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Impaired use of the hand in functional tasks remains difficult to overcome in many

individuals after a stroke. This often leads to compensation strategies using the less-

affected limb, which allows for independence in some aspects of daily activities. However,

recovery of hand function remains an important therapeutic goal of many individuals,

and is often resistant to conventional therapies. In prior work, we developed HEXORR

I, a robotic device that allows practice of finger and thumb movements with robotic

assistance. In this study, we describe modifications to the device, now called HEXORR

II, and a clinical trial in individuals with chronic stroke. Fifteen individuals with a diagnosis

of chronic stroke were randomized to 12 or 24 sessions of robotic therapy. The

sessions involved playing several video games using thumb and finger movement.

The robot applied assistance to extension movement that was adapted based on

task performance. Clinical and motion capture evaluations were performed before and

after training and again at a 6-month followup. Fourteen individuals completed the

protocol. Fugl-Meyer scores improved significantly at the 6month time point compared to

baseline, indicating reductions in upper extremity impairment. Flexor hypertonia (Modified

Ashworth Scale) also decreased significantly due to the intervention. Motion capture

found increased finger range of motion and extension ability after the intervention that

continued to improve during the followup period. However, there was no change in a

functional measure (Action Research Arm Test). At the followup, the high dose group

had significant gains in hand displacement during a forward reach task. There were no

other significant differences between groups. Future work with HEXORR II should focus

on integrating it with functional task practice and incorporating grip and squeezing tasks.

Trial Registration: ClinicalTrials.gov, NCT04536987. Registered 3 September 2020 -

Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT04536987.

Keywords: upper extremity, stroke, neurorehabilitation, robotics, movement disorders, trial registration

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://www.frontiersin.org/journals/rehabilitation-sciences#editorial-board
https://doi.org/10.3389/fresc.2021.728753
http://crossmark.crossref.org/dialog/?doi=10.3389/fresc.2021.728753&domain=pdf&date_stamp=2021-10-01
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lum@cua.edu
https://doi.org/10.3389/fresc.2021.728753
https://www.frontiersin.org/articles/10.3389/fresc.2021.728753/full
https://www.ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/record/NCT04536987


Chen et al. HEXORR II Hand Rehabilitation

INTRODUCTION

There are 795,000 new strokes in the U.S. each year, and there
are currently 7.2 million adult Americans living with stroke (1).
The associated costs are 40.1 billion annually. After the acute and
subacute recovery phases, individuals with stroke move into the
chronic phase (>6months post) where they often need continued
rehabilitation, on-going care and emotional support (2). There’s

increasing evidence that rehabilitation in this chronic phase can
impact quality of life (3). In many cases, individuals regain skills
and return to independent living. However, many do not receive

the appropriate amount of rehabilitation therapies needed to
maximize recovery due to constraints of the current health care
system related to rehabilitation services (4).

In the upper extremity, reaching and grasping movements are

often impaired and a focus of rehabilitation (5, 6). At 3 months
post stroke, hand impairments are the most commonly reported
impairment after stroke (7). Typical impairments are hypertonia
(increased passive resistance to movement), inability to activate
extensors, and abnormal co-contraction of flexors (8). Interjoint
coordination and modulation of activation patterns can also
be impaired (9). Hand rehabilitation remains very difficult as
control of many joints and muscle groups is required to produce
a coordinated grasp. Movement therapies include stretching to
reduce flexor hypertonia and prevent contractures, and practice
of grasp and release tasks in different arm postures. However,
repetitive practice of grasping tasks is difficult and frustrating
for patients with moderate-severe impairments. Technologies,
such as robotics, provide assistance via forces applied to the limb
that may facilitate more effective practice, allowing completion of
movements that would otherwise be impossible. A large body of
work now exists in the area of robotic therapy. A recent meta-
analysis of 45 studies including 1,619 individuals with stroke,
reported robotic therapy improved Activities of Daily Living
(ADL) ability, function and muscle strength; however it’s unclear
what fraction of individuals will achieve long-term clinically
meaningful gains (10).

Hand therapy robots can be divided into devices designed
to be worn and used as part of ADL or devices that focus
on hand movement isolated from the proximal arm (11). Each
approach has advantages and disadvantages. Wearable devices
can be used during whole upper extremity tasks, such as reach
and grasp tasks, and can take the form of active (12–20) or passive
exoskeletons (21–24), with a growing emphasis on soft robotics
(25). However, because of space and weight constraints in
wearable devices, movement kinematics and control algorithms
can often be more precise and sophisticated with desktop devices
that isolate finger movements, but don’t allow use of the hand
with objects or in conjunction with proximal arm joints (26–33).

The hand robotic devices that have been tested clinically
are showing promising results. For example, the X-Glove is
a portable device with 5 linear actuators that independently
extend the digits (34). A clinical trial using the X-Glove in
subacute stroke showed significant gains in clinical scales of
impairment and function after 15 treatment sessions of 30min
of passive stretching followed by active-assisted, task-oriented
training. Another clinical trial from this group in chronic stroke

with the VAEDA glove using voice and EMG-control showed
advantages in functional scales compared with control therapy
without the glove (35). Amadeo (Tyromotion, Austria) is a
tabletop hand robot that provides independent motion of all five
fingertips along linear paths. A pilot clinical trial using Amadeo
in chronic stroke showed significant gains in several clinical
scales (36). A more recent controlled clinical trial in chronic
stroke showed greater gains after Amadeo training than dose-
matched conventional therapy, along with normalizing some
aspects of interhemispheric connectivity after robot training
(37). The Hand-of-Hope is an EMG-controlled exoskeleton with
linkages that couple joints within each digit, decreasing the
number of needed actuators. Clinical trials with this robot have
shown significant impairment reductions and functional gains
in chronic stroke subjects (38, 39). The FINGER robot provides
assistance to the index and middle fingers as the subject plays
a video game that simulates playing a guitar. A clinical trial
reported significant gains in several clinical scales, with authors
noting that subjects with impaired proprioception benefited less
from the training (40).

Previously, our lab developed a Hand Exoskeleton
Rehabilitation Robot (HEXORR I) (41) to retrain hand
control and function. HEXORR I is a tabletop exoskeleton device
that allows practice of finger and thumb movement integrated
with video games. Compared to other hand robots, HEXORR
I is unique in the use of a tone-compensation algorithm that
measures the resistance to passive extension movement and
applies extension assistance to counter this resistance (42).
An additional novelty is the auto-adaptation algorithm that
alters the shape and magnitude of the assistance profile to
achieve a desired target performance level. In theory with this
approach, the patient still has control of initiation, maintenance
and termination of movement, but does not have to overcome
the resistance from increased flexor tone during extension
movement. In an initial pilot study, nine chronic stroke subjects
showed significant improvements after 18 treatment sessions
in range of motion, grip strength, and the hand component
of the Fugl-Meyer score after HEXORR I use (43). Since then,
HEXORR II was developed, which includes several hardware
design changes to improve the performance of the robot, reduce
the setup time and make the training sessions more engaging by
implementation of a larger repertoire of games. In this study,
we describe HEXORR II and report the results of a clinical
trial that tested for a dosage effect from the robotic therapy.
The hypothesis was that a significant dosage effect would be
present when comparing 12 and 24 sessions of HEXORR II
training, and that gains in finger extension ability and upper
extremity function would be significant post treatment and at a 6
month followup.

METHODS

Study Design
All testing protocols were approved by the MedStar Health
Research Institute human subjects institutional review board
(protocol 2012-315) and all subjects provided written consent.
The trial was registered with clinicaltrials.gov (NCT04536987),
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where the underlying data will be made available. The inclusion
criteria were: (1) a diagnosis of stroke more than 6 months
prior to randomization; (2) presence of voluntary hand activity
indicated by a score of at least 1 on the finger mass
extension portion of the Fugl-Meyer Test of Motor Function
(44), indicating the ability to release a mass flexion grip; (3)
adequate cognitive status, as determined by Mini-Mental Status
Examination (45) score > 24. Subjects were excluded if they: (1)
were under the influence of antispasticity medications during the
study; (2) had MCP and IP passive extension limit > 30◦ from
full extension (to exclude patients with significant contracture);
(3) had pain that interfered with daily activities; (4) had excessive
tone in the fingers and thumb as determined by Ashworth (46)
scores ≥ 3; (5) had severe sensory loss or hemispatial neglect as
determined by a neurological clinical exam; (6) had any other
medical conditions that affected their upper extremity function
or their ability to complete the study protocols.

Each subject was randomized to either 12 or 24 training
sessions of 1.5 h each. Subjects received two sessions per week,
so the training duration was 6 and 12 weeks, respectively. In
each session, the subjects received robotic therapy supervised by
a technician. The subjects also completed pre-training, a post-
raining, and 6 month follow-up evaluation sessions involving
clinical scales and biomechanical motion capture. Figure 1 shows
the CONSORT flow chart for the study. Subjects were aware
that the study design entailed random assignment to high
and low dosage groups. The staff providing therapy and the
biomechanical evaluations were aware of the group assignment
of all subjects. The person performing the clinical evaluations was
unaware of the study design. Figure 2 shows the treatment and
evaluation sequence for the two groups.

Power Analysis
In a previously published HEXORR I study (43), 6 chronic stroke
subjects received a higher dosage (more than 18 sessions) and
showed increased gains of 2.17 pts in the FM hand component,
whereas 9 chronic stroke subjects only received 18 treatment
sessions and had gains in FM hand component of 1.86 points.
This data was used to estimate a priori sample size for this
study. The main hypothesis is a difference between low and high-
dosage groups in the FM across the three time points, tested
by repeated measures ANOVA. A correlation of coefficient of
0.85 is assumed between the dependent means (FM-UE score)
within subject across all time points to be tested. All outcome
measures evaluated at post training and follow-up time points
will be expected to improve in comparison to the pre training
evaluation. Outcome measures evaluated at post training for
participants who completed 24 sessions will be expected to be
further improved, in comparison of those who just completed
12 sessions. Thus, we performed a one-tail power analysis for
comparisons of dependent means (matched pairs) with type I
error probability of 5% (α = 0.05). The analysis resulted in a
required minimum sample size of seven participants per group
to attain a power of 80% for detecting a difference between 12
sessions vs. 24 sessions of treatment.

Hand Exoskeleton Rehabilitation Robot
(HEXORR II) (2nd Generation)
HEXORR II maintains the basic functionality of the first-
generation device (41, 43), but the mechanism has been
completely redesigned to improve usability and performance.
A single motor (Maxon RE40, GP42C 26/1, 4.4Nm peak
continuous torque) aligned with the metacarpophalangeal
(MCP) of the fingers, assists synchronous movement of the four
fingers (Figure 3). The motor drives a three-link serial linkage
with three joints coupled together mechanically with a chain
and gear mechanism, so that it can be controlled with a single
motor. The link lengths of the serial linkage are adjustable so that
the three joints can be aligned as close as possible to the finger
MCP, proximal interphalangeal (PIP) and distal interphalangeal
(DIP) joints. The three links are each connected to a bar that
applies forces to the palmar surfaces of the fingers, helping to
keep the fingers in natural postures during flexion and extension
movements. The bars extend into a single plane for full extension,
and collapse into a small space for full flexion. The thumb is
controlled by a secondmotor (Maxon RE32, GP32C 33/1, 3.2Nm
peak continuous torque) that drives a similar linkage that has
joints aligned with the thumb carpometacarpal (CMC), MCP
and interphalangeal (IP) joints. Two pads that are strapped to
the distal and proximal phalange of the thumb and move the
thumb in flexion/extension in a single plane that can be adjusted
for comfort. The forearm is strapped onto a horizontal surface.
The horizontal surface extends across the wrist joint to support
the palm of the hand, thereby restricting wrist flexion. A Matlab
Simulink program (xPCtarget, Stateflow) controls the motors
and provides feedback during training.

When compared to HEXORR I, the HEXORR II provided
several additional capabilities. HEXORR I actuated the MCP and
PIP finger joints, while HEXORR II actuated these joints and the
DIP joints. In HEXORR II, there was a marked reduction in the
time required to position and strap the hand into the device.
Also the moving inertia and friction of the robot was reduced
compared to HEXORR I, allowing more natural movement
trajectories and less resistance to free movement. The training
software was improved with the addition of several video games
that were not available previously. Both devices incorporated
the same auto-adaptation algorithm for adjusting the assistance
level, but the new software also provided a user interface for the
experimenter to manually adjust the assistance profile as needed.

Training Protocol
For the first session, the hand is placed in HEXORR II and
three slow passive stretches of the fingers are performed. The
movement is constant velocity and very slow (10◦/s).We retained
the motor torque applied during these stretches as the starting
point for the torque vs. angle extension assistance profiles
provided during training. The subjects then spent the rest of the
session playing several different types of games, while assisted by
the robot.

The primary therapy mode game was the Gate Game. It
required the subject to extend and flex the fingers and thumb
to guide two balls through two openings in a gate that sweeps
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FIGURE 1 | CONSORT flow diagram.

across the screen. If the digits were not opened in time to pass
the balls through the gate, the digits were moved by the robot to
full extension, before the next flexion movement was prompted.
An adaptation algorithm was implemented where the target
performance was achievement of 2 of 3 consecutive gates. If 2 of 3
gates were successfully completed, the assistance profile was kept
unchanged. If the performance was below this level, the assistance
was increased by 0.1Nm over the range from the peak extension
angle achieved in the prior three trials to full extension. If the
performance was perfect over three trials, the assistance profile
was scaled down by a 10%. This adaptation strategy allowed for
the shape of the torque vs. angle profile to evolve as well as the
overall amplitude (43). Subjects performed 3 blocks of 30 gates in
each session.

The remainder of the 90min session was spent playing
secondary video games. The subject could select from four
different PC games, which were played by moving the thumb
and fingers in HEXORR II with assistance. These games included
three PC commercial games and one custom designed game. All
these games had scoring systems and offered easy ways to set the
game difficulty and to track individual’s performance. All of the
games were normally controlled by mouse movement. Interface
electronics (Arduino) received input of finger and thumb
angles from the Matlab robot controller (RS232 communication
protocol) and mouse emulator code on the Arduino controlled
the PC mouse position on the computer screen through the
USB port of the PC. For games that required a mouse click,
a push button was controlled by the unaffected hand and

Frontiers in Rehabilitation Sciences | www.frontiersin.org 4 October 2021 | Volume 2 | Article 728753

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles


Chen et al. HEXORR II Hand Rehabilitation

FIGURE 2 | Description of timelines of HEXORR II training and evaluation. Top graph shows the training duration and evaluation time points of low dose group.

Bottom graph shows the training duration and evaluation time points of high dose group. Two dashed lines, along with two slash lines indicate a portion of 6-month

period are removed from the graph for clarity.

provided input to one of the Arduino digital ports and integrated
into the mouse control. In this way, no modification of the
commercially available PC games was needed and an array of
games could be integrated into the training. The most up to
date assistance profile was used in this mode, but was not
automatically adapted as in the Gate Game. Games included
Angry Birds, Bubble Shooter, Shopping and Ping-Pong. Studies
show gamification of upper limb stroke therapy increases
compliance and motivation (47–49).

Evaluation Sessions
Each evaluation session consisted of clinical measures and
biomechanical measures. The clinical measures included the
Action Research Arm Test (ARAT) (50) for grasp, grip, pinch,
and gross arm movement; the Fugl-Meyer (FM) for motor
impairment; the Modified Ashworth scale for hypertonia at the
fingers, wrist and elbow; the Motor Activity Log (MAL) (51) to
assess use of the impaired limb in ADL. The MAL amount of use
score was retained for statistical analysis. A Jamar dynamometer
(JAMAR 5030J1 Hand Dynamometer) was used to measure grip
strength at each time point.

For the biomechanical measures, subjects were seated in
front of a table at a standardized position and four tasks were
performed. Figure 4 shows the layout for the testing and the
locations of the task objects. The tasks were: Task (1) Full digit
ROM: straightening the fingers as much as possible from a closed
fist position, with the hand in a pronated position at midline
and the forearm supported against gravity; Task (2) Thumb
Opposition: touching the thumb to the tip of the 5th digit, to

test for thumb abduction range of motion; Task (3) Water Bottle:
grasp a water bottle placed lateral to a standard starting point at
midline and bring this water bottle to mouth to drink; Task (4)
Nut pickup: pick up a small nut placed at midline and put it on
the top of a shelf. Each task was done twice, and each trial was
40 s. Metrics from each trial were averaged across the two trials of
each task before statistical analysis.

The kinematics were measured using an electromagnetic
tracker (MiniBirds R©, Ascension Technologies). Sensors were
taped to nail of the thumb, index, middle and ring fingers.
Sensors are also taped to the dorsum of the hand and forearm.
An additional sensor is taped to the C7 vertebrae. Using
commercially available biomechanics software (MotionMonitor,
Innsport Inc.), anatomical landmarks were digitized and segment
coordinate frames calculated for the hand, forearm and trunk.
Raw data were exported into a custom Matlab program that
calculated several metrics. For the fingermarkers, the total flexion
angle was calculated for the finger distal phalange relative to
the hand segment. This represents the sum of flexion from all
three joints of each digit. For the thumb, the abduction and
flexion angles were both calculated. Standard Euler sequences
were used for these calculations (52). Finger extension deficit
was calculated as the smallest flexion angle (largest extension
angle) achieved during the trial, averaged across the four digits
measured. Finger range of motion (ROM) was calculated as the
difference between the largest and smallest flexion angle achieved,
averaged across the four digits. Trunk ROM was determined
by calculating the farthest movement of the trunk coordinate
frame relative to the starting point at the beginning of the
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trial, in forward and lateral directions. Hand displacement (due
to proximal arm movement during the reaching tasks) was
calculated similarly, except trunk movement in each direction
was subtracted from hand movement first, so that the hand
displacement metric was associated with arm movement only.

FIGURE 3 | Pictures of the HEXORR II. The thumb flexion/extension plane can

be adjusted by rotating the thumb actuator about two independent axes

through the thumb CMC and locked in place.

We included hand displacement because of the possibility that
improved hand function would lead to increased use of the upper
extremity outside of the therapy provided.

Data Analysis
For each outcome, a repeated measures ANOVA was used with
between subjects factor of group (12 sessions or 24 sessions)
and within subjects factor of time (pre, post, followup). Simple
within-subject preplanned contrasts were performed following
the ANOVA to detect changes from pre to post, and from pre
to followup. We tested that all dependent variables met the
assumptions for parametric statistics. Normality was tested with
the Kolmogorov-Smirnov Test. Homogeneity of variance was
tested with Levene’s Test. Outliers were detected if the z score was
>3. For dependent variables that did not meet these assumptions,
between group differences were tested with Mann-Whitney U-
Test, and the Wilcoxon Signed Ranks Test was used to test for
significant changes between time points.

RESULTS

Fifteen subjects were enrolled in this study and 1 subject
withdrew due to non-compliance with the training schedule. The
remaining 14 subjects were randomized to the 12 session dosage
(7 subjects) or the 24 session dosage (7 subjects). Table 1 reports
the subject characteristics. The mean age was 62.3 (11.7) years,
and the mean time since stroke was 28.7 (18.7) months. Seven
males and seven females completed the study, and the right limb
was more affected in eight subjects. At baseline, the mean Fugl-
Meyer scores were 38.6 ± 13.9 in the low dose group and 29.3 ±
7.7 in the high-dose group. The baseline ARAT scores were 22.4
± 21.6 in the low-dose group and 15.4 ± 12.7 in the high dose
group. Mean age was 62.9 ± 12.7 in the low dose group and 63.7
± 10.6 in the high dose group. Chronicity was 26.4± 18.6months
in the low dose group and 29.3 ± 18.4 months in the high dose
group. The two dosage groups were not significantly different at
baseline in the FM, ARAT, age or chronicity (p > 0.14).

Table 2 reports the statistical analysis of the clinical outcome
measures. Fugl-Meyer scores increased over the three time points

FIGURE 4 | Subjects were seated 4” from the testing table, measured from their diaphragm to the table edge. The subject was assisted to outstretch their arm

anteriorly to 90◦ shoulder flexion with elbow extended. Mark A was placed on the table in the center of the hand in this outstretched position. Mark B was 11” anterior

to the subject’s diagram and mark C was 6” directly in front of the subject’s diaphragm. Mark D was 8” anterior to the subject’s diagram. Task #1 (Digit ROM) and Task

#2 (Thumb opposition) were performed with the hand at mark C. Task #3 (Water Bottle) was performed with the hand starting and ending at mark C, and the bottle at

mark D. Task #4 (Nut pickup) also started with the hand at mark C, with the nut placed at mark B, and the target drop location on a shoulder height shelf at mark A.
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TABLE 1 | Participant Characteristics.

Subject Group assignment Age

(years old)

Sex Stroke type Affected side chronicity (months) Fugl-Meyer ARAT

1 Low dose 77 F Ischemic Right 9 56 48

2 Low dose 75 M Ischemic Right 14 34 12

3 Low dose 60 M infarct and hemorrhage Left 19 57 54

4 Low dose 64 F Ischemic Left 27 30 3

5 Low dose 39 M Ischemic Right 57 43 30

6 Low dose 67 F Ischemic Right 47 21 6

7 Low dose 58 M Ischemic Left 12 29 4

8 High dose 67 M Ischemic Left 45 40 31

9 High dose 44 F hemorrhagic Right 22 32 13

10 High dose 64 M Ischemic Left 28 33 33

11 High dose 75 F Ischemic Left 20 29 19

12 High dose 61 M Ischemic Left 63 15 3

13 High dose 60 F Ischemic Left 13 30 4

14 High dose 75 F Ischemic Right 14 26 5

MCA, Middle Cerebral Artery; ARAT, Action Research Arm Test.

TABLE 2 | Summary of clinical outcome data: mean(sd).

Pre Post Followup Group

(p)

Time

(p)

Time×group

(p)

Post-pre

(p)

Followup-pre (p)

Fugl-Meyer 33.9 (11.8) 34.7 (10.5) 36.8 (12.3) 0.165 0.045 0.546 0.374 0.033

ARAT 18.9 (17.4) 19.0 (15.8) 19.3 (16.1) 0.485 0.884 0.576 0.965 0.849

Motor activity log 1.54 (1.38) 1.63 (1.30) 1.55 (1.21) 0.169 0.912 0.454 0.712 0.958

Ash-finger flexors 1.18 (0.89) 1.25 (0.78) 0.79 (0.85) 0.739 0.024 0.329 0.635 0.068

Ash-wrist flexors 1.04 (1.03) 0.96 (0.97) 0.57 (0.81) 0.466 0.104 0.804 0.745 0.031

Ash-pronators 1.18 (1.01) 1.07 (0.98) 0.61 (0.76) 0.591 0.027 0.067 0.551 0.029

Ash-elbow flexors 1.11 (0.90) 1.00 (0.92) 0.71 (0.70) 0.394 0.103 0.381 0.568 0.028

Grip strength (lbs) 19.2 (15.4) 24.5 (22.4) 21.5 (15.6) 0.470 0.237 0.258 0.050 0.596

Ash-modified ashworth scale.

and RM-ANOVA reported a significant time factor (p = 0.045).
At the 6 month followup, the Fugl-Meyer had increased 2.9
points relative to baseline (p = 0.033, Cohen’s d = 0.24).
Significant effects were also found in the Ashworth test. For the
Ashworth test of finger flexors, the time factor was significant
(p = 0.024), indicating change over time in finger flexor tone.
Paired t-tests found a trend for decreased finger flexor tone at
the follow up time point (p = 0.068, Cohen’s d = 0.45). Results
at the other joints were similar, with significant improvements
in tone at follow up at the wrist (p = 0.031, Cohen’s d = 0.50),
pronators (p = 0.029, Cohen’s d = 0.64) and elbow flexors
(p = 0.028, Cohen’s d = 0.49). Significant score changes are
shown in Figure 5. There were no significant changes over time
for the MAL, ARAT, Ashworth (extensors) or grip strength. The
group and group∗time factors were not significant for any of the
clinical measures.

Table 3 reports the results of RM-ANOVA for the kinematic
variables. For Task 1, closing and opening the hand with the
forearm supported against gravity, RM-ANOVA reported that
finger and thumb movements showed increased range of motion
(p = 0.028) and finger extension ability (p = 0.006) over the

three time points. Relative to baseline, finger extension increased
(gain = 11.9 ± 18.3◦, p = 0.030, Cohen’s d = 0.22) immediately
after training and at the 6-month followup (gain = 19.0 ± 15.7◦,
p < 0.001, Cohen’s d= 0.36). Finger extension gains across all 14
subjects at the followup time point are shown in Figure 6. Range
of motion increased in parallel; the increase was significant at the
post timepoint (gain= 12.7± 21.1◦, p= 0.042, Cohen’s d= 0.23)
and at the 6-month followup (gain = 17.5 ± 21.3◦, p = 0.009,
Cohen’s d = 0.30). In Task 3, where the subject must reach out
and grasp a water bottle, finger extension deficit did decrease
from pre-training (56.6± 40.2◦) over the three time points to the
followup (40.7± 32.4◦), but this improvement in finger extension
did not reach statistical significance (time factor in RM-ANOVA,
p = 0.057). However planned contrasts at the post and followup
timepoints found significantly greater finger extension in Task 3
at followup (p= 0.044, Cohen’s d= 0.44).

In Task 4, picking up a nut and placing on a high shelf, max
hand displacement increased over time (p= 0.037) and also there
was a group x time interaction (p = 0.004). This was due to no
increase in the low-dose subjects (p = 0.539) and a significant
increase in the high-dose group (p = 0.005). Compared to
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FIGURE 5 | Boxplots of post-pre and followup-pre changes in outcome measures with significant changes, indicated by the red bar. Significant improvements in

Ashworth scores (Table 2) are not shown.

baseline, the high-dose group increased hand displacement by
11.8 ± 0.10 cm at the followup timepoint (p = 0.020, Cohen’s
d= 0.78). There were no other significant effects in the kinematic
variables (Table 3).

DISCUSSION

HEXORR II therapy produced reductions in upper extremity
impairments, as measured by significant gains in the Fugl-Meyer
score at the 6 month followup. The largest changes were at the 6-
month time point and included a significant reduction of flexor

tone, increased finger ROM, and decreased finger extension
deficit. The improvement in finger extension is noteworthy, as we
are aware of only one prior study of hand robotics reporting an
increase of extension range that was retained 6 months after the
intervention (35). However, there were no changes on a measure
of upper extremity function (ARAT). No dosage effects were
found, with the exception of increased hand displacement during
the task requiring forward reach (Task 4) in the high-dose group,
and no change in the low-dose group.

We observed significant long-term reductions in hypertonia
at the followup, as measured by the Modified Ashworth Scale.
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TABLE 3 | Summary of biomechanics data: mean(sd).

Metric Pre Post Followup Group

(p)

Time

(p)

Time*group

(p)

Post-pre

(p)

Followup-pre (p)

TASK 1

finger extension deficit (deg) 73.1 (53.9) 61.2 (53.5) 54.1 (52.2) 0.952 0.006 0.894 0.030 <0.001

finger ROM (deg) 97.7 (55.4) 110.4 (56.7) 115.2 (63.2) 0.718 0.028 0.544 0.042 0.009

TASK 2

thumb abduction max (deg) 39.6 (16.2) 40.6 (9.8) 42.9 (16.8) 0.413 0.689 0.608 0.808 0.607

TASK 3

finger extension deficit (deg) 56.6 (40.2) 48.6 (33.6) 40.7 (32.4) 0.804 0.057 0.345 0.263 0.044

finger ROM (deg) 79.1 (38.7) 79.9 (20.7) 78.9 (32.9) 0.276 0.989 0.433 0.916 0.982

hand displacement max (cm) 30.3 (9.0) 33.3 (15.4) 28.9 (12.8) 0.261 0.358 0.618 0.278 0.564

trunk forward disp. max (cm) 10.1 (6.2) 11.0 (5.6) 9.6 (5.8) 0.596 0.573 0.199 0.482 0.760

trunk lateral disp. max (cm) 11.8 (12.4) 8.2 (4.4) 9.2 (4.5) >.71# n/a n/a 0.594* 0.875*

TASK 4

hand displacement max (cm) 24.8 (16.0) 25.0 (14.9) 29.5 (15.2) 0.497 0.037 0.004 0.888 0.135

trunk forward disp. max (cm) 10.4 (5.8) 10.3 (4.3) 9.9 (5.2) 0.162 0.914 0.142 0.931 0.733

trunk lateral disp. max (cm) 8.7 (7.2) 7.0 (2.7) 7.2 (2.8) >0.53# n/a n/a 0.778* 0.778*

*Wilcoxon Signed Ranks Test.
#Mann-Whitney U-Test.

To our knowledge, this is a novel result not previously reported
for hand robotic devices. This reduction in flexor tone may
have contributed to the increased finger extension ability also
reported at the followup time point. While the passive stretching
performed at the beginning of each session was limited to only
a few repetitions, we applied a stretch and hold movement
immediately after each active extension attempt during the
Gate game. The possibility of co-contraction of flexors during
this stretch would have led to eccentric contraction of flexors,
which may decrease hypertonia following neurologic injury (53).
Studies with the X-Glove have shown that a 30min period of
cyclic passive stretching can transiently improve active motor
performance in stroke patients, with effects carrying over across
sessions in subacute stroke (54). Improvements in subacute
stroke subjects were reported in measures of impairment and
function following training that included 30min of passive cyclic
stretching followed by active-assisted, task practice (34). Authors
attributed the passive stretching to facilitating the effectiveness
of the active training and preventing any increases in spasticity.
There is also some evidence that orthotic-based static stretching
can decrease upper extremity spasticity, although there is no
evidence this alone will improve motor performance (55, 56).
Thus, our results contribute to the evidence supporting further
study into the use of robotics to integrate stretching protocols
into active motor retraining.

One unique aspects of this study was the detailed
biomechanical analysis that reported the kinematics of finger
and arm movements under several conditions. Results support
the use of HEXORR II in combination with practice of functional
upper extremity tasks. The HEXORR II focuses on hand
movement with the forearm and wrist immobilized and the arm
supported against gravity. Hand movements in conjunction with
proximal arm movements were not practiced, as is required for
functional use of the upper extremity. This might explain the

gains in an impairment scale (Fugl-Meyer), but no gains in a
test of function that tests the ability to pick up and place objects
(ARAT). There is strong evidence that control of the fingers
degrades when proximal muscles must support the arm against
gravity (57–59). These studies are consistent with our kinematic
results, as finger extension did improve significantly when tested
with the arm supported against gravity, but finger extension
during reach and grasp tasks did not improve significantly at
the post time point (however finger extension gains in the water
bottle task did reach significance at followup). Thus, the training
of distal hand control did produce gains in the training task,
but did not generalize strongly to improved function in reach
and grasp tasks without additional practice of unsupported
reach and grasp tasks. Two large multisite clinical trials of whole
arm and hand robotic training also found similar results. The
Armin was found to produce greater gains in the Fugl-Meyer
scale than conventional therapy, but had no advantages in a
motor function scale (60). In the RATULS study, robotic therapy
produced greater gains in the Fugl-Meyer compared to usual
and customary care, but had no advantage on the ARAT (61).
In contrast, studies which combined robotic hand training with
functional task practice have reported gains in functional scales.
A recent study with Amadeo reported gains in the nine-hole
Peg test, when subjects received the robotic training after a 3 h
session of physiotherapy that included 45min of occupational
therapy and 45min of biomechanical training of upper and
lower limbs (37). Several other studies have used wearable hand
robots [X-Glove (34), VAEDA (35), Hand-of-Hope (38, 39),
HandSOME (21)] that enabled practice of reach, grasp and
release tasks with robotic assistance to hand movement. All of
these studies reported significant gains on a variety of functional
scales. Thus, functional gains with devices similar to HEXORR
II that focus on distal control only, might be achieved by
integrating practice of coordinated proximal and distal limb
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FIGURE 6 | Decreased extension deficit at the follow-up time point compared

to the pre-training time point measured during Task 1. Changes are strongly

correlated across the Index, Middle, and Ring fingers. Subject numbers

correspond to subject numbers in Table 1.

control, as is often done during conventional therapy. Robotic
and conventional therapies promote distinct patterns of motor
recovery (62), and there is evidence from clinical trials that
the addition of conventional task practice to robotic therapy is
superior to robotic therapy alone (63–65).

Our results are generally consistent with prior studies of
robots that train the fingers in isolation from the proximal arm.
We found a 2.9 point change in the Fugl-Meyer at followup, while
therapy using the FINGER robot reported gains of 1.8-3.7 at
followup (40), and a study using the Amadeo robot reported a 5.1
Fugl-Meyer point change (36). Our previous clinical study using
HEXORR I also reported an increase in finger extension ability
and significant gains in the Fugl-Meyer hand section subscore
after 18 h of training (43). However our prior study also reported
grip strength increases and significant gains in the ARAT in a

subgroup of low tone subjects. The group average Fugl-Meyer
gain of 2.9 points is lower than the minimally clinically important
difference (MCID) values reported by other research groups.
Page et al. (66) reported that the estimated MCID of the UE-
FM score is as low as 4.25 points whereas Greisberger et al. (67)
used an MCID of 5.2 points for the UE-FM. However, if we use
five points as MCID on the UE-FM, five subjects achieved MCID
at the followup (gains of 5,5,5,7,10 points). If we use 4 points as
MCID, a total of 9 subjects achieved MCID at the followup (4
subjects had gains of 4 points at followup).

Our current study did not find any changes in the ARAT
or grip strength. This might be explained by fact that the prior
HEXORR I training included a squeezing task that required
generation of targeted isometric matching flexion forces from
the fingers and thumb, followed by releasing of the grip within
a certain time interval. This squeeze and release practice might
have helped subjects improve grip force and the ARAT, which
involves grasping and releasing objects. We elected to drop the
squeezing task from the current study to increase the number
of repetitions that focused on extension movement. The prior
studies with the FINGER and Amadeo also reported gains in
functional scales (ARAT, Box-and-Blocks, Jebsen Taylor Hand
Function Test), while we did not see any improvement on
functional scales in this study. One possible explanation is the
low functional level of our subjects. Our mean intake Fugl-
Meyer score was lower than these other two studies, and our
intake ARAT scores were low (mean of 19/57 points), with 6
of our subjects having an intake ARAT of 6 points or less. In
more severely impaired subjects, practice of grip or squeezing
tasks might be important to include with finger extension
training. Gains in biomechanical and clinical measures were
largest at the followup time point, with some metrics even
showing non-significant gains immediately after training, but
significant improvements at the 6-month time point (Fugl-
Meyer, Ashworth, Task 3 finger extension). A similar result
was reported by Thielbar et al., who found that gains in grip
aperture were not significant after robotic hand training, but
continued to increase during the 10 week followup and became
significant (35). According to the “threshold” hypothesis (68),
initial gains at the post-treatment time point could lead to
further improvements during the followup period if spontaneous
movement of the affected limb increased. However, MAL scores
did not indicate increased use of the more-affected arm within
ADL tasks. Future studies may consider using objective methods
to assess upper extremity activity as an outcome measure (69).

This study randomly assigned participants to either 12
sessions or 24 sessions. Based on RM-ANONA analysis, the
group∗time factors were not significant for our clinical outcomes
measures (Fugl-Meyer and ARAT). The only significant between-
group difference was increase in hand displacement in the high
dose group during a forward reaching task that appeared at
followup, which suggests practice of reaching tasks during this
period. It should be noted that the treatment period in the high
dose group was 3 months, very long compared to other studies.
Long duration training periods might be needed to affect durable
change in functional reach and grasp tasks in chronic stroke
patients. The low number of subjects in the treatment groups in
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our study limited our ability to detect a dosage effect; however,
a larger scale clinical trial also did not report dosage effects
(70). More study is needed to understand why a dosage effect
is often not present in neuro-rehabilitation clinical trials of the
upper extremity.

Limitations
This study has several limitations that should be noted. We
powered our study using data from the FM-UE measure, and
we cannot rule out the possibility that our null result for ARAT,
MAL, and some of the biomechanical measures were due to
lack of power, with too small of a sample for comparison of
dosage effects (71). The average of two trials for kinematic
analysis is relatively lower than the recommended number of
trials for accurate assessment of upper limb movement after
stroke (72, 73). An additional measurement time point at 6 weeks
in the high-dose group would have provided more information
on dose-response. The MCID used for FMA-UE in this study
is considerably lower than the recent study in acute stroke
individuals done by Hiragami et. al (74), whereas MCID used
for ARAT in this study is considerably lower than another
acute stroke study done by Lang et. al (75). HEXORR II allows
practice of isolated thumb movement, but the other 4 fingers are
coupled together. Inability to isolate these four fingers may have
limited the therapy’s effectiveness to target weak fingers, since a
weak finger can be carried along by the actions of the other 3.
Another limitation was that the automatic adaptation algorithm
only operated during the Gate Game, and not the secondary
games, which were commercially available PC games chosen
for their professional graphics and potential to entertain the
subject. However, the downside of this approach is that the robot
controller has no knowledge of current performance during the
game, so automatic adaptation of assistance was not possible.
The device currently is not portable, but getting into the device
was straightforward and the potential for a home based portable
device that can be used independently by patients seems possible
if the overall size and footprint of the device can be reduced.

CONCLUSIONS

Overall, HEXORR II training reduced impairment levels,
increased finger extension ability and decreased flexor hypertonia

at the 6-month followup. Future work with HEXORR II

should focus on integrating it with functional task practice
and incorporating grip and squeezing tasks. Notably, the easy
setup and gaming interface make HEXORR II a potential home
therapy device that could be used in conjunction with outpatient
therapy, where they would receive functional upper extremity
task practice.
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