie the emotion regulation
impairments in DPN patients, which are consistent with the
alterations in regional network parameters.

Furthermore, we found some new hubs in DPN patients,
mainly in the prefrontal gyrus, banks of the superior temporal
sulcus, insula cortex and fusiform gyrus, indicating a more
central role of these regions in patient with DPN. On the
one hand, the appearance of these hubs may occur as a result
of pain and cognitive impairment. Functionally, the insula
cortex is implicated in the sensory-discriminative and affective-
motivational aspects of pain processing, whereas the frontal
cortex is related to affective-motivational and anticipational
components of pain (Burgmer et al., 2009; Watson, 2016). The
insular cortex and prefrontal cortex are linked and activated
during the processing of painful stimuli and are thus considered
key regions of a network named the pain matrix (Ohara et al.,
2008; Davis and Moayedi, 2013). The banks of the superior
temporal sulcus are involved in various cognitive functions,
such as audiovisual integration, as well as motion, speech, and
face processing, whereas the fusiform gyrus, located on the
ventral occipitotemporal surface, is selectively engaged in face
recognition (Ghuman et al., 2014; Yue et al., 2020). Hence,
the appearance of new hubs in these brain areas indicated that
the alterations in the central nervous system of patients with
DPN may involve changes in both pain-related and cognition-
associated cerebral regions. This finding is consistent with
previous task-fMRI studies, which showed stronger activation
in these brain areas in the patients of DPN during thermal
stimulation (Li et al., 2018). On the other hand, the appearance
of these hubs may represent compensatory recruitment for
decreased cortical thickness of these or other brain regions to
maintain proper brain functioning, given that our study has
shown significant cortical thinning in the prefrontal cortex,
insular cortex, fusiform gyrus, and temporal lobes of DPN
patients. However, the exact neural mechanisms underlying the
finding of these new hubs in DPN patients remain unknown and
need further exploration in the future.

Limitations
There are some limitations for our research. Firstly, this is a
cross-sectional study and did not consider the network topology
alterations over time. Future longitudinal studies are warranted
to unravel the dynamic pattern of abnormal brain networks in
the DPN patients. Secondly, the medication of DPN patients was
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not completely consistent so medication confounding effects may
exist. Therefore, the effect of medication should to be investigated
in future studies. Thirdly, we did not investigate the correlation
between network measurements and individualized clinical or
neuropsychological variables, because the structural covariance
networks are constructed at the group level. Future individualized
network analyses are warranted to further pursue this issue.

CONCLUSION

In the present study, we examined the topological alterations in
the structural covariance networks in DPN patients compared
with HCs. The structural covariance networks of patients
with DPN showed a significantly increased characteristic
path length, clustering coefficient, transitivity, and modularity,
suggestive of inefficient global integration and increased local
segregation. These results contribute novel insights into the
pathophysiological mechanisms underlying alterations in the
central nervous system of patients with DPN.
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