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The aim of this work is to evaluate the performance of a commercial brachytherapy 
treatment planning system (TPS) with TG-43 Vendors Input Data (VID), analyze 
possible discrepancies with respect to a proper reference source and its implica-
tions for standard treatments, and judge the effectiveness of certain widespread 
recommended quality controls to find potential errors related with the interpola-
tions of TG-43 VID tables. The TPS evaluated was a BrachyVision 8.6 loaded with 
TG-43 VID for a VariSource high-dose-rate 192Ir source (Vs2000). The reference 
data chosen were the TG-43 data published in the literature. In the first step, we 
compared TG-43 VID with respect to the chosen reference data. Next, we used 
percent dose-rate differences in a point array matrix to compare the outcomes of 
the TPS on standard treatment setup with respect to an in-house developed program 
(MATLAB R2009a-based) loaded with the chosen full TG-43 reference data. The 
cases with major discrepancies were evaluated using the gamma-index analysis. 
The comparison with the reference data indicated a lack of sample in the angles 
between near to the tip (between 165 < θ < 180) and cable (0 < θ < 15) of the  
F(r,θ)VID, which  causes a dose underestimation of approximately 17% in the investi-
gated points due to inaccurate interpolations. The differences over 2% encompassed 
approximately 17% of the surrounding source volume. These results have special 
relevance in treatment using one applicator with a few dwell steps or in Fletcher 
treatments where 10% dose underestimates were identified within the tumor or in 
organs at risk, respectively. Our results suggest that the differences found in the 
TPS under study are created by a lack of information on the angles in high-gradient 
zones in the F(r,θ)VID, which generates important differences in dosimetric results. 
In contrast, the gamma analysis shows very good results (between 90% and 100% of 
passed points) in the analyzed treatments (one dwell and Fletcher). Further studies 
are required to exclude the possibility of finding noticeable effects in the DVH of 
treatment plans caused by the discrepancies here described. To achieve more strict 
control over the TPS dose-rate calculation, we recommend using QA test thinking 
in a source with nonaxial symmetry, adding a control point on the angles of the 
high-dose gradient zones (e.g., between 0° and 15° and between 165° and 180°). 
More studies are required to achieve full understanding of the clinical implication 
of such discrepancies.
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I. INTRODUCTION

Brachytherapy has an important role in gynecological radiation treatments, and there has been 
a great amount of clinical experience accumulated over the years regarding it. Nevertheless, 
with the introduction of the high-dose rate (HDR) remote afterloaders, it has achieved highly 
widespread practice. Some inherent advantages of this technology are the reduction of the 
exposure of personnel, optimization of the dose delivered the target and organs at risk, and 
ambulatory treatments possibilities, among others.(1) However, each advantage brings with it 
certain drawbacks, such as the requirement for complicated equipment, specialized personnel 
with longer training, and the increased needs for accurate dosimetry, which requires the use of 
computerized treatment planning systems (TPS).(1)

Although there has been a recent introduction of new algorithms based on Monte Carlo 
methods, collapsed cone methods, and grid-based Boltzmann transport equation solvers,(2) 
there is a broad consensus about the use of the TG-43(3) formalism as a basis for the dose cal-
culation around a brachytherapy source.(4) One of the major improvements of this formalism 
is the use of specific sources factors that take into account the source-to-source differences in 
encapsulation and internal construction.(5) Thus, all TPS require entry data with the factors of 
each source used in the clinic.

It is quite common for TPS to come with vendor input data (VID) obtained from Monte Carlo 
simulations. Although the major portions of the TPS use the same formalism, each system has 
small differences in the methods associated with, and the quantity of, the entered data (e.g., 
numbers of angles in the 2D anisotropy function table, use of polynomial fit or interpolations 
in the radial dose function). The finite size of the TG-43 entry data may cause outcome dis-
crepancies due to interpolation (ODIN) between the brachytherapy treatment planning system 
(BTPS) calculation and the expected value (often obtained from the same reference source as 
the VID) over the 2% recommended by the AAPM.(5,6)

Despite the simplicity of the TG-43 formalism, several organizations recommend perform-
ing a complete acceptance and commissioning procedure before its clinical use as an essential 
part of brachytherapy QA programs,(1,4,7,8) and these organizations emphasize the necessity 
of collecting appropriate reference data and ensuring the data apply to the actual source.(8) In 
this context, important documents (e.g., TRS-430,(7) ESTRO Booklet No. 8,(4) and the NCS 
Report No.13(8)) suggest minimum requirements for TPS commissioning, which are of great 
aid for medical physicists. Nevertheless, some of the tests mentioned in these publications may 
overlook some important ODIN in BTPSs. In addition, a recent publication(9) suggested that 
the VID anisotropy table of an important TPS fabricant can produce ODIN regions up to 20% 
because of a lack of information in the angles of a high-gradient zone, an issue that requires a 
more detailed review.

The aim of this work is to evaluate the performance of a commercial TPS with TG-43 VID, 
analyze the possible ODINs and the implications in clinical standard treatments, and make a 
number of comments regarding certain commissioning tests widely recommended to detect 
these anomalies.

 
II. MATERIALS AND METHODS

In the context of the acceptance and commissioning of a new BTPS in our institution, a 
BrachyVision 8.6 (Varian Medical Systems, Palo Alto, CA) was evaluated in the follow aspects:

A.  Reference data comparison
All input data were compared with the information published by Angelopoulos et al.(10) and 
Sakellieu(4) for a Varian 5 mm 192Ir HDR source (Vs2000), finding all possible areas with dis-
crepancies over the 2% recommended by the AAPM.(6) 
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To compare different tables, it sometimes is necessary perform interpolations to match 
distinct axes. If another method is not indicated, we used a bilinear interpolation method. For 
example, to denote the array obtained from table alpha (depending on the c and d variables) and 
to make it compatible with the table beta (depending on the same factors), we use the notation  
Z(c, d)int-alpha2beta, which indicates “Z function table, interpolated from alpha to beta.”

B.  TPS evaluation in clinical conditions
Using the relevant clinical conditions, we found the percent dose-rate differences between the 
dose rate calculated for 362 points (see below) by commercial software ((Ḋ(y, z)/SK)TPS) loaded 
with TG-43 VID and the same points calculated with in-house developed code (MATLAB 
2009; MathWorks, Natick, MA) loaded with full TG-43 data found in used references  
((Ḋ(y, z)/SK)code). To ensure the reliability of our code, we compared (Ḋ(y, z)/SK)code with 
respect to the ESTRO along-away dose rate table ((Ḋ(y, z)/SK)ESTRO) for the Vs2000 source, 
which consists of a point array in y (axial source axis) and z (long source axis) coordinates 
with 362 reference points centered in the middle of the active core. Moreover, to analyze the 
plausibility of the reference data election, we performed a short comparison with respect to 
other references regarding the source under study.(11,12,13)

The setups for clinical conditions are divided into the following: 

•  The one dwell position setup was designed to evaluate the TPS in the simplest configuration. 
This setup could simulate contact treatments of small skin lesions or partial breast irradiation 
with MammoSite.(14)

•  The short applicator setup was designed to evaluate the TPS outcomes with one 3.5 cm-long 
applicator (6 dwell positions). This setup can simulate a skin contact treatment and gyneco-
logical treatment as in the operated endometrial cancer or interstitial breast treatments with 
MammoSite.(14)

•  Long applicator setup: This test was designed to evaluate the TPS with one 9-cm long 
applicator, simulating contact and cervix endocavitary treatments, among others.

•  Fletcher setup: Simulating typical Fletcher applicators (central tandems with two lateral 
ovoids), the tandem was 6 cm long, and the ovoid was calculated with a 2 cm diameter. In 
this test, additional points were added to the already existing 362 points to take into account 
the optimization points recommended by the American Brachytherapy Society (ABS),(15) 
as we can see in Fig. 1. In addition to the coronal plane analysis, we present a tandem and 
ovoid-centered sagittal plane to evaluate the dose to the organs at risk (rectum and bladder). 
For the analysis at the angles θ = 0 and 180°, we used the anisotropy table published by 
Taylor and Rogers(11) (F(r,θ)Taylor).

•  Multiapplicators: This setup simulated the conditions of multiple-applicator treatment as 
used in some interstitial techniques (e.g., prostate, breast, and cervix). As in the Fletcher 
setup, we performed the evaluation using the most relevant coronal and sagittal planes.

Fig. 1. Image outlining the ABS points in a typical Fletcher treatment. On the left, a coronal plane with the points A (is 
the point H in the ABS nomenclature), tandem tip (1,8 cm), surface ovoid, and ovoid + 0.5 cm. On the right, a sagittal 
plane with rectal, bladder, and surface ovoid projection points.
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For simplicity of computations, all dwell steps are in the plane or in an orthogonal disposi-
tion with respect to (Ḋ(y, z)/SK)ESTRO. In addition, to calculate the dose rate in a point with 
polar coordinates r and θ (r is the distance between the center of the source and the point and 
θ is the angle with respect to the long axis of the source), the TPS and the in-house code use 
the TG-43 line source approximation (LSA) formalism expressed as

  (1)
 

Ḋ(r, ) = Sk gL(r)F(r,   )
GL(r,  )θ θ

θ

GL(r0, 0)θ
Λ

where SK is the air kerma strength of the source, Λ is the dose rate constant, gL(r) is the radial 
dose function for a LSA, F(r,θ) is the anisotropy function, and GL(r,θ) is the LSA geometry 
function that takes into account the variation of the relative dose due only to the spatial distri-
bution of the radioactive material within the source that in our code is calculated according to 
the equation proposed by TG-43U1(6) and by the AAPM-ESTRO report.(16)
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To obtain the radial dose function, we used a Meissberger fourth-order polynomial fit sup-
plied in the TPS.

We use the gamma analysis(17) to evaluate the clinical cases with major discrepancies. For 
this purpose, two brachytherapy plans were made in the TPS (with a calculus grid size of 
0.5 mm) for each selected case, with a F(r,θ)VID  and F(r,θ)Taylor, respectively. The dose planes 
exported from the TPS were analyzed by a commercial software (VeriSoft 4.2; PTW, Freiburg, 
Germany) using a distance to agreement (DTA) of 3, 2, and 1 mm and a d%L (local percent-
age dose difference) of 3%, 2%, and 1% in different combinations to evaluate the importance 
of such parameters in the analysis, without any lower dose analysis cutoff nor increased dose 
tolerance in lower dose regions. 

 
III. RESULTS 

A.  Reference data comparison
BrachyVision uses TG-43 LSA calculations for a 0.5 cm active length source. The dose rate 
constant Λ is 1.10 cGy/U, whereas the Λ value reported by Angelopoulos is 1.101 cGy/U. 
The g(r) polynomial fit supplied in the TPS agrees within 1.5% with the values provided by 
Angelopoulos et al.(10) (Fig. 2).

With regard to the anisotropy function, the TPS was loaded with a VID table (F(r,θ)VID) with 
17 angles and 10 radial distances. In contrast, the reference data had 31 angles and 9 radial 
distances. It is a mandatory requirement of the software to enter values for the 0° and 180° (or 
90° for sources with axial symmetry),(18) but these values were not supplied by the reference 
data. Table 1 shows F(r,θ)VID for θ = 0°, 1.5°, and 180° for different radii compared with a first-
order extrapolations approach using a lineal fit that takes into account the last two neighbors 
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of the extremes angles tabulated using F(r,θ)ref (Fig. 3). The values obtained were the same as 
that in the TPS for six points, whereas for eight points, the differences were better than 1.1%.

Moreover, the F(r,θ)VID has some radial distances (0.7, 3.5, and 13 cm), and the major 
portion of its angles (25.5°, 35.5°, 45.5°, 60.5°, 75.5°, 90°, 105.5°, 120.5°, 135.5°, 145.5°, 
and 155.5°) are not tabulated in the F(r,θ)ref. Figure 4  shows the absolute percent difference  
between F(r,θ)int-ref2VID and F(r,θ)VID, as observed, there agreement better than 0.5%  
(x̄ = -0.06%, σ = 0.38%) in a major portion of the matrix. Performing the inverse procedure 
(i.e., comparing the F(r,θ)ref with F(r,θ)int-VID2ref) we obtain approximately 14% for r = 3 cm 
and θ = 6.5° (x̄ = -2.4%, σ = 3.5%), as can see in Fig. 4.

Fig. 2. Comparisons among different Monte Carlo simulations of the g(r) function. It possible to observe a good agreement 
between simulations performed on similar phantom dimensions and the TPS fit. Comparing simulations with different 
phantom sizes (15 and 100 cm radius), an agreement better than 1.2% up to r = 4 cm is observed. After that, the agreement 
becomes worse up 39% at r = 15 cm.

Table 1. Comparison of the lineal extrapolated (LE) values for the angles not reported in the reference data.

	θ(deg)/r(cm)  0.5 1.0 5.0 7.0 10 15

 0 TPS 0.434 0.392 0.443 0.512 0.588 0.673
  LE 0.434 0.392 0.444 0.512 0.588 0.674

 1.5 TPS 0.498 0.460 -a -a -a -a

  LE 0.498 0.459 -a -a -a -a

 180 TPS 0.559 0.526 0.603 0.652 0.716 0.714
  LE 0.553 0.526 0.609 0.648 0.717 0.717

a Value is in the reference data and the same as in the TPS VID.
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Fig. 3. Comparative graph for F(1 cm,θ) between the TPS VID and Angelopoulos et al.(10) publication data. In the dark 
zone, we can see the zone with a more than 2% difference. The darker zone highlights the extrapolated data. The box 
shows an amplified zone in which the lineal fit agreement with the VID extrapolated data can be observed.

Fig. 4. Absolute percent difference (top) between the F(r,θ)VID and  F(r,θ)int-ref2VID. There is good agreement among both 
tables. Absolute percent difference (bottom) between the F(r,θ)ref and F(r,θ)int-VID2ref. There is a difference up to 14%.
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B.  TPS evaluation in clinical conditions

B.1 In-house code evaluation
Figure 5 shows the absolute percent difference distribution between (Ḋ(y, z)/SK)code and  
(Ḋ(y, z)/SK)ESTRO, with a maximum discrepancy of approximately 10%. The frequency dis-
tribution of such differences, with a mean of 0.72% and a standard deviation (SD) of 1.92%, 
is also shown.

To determine the source of the discrepancies, an anisotropy table, F(y,z)ESTRO, was obtained 
from the ESTRO dose rate table through the formal TG-43 F(r,θ) definition: 

  (3)
 

Ḋ(r, )/Sk)ESTRO GL (r,  0)(  θ   θ
Ḋ(r, 0)/Sk)ESTRO GL (r,  )(  θ   θ

F(r,   )ESTRO =θ

To avoid interpolations in the finding of (Ḋ(r,θ0)/Sk)ESTRO, we used the equation

   
  (4)
 

Ḋ(r, 0) θ
ΛGL (r0,  0)Sk  θ

GL (r,  0) θ
gL(r)=

which indicated an agreement with (Ḋ(r,θ0)/Sk)ESTRO better than 1.8%. Once F(y, z)ESTRO was 
determined (through Eq. (3)), it was possible to compare it with F(y, z)int-ref2ESTRO (note the 
change in the coordinates), which indicated the exact same error distribution as in Fig. 5.

B.2 Clinical conditions 
Figure 6 shows the amplitude (whiskers), median (line on the box), 25th and 75th percentiles 
(lower and upper limits of boxes, respectively), mean (circles), and  SD (squares) of the differ-
ences between (Ḋ(y, z)/Sk)TPS and (Ḋ(y, z)/Sk)code for the standard clinical setups. Figures 7, 8, 
and 9 show the most representative spatial distribution of the discrepancies around the appli-
cators. Two ODIN regions can clearly been observed: one near the tip of the source and other 
on the vector cable. All ODIN points within 15° of the source long axis, which encompasses 
approximately 17% of the surrounding volume. The maximum discrepancy was found for the 

Fig. 5. Absolute percent dose differences distribution between (Ḋ(y, z)/Sk)code and (Ḋ(y, z)/Sk)ESTRO. On the left is the 
spatial distribution. On the right is the frequency distribution.
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Fig. 6. Amplitude (whiskers), 25th and 75th percentiles (lower and upper box limits), median (red line), mean (circles), 
and SDs (squares) of the discrepancies between (Ḋ(y, z)/Sk)code and (Ḋ(y, z)/Sk)TPS for each clinical setup evaluated.

Fig. 7. On the left side is the absolute percent dose difference between (Ḋ(y, z)/Sk)TPS and (Ḋ(y, z)/Sk)code for the one 
dwell position setup. On the right side is the absolute percent difference between (Ḋ(y, z)/Sk)TPS and (Ḋ(y, z)/Sk)code for 
the short applicator setup. Black and gray rectangles represent the source position and the vector cable, respectively.

Fig. 8. On the left side is the absolute percent dose difference between (Ḋ(y, z)/Sk)TPS and (Ḋ(y, z)/Sk)code for the large appli-
cator setup. On the right side is the absolute percent difference between (Ḋ(y, z)/Sk)TPS and (Ḋ(y, z)/Sk)code for the Fletcher 
setup in a coronal analysis. Black and gray rectangles represent the applicators and the vector cable position, respectively.
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one dwell step configuration (-16.8%) at the point (0.25 cm, -2cm), which corresponds to the 
polar coordinates (2 cm,7°).The lowest differences was found for the multi-applicator setup.

Table 2 shows the results of the gamma analysis for one dwell and Fletcher setup (Fig. 10). 
For the one dwell setup, the origin of the dose plane is in the center of the source (coronal 
plane). Passing rates of 99.8%, 99.1%, and 90.3% for 3%L/3 mm, 2%L/2 mm, and 1%L/1 mm, 
respectively, were observed. In the case of Fletcher setup, the origin of the dose plane was in 
the center of the ovoid (sagittal plane). Passing rates of 100% (35 failed points), 99.9%, and 
97.5% for 3%L/3 mm, 2%L/2 mm, and 1%L/1 mm, respectively, were observed.

 

Fig. 9. Fletcher setup analysis of the sagittal plane centered on the ovoid axis. On the left image is the absolute percent 
dose difference between (Ḋ(y, z)/Sk)TPS and (Ḋ(y, z)/Sk)code on the bladder side. On the right image is the absolute percent 
difference between (Ḋ(y, z)/Sk)TPS and (Ḋ(y, z)/Sk)code on the rectum side. Black rectangles represent the tandem and 
ovoid position.

Table 2. Results of the gamma analysis for one dwell setup (ODS) and Fletcher setup (FS).

   Passed
 Evaluated Evaluated points Gamma Gamma Gamma Gamma
 Setup Points (%) Mean Min. Max. Median

 ODS 1%L/1mm 251001 226675 (90.3) 0.515 0.0 16.626 0.150
 ODS 1%L/2mm 251001 243142 (96.9) 0.263 0.0 12.736 0.150
 ODS 1%L/3mm 251001 248880 (99.2) 0.219 0.0 12.736 0.150
 ODS 2%L/1mm 251001 236766 (94.3) 0.290 0.0 8.313 0.075
 ODS 2%L/2mm 251001 248619 (99.1) 0.169 0.0 6.368 0.075
 ODS 2%L/3mm 251001 250339 (99.7) 0.141 0.0 6.368 0.075
 ODS 3%L/1mm 251001 238881 (95.2) 0.213 0.0 5.542 0.050
 ODS 3%L/2mm 251001 249586 (99.4) 0.133 0.0 4.245 0.050
 ODS 3%L/3mm 251001 250581 (99.8) 0.111 0.0 4.245 0.050
 FS 1%L/1mm 251001 244653 (97.5) 0.188 0.0 14.703 0.088
 FS 1%L/2mm 251001 249490 (99.4) 0.152 0.0 10.677 0.088
 FS 1%L/3mm 251001 250233 (99.7) 0.136 0.0 5.105 0.088
 FS 2%L/1mm 251001 249513 (99.4) 0.115 0.0 7.352 0.044
 FS 2%L/2mm 251001 250659 (99.9) 0.092 0.0 5.395 0.044
 FS 2%L/3mm 251001 250843 (99.9) 0.082 0.0 2.680 0.044
 FS 3%L/1mm 251001 250664 (99.9) 0.087 0.0 4.901 0.029
 FS 3%L/2mm 251001 250898 (100) 0.070 0.0 3.659 0.029
 FS 3%L/3mm 251001 250966 (100) 0.061 0.0 1.812 0.029
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IV. DISCUSSION

A.  Reference data comparison
The finite capacities of informatics resources necessitate interpolations with the subsequent 
discrepancies between the TPS and proper published data. In this work, we use the ODIN 
concept to describe the dose discrepancy appearing when an interpolation has a disagreement 
over the 2% recommended by the AAPM.(6) However, although these discrepancies may occur 
in the context of a physics-controlled field, it is necessary to place these ODIN in the clinical 
context to evaluate their importance and achieve a major understanding of the global situa-
tion. The IAEA TRS-430(7) and the NCS Report No. 13(8) recommend that the discrepancies 
between the TPS and the published data not exceed 5%. Accordingly, we can use these limits 
as the investigation and intervention levels, respectively.

ESTRO Booklet No. 8(4) presents a full TG-43 dosimetry set of the source under study, 
obtained from the Angelopoulos study(10) and from L. Sakelliou (personal communications, 
2003; a member of the same researcher group). Nevertheless, the dose rate table (along-away) 
introduced has important differences (up to 10%) with respect to the Angelopoulos dosimetry 
set. This was concluded by comparing the F(y, z)int-ref2estro and  F(y, z)ESTRO through Eqs. (3) 
and (4). The comparison produces the same error distribution as seen in Fig. 5. It appears that 
such discrepancies come from some intrinsic difference between the Angelopoulos dosimetry 
set and the (Ḋ(r,θ0)/Sk)ESTRO data source; therefore, the use of this table requires careful revi-
sion. Given our findings above, we can conclude that our in-house code works properly, despite 
the differences found (Fig. 5).

In the g(r) case, the TPS polynomial fit has good agreement with the Angelopoulos data, 
better than 1.5%. Though it is true that this is good agreement, it is necessary to consider that 
these parameters were obtained with a 30 cm diameter phantom. Figure 2 depicts the effect of 
the phantom size on the g(r), where agreement better than 2% is achieved only for r < 4 cm 
among the simulations with different phantom sizes. Accordingly, it is imperative that this 
information be used in the dose evaluation for organs over 4 cm from the applicator.(13,19,20)

Concerning F(r,θ), the phantom size chosen has less influence in the simulation results 
than for g(r) because of its definition,(13,19) and it appears that the sphere is the best choice of 
phantom shape to calculate the F(r,θ).(19) There was good agreement among different simula-
tions, with discrepancies over 5% distributed in angles very close to 0° and 180° and for large 
r values (over 10 cm).(10-13)

The differences shown in Fig. 7 are caused by a lack of entries for angles in high-gradient 
zones in the F(r,θ)VID, as we can see in Fig. 3. The underestimation of the anisotropy factor by 

Fig. 10. Gamma distribution (2%L/2 mm). On the left image, the coronal plane of one dwell setup. On the right, sagittal 
plane centered on one ovoid of the Fletcher setup.
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the lineal interpolation can increase up to 14%, and the differences over 2% cover the region 
between 1.5° to 15° near the vector cable and 167° to 176° near the source tip (for all r). From 
the Figs. 4 and 7, there is a clear correlation between the lineal interpolation discrepancies and 
the dose differences in a one dwell position setup. Therefore, these dose discrepancy zones 
are ODIN regions.

B.  Clinical conditions
The results for the one dwell position setup has particular importance for MammoSite treatments 
using one dwell step,(14,21) where the ODIN regions may directly affect approximately 17% of the 
target volume. For a balloon of 70 cm3 (approximately radius 2.6 cm approximately),(22,23) the 
target is exposed to the maximum discrepancies (over 10% of dose underestimation) shown in 
Fig. 7. In the case of contact treatments, it is quite common to use boluses or contact applicators 
between the source and the skin.(24-26) Thus, it is possible that the ODIN regions avoid (with the 
source positioned parallel with respect to the skin surface) the target volume. Therefore, there are 
other factors with more influence with respect to the calculation dose, such as the lack of scatter 
effect, which may be responsible for dose overestimation of approximately 6% to 10%.(27-29)

In the short and large applicator setup, we can see how the addition of more dwell positions 
moves the ODIN regions to the peripheral zones (Figs. 7 and 8). The short applicator setup is 
usable in postoperative adjuvant therapy for endometrial cancer with a vaginal cylinder appli-
cator,(30) which generally has diameters from 1.5 to 4 cm and a dome-shaped ending in the 
vaginal apex. In this setup, the major part of the ODIN region near the vector cable is inside 
of the cylinder and thus does not affect the target tissue. Nevertheless, the tip ODIN region 
compromises the dose calculation on the target volume (vaginal apex) and some organs at risk 
(sigmoid rectum). 

In the gynecological treatments (e.g., cervix treatment with narrow vagina or with vaginal 
extension disease), using a large applicator setup with tandem and cylinder(15) produces the 
same error distribution as the short applicators setup, with the cable ODIN region inside of 
the cylinder. When taking the GYN GEC ESTRO CTV volume delineation, only in case of 
voluminous initial disease with poor remission (at brachytherapy start) should the uterus be 
included in the intermediate risk CTV.(31) In the authors’ experience, even in that case, with an 
active length distribution of 4 cm in the vagina and 5 cm above the cervix, it is uncommon that 
the tip of the applicator is far enough inside of the CTV that tip ODIN will significantly affect 
the target dosimetry. As with the short applicator setup, the sigmoid rectum can be affected 
with a dose underestimation related to the tip ODIN zone.

The Fletcher setup in the coronal and sagittal plane (tandem centered) analysis indicated 
the same ODIN regions, all below the interventional 5% level. Nevertheless, on the tip, the 
ODIN zone may affect the organ at risk in the same manner as in the large applicator setup. In 
the case of the cable (tandem) ODIN region, it is inside of the vaginal cavity without affecting 
either the target volumes or the volumes of the organs at risk. When the sagittal plane is moved 
to the long ovoid axis, we obtain different distributions of the discrepancies (Fig. 9) depending 
on the side of the analysis. For the rectum side, a few points are over the 2%, which represents 
a good agreement between the TPS and our in-house code. On the other hand, the bladder side 
displays important discrepancies, approximately up to 10% (at r = 1.5 cm). As all ABS points 
are below the 0.5% difference level (including the rectum and bladder points), the results 
reported in this work demonstrate the manner in which such discrepancies can be hidden with 
2D dosimetry, obviating distortions on the dose volume histogram (DVH) analysis, overall on 
the dose volume index as D0.1cc, D1cc, and D2cc or V75% or V70%.

The results indicate that the multi-applicator setup produces differences below the interven-
tional value of 5% (≤ 3%). Interpreting this information in a prostate implant, we can conclude 
that no relevant differences are found in the regions corresponding to the rectum and bladder, 
overall, when the volumes of the organs at risk are delineated 9 mm above and below the target 
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volume.(32) Nevertheless, a dose underestimation for the zone corresponding to the penile bulb 
between 2% and 3% may be observed.

Endovascular treatments are a special case. ESTRO Booklet No. 8(4) suggests that the standard 
equipment mentioned in that publication, with the TG-43 parameters provided, are suitable to 
perform treatment planning in all general endoluminal procedures. Nevertheless, as the dose 
prescription is made frequently in a millimeter range (often 2 or 3 mm),(24,33) the dose distribu-
tion close to the source and the geometric uncertainties present a great challenge for the medical 
physicist. Therefore, the physicist should increase efforts to reduce any discrepancies between 
the TPS and the reference source.(34) For g(r), the major discrepancy between the Angelopoulos 
data and the polynomial fit were at 1 mm from the source. Here, it is recommend to use pub-
lished data using log-lineal interpolations.(16) Pujades-Claumarchirant et al.(35) recommend the 
use of an anisotropy table with steps of 1° to 2° to obtain a discrepancy below the 0.5% (for a 
192Ir Flexisource); however, this recommendation may require revision for other 192Ir sources.

The gamma analysis shows very good results with passing rate metrics commonly used in 
external beam radiation therapy. The TG-186 of the AAPM(36) recognize the necessity of define 
a dose accuracy tolerance requirements considering a gamma-index metrics for brachytherapy 
as an important first step, proposing an incipient criterion of 2%/2 mm with a 99% pass rate 
for clinically relevant points. On the other hand, a growing amount of literature is warning us 
about how the gamma analysis may overlook important errors in the TPS causing nonnegli-
gible deviations in the DVH.(37-40) It should be noted that the ODIN problems here described, 
correspond to a systematic error similar to those tested (real or induced for the purpose of 
sensitivity analysis) in some publications cited above. Therefore, we need to perform a very 
careful evaluation in the commissioning process, where the medical physicist must ensure that 
the good results obtained in the gamma analysis excluded the possibility of noticeable effects in 
the DVH (or some important indexes extracted from it (i.e., D2cc) caused by systematic errors. 
As the AAPM propose, the gamma analysis is a potential area of research in brachytherapy, 
which needs further validation.(36)  

Despite the dose differences found (over the international recommendations), the gamma 
analysis shows results in agreement with the criterion proposed by the TG-186.(36) Therefore, 
further studies are required to exclude the possibility of undesirable effects in the DVH caused 
by ODIN in the F(r,θ)VID, associating the conclusions obtained with the sensibility of the gamma 
analysis, emphasizing in the standard treatments most affected by this error (i.e., one dwell and 
Fletcher setup). In this sense, it is necessary to pay special attention with regard to the metric 
used since, according to the results shown in Table 2, the DTA would be the most important 
factor in the analysis due to the high dose gradient inherent to the brachytherapy sources.

C.  Comments on QA procedures
It is clear that the major contributions to the discrepancies in this case come from the VID 
anisotropy table, specifically due to the lack of information for angles < 15°. All recommenda-
tions advise a careful revision and comparison of the VID to a proper reference publication as 
part of a good practice in the acceptance commissioning process.(3,7,8) Nevertheless, this is a not 
straightforward procedure because initially a VID set could appear as reasonable sample of the 
full reference data. Pujades-Claumarchirant and colleagues(35) and the AAPM(16) recommend 
angle samples from 1° to 2° to obtain a TPS performance below 2%, which is approximately 
the angle step in most published anisotropy tables. Lozano et al.(41) examined the issue in a 
different way by finding the optimal radius and angles for a given number of entries using an 
optimization algorithm and achieving a difference below 2% for the same number of entries 
as the BrachyVision VID tables.  

NCS report No.13, ESTRO Booklet No. 8, and the TRS 430 recommend a point array to 
evaluate the TPS outcome (Fig. 11, left and middle). We can note this test is performed by 
assuming a symmetrical source with respect to it transverse axis; however, that condition is not 
a realistic assumption and, of course, is not supported by the Monte Carlo simulations.(10,42,43) 
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The last effect is produced by the cable perturbation of the water medium.(9) Therefore, the 
F(r,θ) will have a steepest slope in the cable extreme. In that case, if the vendors use the same 
angular resolution for both sides, they could obtain different results in the interpolation com-
pared with the reference data. In this situation, the Lozano approach(42) could help the physicist 
in the choice of appropriate angles and radii to minimize the discrepancies.

With the understanding that the tests represented in Fig. 11 (left and middle) are the minimum 
recommended requirements and that the physicist should always perform more strict tests, if 
we compare the points array recommended with the results shown in Fig. 7, it is clear that 
this evaluation may be insufficient as a minimum requirement to aid in the finding of major 
disagreement. For that reason, we propose (assuming cylindrical symmetry) a half star pattern 
(Fig. 11 right) as a minimum requirement to evaluate the TPS dose rate calculation. Using the 
coordinates frame recommended by the AAPM(16) (centered in the source active core with the 
0° near to the source tip), we suggest the use of 6 rays placed at 0°, 0°<ray<15°, 45°,90°, 135°, 
and 165°<ray<180°. From our point of view, this is a stricter test that forces the TPS to display 
results in high-gradient zones.

 
V. CONCLUSIONS

The results of our evaluation are in agreement with those of other publications and suggest that 
the ODIN regions found in the BrachyVision loaded with F(r,θ)VID has dosimetric implications 
in standard treatments, in certain cases affecting up 17% of the target volume (MammoSite 
case). With a maximum underestimation approximately 17%, the organs at risk could also be 
affected. From a QA point of view, we use values between 2% and 5% as reasonable tolerance 
levels. At these levels, medical physicists should investigate the source of such discrepancies 
and judge the clinical implication, adjusting the VID tables as necessary, using certain of the 
aforementioned methods. Although such dose differences are over the international recom-
mendations, the gamma analysis shows results in agreement with insipient criterion; therefore, 
further studies are required to understand the clinical implications and exclude the possibility 
of find undesirable effects in the DVH in real treatments. We recommend the use of an half star 
pattern array of control points around the source to cover more complicated areas susceptible 
to being classified as ODIN regions.
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