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Microglia and astrocytes maintain tissue homeostasis in the nervous system. Both
microglia and astrocytes have pro-inflammatory phenotype and anti-inflammatory
phenotype. Activated microglia and activated astrocytes can contribute to several
neurological diseases. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs),
two groups of non-coding RNAs (ncRNAs), can function as competing endogenous
RNAs (ceRNAs) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs
(mRNAs). LncRNAs and circRNAs are involved in various neurological disorders. In this
review, we summarized that lncRNAs and circRNAs participate in microglia dysfunction,
astrocyte dysfunction, neuron damage, and inflammation. Thereby, lncRNAs and
circRNAs can positively or negatively regulate neurological diseases, including spinal
cord injury (SCI), traumatic brain injury (TBI), ischemia-reperfusion injury (IRI), stroke,
neuropathic pain, epilepsy, Parkinson’s disease (PD), multiple sclerosis (MS), and
Alzheimer’s disease (AD). Besides, we also found a lncRNA/circRNA-miRNA-mRNA
regulatory network in microglia and astrocyte mediated neurological diseases. Through
this review, we hope to cast light on the regulatory mechanisms of lncRNAs and
circRNAs in microglia and astrocyte mediated neurological diseases and provide new
insights for neurological disease treatment.

Keywords: lncRNA, circRNA, microglia, astrocyte, neurological diseases

INTRODUCTION

Both microglia and astrocytes are glial cells in the central nervous system (Kwon and Koh, 2020).
Microglia are resident immune cells and the first responders to nervous system changes. Astrocytes
can modulate cerebral blood flow (Greenhalgh et al., 2020). And both of them can also promote
neurotransmission, synapse formation, and synapse pruning (Vainchtein and Molofsky, 2020). In
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response to pathological conditions, microglia and astrocytes
are activated. Activated microglia and activated astrocytes lose
their homeostatic functions and involve in neuroinflammation
in the central nervous system (Leng and Edison, 2021).
Increasing evidence investigates that the dysfunctions
of microglia and astrocytes are beneficial for various
neurological diseases, like central nervous system injury
and neurodegenerative disorders (Gao et al., 2013; Jha
et al., 2019; Pietrowski et al., 2021). Targeting microglia
and astrocytes could be a promising approach for the
treatment of neurological diseases (Peterson and Binder,
2020; Huang X. et al., 2017).

Long non-coding RNA (lncRNA) and circular RNA (circRNA)
are two types of non-coding RNAs (ncRNAs) without the
potential to encode proteins (Han T. S. et al., 2020). LncRNAs
are transcripts with more than 200 nucleotides in length.
LncRNAs include five different subtypes: sense lncRNA, antisense
lncRNA, bidirectional lncRNA, intergenic lncRNA, and intronic
lncRNA (Braga et al., 2020). LncRNAs regulate gene transcription
and translation via interacting with the 3′untranslated region
(3′UTR) of messenger RNA (mRNA) (Dykes and Emanueli,
2017). MicroRNAs (miRNAs) are small single-stranded RNAs.
MiRNAs recognize miRNA response elements (MREs) on
3′UTR of mRNA and silence target genes through repressing
mRNA translation or degrading the mRNA (Cheng et al.,
2015; Salim et al., 2021). LncRNAs contain MREs and can
use MREs to bind miRNAs. LncRNAs function as competing
endogenous RNAs (ceRNAs) to sponge miRNAs and reduce
miRNA activity, finally, impair the interaction between miRNAs
and their targeted genes (Kalpachidou et al., 2020; Moreno-
García et al., 2020). LncRNAs have been demonstrated to involve
in epigenetic mediation and the modulation of transcription,
translation, RNA metabolism, cell autophagy, cell apoptosis,
etc. (Qian et al., 2019). In particular, it is suggested that
lncRNAs can influence neural cell behaviors, including neurons,
microglia, astrocytes, and oligodendrocytes (Shi et al., 2018).
For example, lncRNA AK148321 can abrogate microglial
neuroinflammation (Gao et al., 2021). LncRNAs are also
related to the development of spinal cord injury (SCI),
brain injury, and neurodegenerative diseases (Cuevas-Diaz
Duran et al., 2019). CircRNAs have covalently closed loop
structures without 5′ caps or 3′ Poly A tails. CircRNAs are
stable in eukaryotic cells. CircRNAs can interact with RNA-
binding proteins and modulate mRNA stability, and gene
transcription. It is proved that endogenous circRNAs can
be translated into proteins (Chen and Yang, 2015; Meng
et al., 2017). Moreover, like lncRNAs, circRNAs also have
MREs. CircRNAs also act as ceRNAs and inhibit miRNA
repression on its targeted mRNA (Moreno-García et al.,
2020). Many studies report that circRNAs can influence
cell proliferation, autophagy, differentiation, and pyroptosis
(Fu and Sun, 2021). For instance, one research indicated
that circHIPK2 knockout can suppress astrocyte autophagy
and astrocyte activation (Huang R. et al., 2017). CircRNAs
also play pivotal roles in neurological diseases, including
ischemic stroke and cerebral ischemia-reperfusion injury (IRI)
(Yang et al., 2018).

In this review, we discussed the effects of both lncRNAs and
circRNAs on microglia and astrocyte mediated neurological
diseases. We also found a network of lncRNA/circRNA-
miRNA-mRNA in neurological diseases. In addition,
there are also targeted therapies for the treatment of
neurological diseases.

MICROGLIA AND ASTROCYTES IN THE
NERVOUS SYSTEM

Microglia
As tissue-resident macrophages derived from progenitors in
the embryonic yolk sac, microglia are parenchyma cells and
constitute approximately 10% of central nervous system cells
(Salter and Stevens, 2017). Under physiological conditions,
microglial cells remain in a resting state. During embryonic
and postnatal development, microglia can remove apoptotic
neurons, support neuronal survival, guide vascularization, and
regulate synaptic pruning. In the adult brain, microglial cells
are necessary for adult neurogenesis, skill learning, memory
formation, and normal behaviors (Kierdorf and Prinz, 2017).
Under pathologic conditions, microglial cells undergo the
transformation from the resting state to an activated state
(Hanisch and Kettenmann, 2007). M1 microglia (classical
activation) can release pro-inflammatory factors, such as
tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-6,
IL-12, inducible nitric oxide synthase (iNOS). M2 microglia
(alternative activation) can produce anti-inflammatory factors,
including transforming growth factor-β, IL-4, and IL-10.
M1 microglia can promote inflammation and delay tissue
repair. While M2 microglia can attenuate inflammation and
promote tissue regeneration (Hu et al., 2015). Plenty of
works suggested that microglial dysfunction participates in
several neurological disorders, including SCI, brain injury,
depression, stroke, epilepsy, neuropathic pain, Parkinson’s
disease (PD), multiple sclerosis (MS), and Alzheimer’s disease
(AD) (Wolf et al., 2017; Araki et al., 2020; Tripathi et al.,
2021).

Astrocytes
Astrocytes are the most abundant glial cells within the central
nervous system. Astrocytes can interact with brain endothelial
cells to form the blood-brain barrier (Abbott et al., 2006).
Besides, astrocytes are also essential for synaptic plasticity,
memory consolidation, cognitive function, and neuronal survival
(Santello et al., 2019). Under pathological conditions (e.g.,
stroke, infection, ischemia, cancer, etc.), astrocytes become
activated (Pekny and Nilsson, 2005). Activated astrocytes can
be classified into A1 astrocytes (pro-inflammatory phenotype)
and A2 astrocytes (anti-inflammatory phenotype) (Liu L. R.
et al., 2020). A2 astrocytes are helpful for neurons and can
promote neuron survival and growth. While A1 astrocytes
are neurotoxic and stimulate neuron death (Liddelow and
Barres, 2017). Activated astrocytes are involved in various
neurological diseases, like stroke, epilepsy, SCI, brain injury,
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and neurodegenerative diseases (Karthikeyan et al., 2016; Nutma
et al., 2020).

LONG NON-CODING RNAs IN
MICROGLIA MEDIATED
NEUROLOGICAL DISEASES

Spinal Cord Injury
Spinal cord injury is one neurological disease with impairment
of sensory and motor function. The SCI pathological process
includes primary and secondary injury (Anjum et al., 2020).
Primary SCI occurs owing to mechanical damage, for instance,
compression or contusion in the spinal cord. Secondary SCI
is caused by pathological changes after primary injury, which
can result in inflammation, oxidative stress, glial scar formation,
neuronal apoptosis, and neuronal necrosis (Anjum et al.,
2020; Wang et al., 2020d). Recently, SCI models induced
by lipopolysaccharide (LPS) are widely used to explore SCI
pathogenesis and find new therapeutic medicine to treat SCI
(Xiao et al., 2021).

MiR-382-5p expression is significantly induced by LPS in BV2
cells (mouse microglial cell lines). MiR-382-5p targets 3′UTR
of Neuregulin-1 (Nrg1). MiR-382-5p deletion stimulated by
its inhibitor can remarkably increase Nrg1 expression in BV2
cells (Xiang et al., 2021). LncRNA Ftx expression is markedly
decreased in tissues collected from SCI mice and in LPS-
stimulated BV2 cells. Ftx targets miR-382-5p and represses its
expression. Besides, Ftx also competes with Nrg1 for miR-382-5p
binding, resulting in suppressing miR-382-5p repression on Nrg1
expression (Xiang et al., 2021). Ftx over-expression increases
Nrg1 expression levels through miR-382-5p. Increased Nrg1
attenuates the expressions of inflammation factors (e.g., iNOS,
IL-6, TNF-α, and IL-1β) in LPS-treated BV2 cells. As a result,
increased Ftx relieves microglia inflammation response through
the miR-382-5p-Nrg1 axis (Xiang et al., 2021). In addition,
this study also indicated that over-expressed Ftx can suppress
inflammation response and improve functional recovery in the
SCI mouse model (Xiang et al., 2021). Exosomes, which belong to
extracellular vesicles (EVs), can be secreted by all cells and carry
various materials, including proteins, lipids, mRNA, ncRNAs,
etc. And exosomes derived from mesenchymal stem cells possess
the potential for SCI treatment (Ren et al., 2020). It is reported
that peroxisome proliferator-activated receptor γ (PPARγ) can
suppress inflammatory phenotype in macrophages (Nelson et al.,
2018). MiR-130b-3p can interact with 3′UTR of PPARγ and
reduce its expression. LncGm37494 is reported to be abundant
in exosomes originated from hypoxia-treated adipose-derived
stem cells (ADSCs). Exosomal lncGm37494 from ADSCs can
shift microglia polarization from M1 to M2 via decreasing miR-
130b-3p and increasing PPARγ. Finally, exosomal lncGm37494
contributes to improving functional recovery following SCI in
mice (Shao et al., 2020). In the SCI rat model, receptor-activity
modifying proteins 3 (RAMP3) is up-regulated and miR-222-
5p is decreased. MiR-222-5p can target RAMP3 3′UTR and
inhibit RAMP3 expression. Enhanced RAMP3 expression or

miR-222-5p inhibitor can promote cell apoptosis and increase
TNF-α and IL-6 expressions in LPS-treated microglia (Cui
et al., 2021). LncRNA lymphoid enhancer-binding factor 1
(LEF1) antisense RNA 1 (LEF1-AS1) is up-regulated in LPS-
treated microglia cells that are collected from the central
nervous system of normal rats. LEF1-AS1 acts as a ceRNA
via sponging miR-222-5p. LEF1-AS1 small interfering RNA
(siRNA) can augment miR-222-5p expression. Knocking down
LEF1-AS1 dampens microglia apoptosis and promotes microglial
cell viability through the miR-222-5p-RAMP3 axis. LEF1-AS1
silence can impede SCI progression in rats (Cui et al., 2021).
Pyroptosis is a type of programmed cell death involved in
neuroinflammation (Dai et al., 2019). And it is proved that
inhibiting microglial pyroptosis can promote motor function
recovery following SCI (Xu S. et al., 2020). F630028O10Rik
levels are higher in the peripheral blood from SCI patients
compared with normal people. F630028O10Rik can sponge
miR-1231-5p to up-regulate Col1a1. Subsequently, increased
Colla1 can enhance microglial pyroptosis through the activation
of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)
pathway. Increased F630028O10Rik expression can indicate
worse functional recovery after SCI (Xu S. et al., 2020). Smad
ubiquitination regulatory factor 1 (Smurf1) is a downstream
target of miR-27a and its expression can be attenuated by miR-
27a. Smurf1 over-expression or miR-27a down-regulation can
promote TNF-α and IL-6 secretion in LPS-treated microglia
(Zhao Q. et al., 2020). LncRNA X-inactive specific transcript
(XIST) expression is elevated in LPS-treated microglial cells
and in injured rat spinal cord tissues. XIST sponges miR-
27a and negatively mediates miR-27a expression. XIST deletion
abrogates SCI-evoked microglia apoptosis and inflammatory
injury through the miR-27a up-regulation and Smurf1 down-
regulation. Moreover, the deficiency of XIST can relieve SCI
(Zhao Q. et al., 2020). The expression of lncRNA metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1) is
higher in SCI rats compared to normal rats. Over-expressed
MALAT1 activates the IkappaB kinase β (IKKβ)/nuclear factor
kappa B (NF-κB) signaling pathway by down-regulating miR-
199b. Eventually, MALAT1 over-expression promotes pro-
inflammatory cytokine production in LPS-treated microglial
cells (Zhou et al., 2018). Zhou et al. (2018) also revealed that
MALAT1 silence can alleviate SCI through inhibiting microglial
inflammatory responses.

Traumatic Brain Injury
Traumatic brain injury (TBI) is recognized as a primary
reason for high morbidity and high disability around the
world (Jamjoom et al., 2021). The primary injury of TBI
occurs directly in response to mechanical forces, like contusion,
hemorrhage, hypoxia, etc. The primary injury can trigger
the secondary injury that relates to several biochemical
alterations, such as inflammation, nerve cell damage, and
cerebral edema, contributing to exacerbating TBI progression
(Alam et al., 2020; Gasco et al., 2021). Tumor necrosis factor
receptor-related factor 6 (TRAF6) is a target of miR-873-5p.
LncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1) is up-
regulated in the cerebral lesions of TBI mice. KCNQ1OT1
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down-regulation can increase miR-873-5p expression. Reducing
KCNQ1OT1 blocks microglial inflammation through the miR-
873-5p-TRAF6 axis (Liu N. et al., 2021). Liu N. et al. (2021)
revealed that KCNQ1OT1 depletion can mitigate TBI-induced
injuries, including neurological deficits, neuron loss, brain
edema, and blood-brain barrier damage (Liu N. et al., 2021).
Many studies revealed that inhibiting microglial activation
and neuroinflammation can hamper TBI development (Kumar
et al., 2017). The E3 ubiquitin ligase Nrdp1 can interact
with myeloid differentiation factor-88 adaptor protein (MYD88)
and decrease MYD88 protein levels (Cheng et al., 2021).
LncRNA HOX antisense intergenic RNA (HOTAIR) is up-
regulated in the cerebral cortex of TBI mice and in LPS-treated
BV2 cells. HOTAIR up-regulation attenuates the interaction
between Nrdp1 and MYD88, thus, to increase MYD88 protein
expression. HOTAIR knockout enhances Nrdp1-mediated the
down-regulation of MYD88 to suppress microglial activation
and microglia inflammatory factor (e.g., TNF-α, IL-1β, and IL-
6) release, which can ultimately repress TBI (Cheng et al., 2021).
Nod-like receptor protein 3 (NLRP3) is a target of miR-7a-5p.
NLRP3 absence decreases iNOS expression, nitric oxide (NO)
production, and inflammatory cytokine (e.g., IL-1β, IL-6, and
TNF-α) expression (Meng et al., 2021). LncRNA maternally
expressed gene 3 (MEG3) is over-expressed in the TBI cell
model (LPS + ATP induced microglial cells that are obtained
from normal mice). MEG3 targets miR-7a-5p and reduces its
expression. MEG3 also functions as a ceRNA for miR-7a-5p and
represses miR-7a-5p inhibition on NLRP3. Functionally, MEG3
up-regulation enhances microglial activation and inflammation
through the miR-7a-5p-NLRP3 axis in the TBI in vitro model
(Meng et al., 2021).

Ischemia-Reperfusion Injury
More and more evidence revealed that recovery of blood flow
in a short time after cerebral ischemia can lead to cerebral
IRI (Pan et al., 2007). IRI gives rise to reactive oxygen species
(ROS), calcium overload, neuron death, platelet activation, and
inflammation, which can ultimately cause irreversible damage to
the brain (Wu et al., 2010; Bai and Lyden, 2015). In research
studies, middle cerebral artery occlusion (MCAO)/reperfusion
(MCAO/R) treatment in vivo and oxygen-glucose deprivation
(OGD)/reoxygenation (OGD/R) treatment in vitro are used to
mimic cerebral IRI (Zheng et al., 2021). It is reported that up-
regulated Krüppel-like factor 4 (KLF4) decreases M1 marker
(CD86 and iNOS), TNF-α, and IL-1β levels, while increases
M2 marker (CD206 and Arg1), IL-10, and IL-4 expressions
in OGD/R-induced BV2 cells (Li T. et al., 2020). MEG3 is
elevated in the brain tissues from MCAO/R mice and in OGD/R-
induced BV2 cells. MEG3 binds to KLF4 and represses its protein
progression. MEG3 absence enhances M2 polarization and
reduces M1 polarization in microglial cells by targeting KLF4.
Eventually, MEG3 knockdown decreases neuroinflammation to
lessen cerebral IRI (Li T. et al., 2020).

Long non-coding RNA small nucleolar RNA host gene
4 (SNHG4) is remarkably down-regulated in blood and
cerebrospinal fluid samples obtained from patients with acute
cerebral infarction. Enhanced SNHG4 expression can facilitate

microglia M2 polarization and promote anti-inflammatory factor
release (Zhang S. et al., 2020). MiR-449c-5p can bind with the
3′UTR of signal transducers and activators of transcription 6
(STAT6). MiR-449c-5p inhibitor increases STAT6 expression.
SNHG4 targets miR-449c-5p and inhibits its expression. Up-
regulated SNHG4 activates the STAT6 signaling pathway by
suppressing miR-449c-5p. Therefore, SNHG4 up-regulation
attenuates microglial inflammatory responses and microglia-
mediated neuronal damage during cerebral IRI (Zhang S. et al.,
2020). LncRNA SNHG3 is elevated in OGD/R-stimulated BV2
cells. Interference with SNHG3 impedes microglial activation and
dampens the release of pro-inflammatory factors (TNF-α and IL-
6) through abrogating histone deacetylase 3 (HDAC3) expression
(Huang D. et al., 2021). In transient MCAO mice, SNHG3
deletion weakens cerebral IRI (Huang D. et al., 2021). Diabetes
mellitus (DM) is characterized by high sugar in the blood and
can worsen cerebral IRI (Wang and Zhou, 2018). MALAT1
is highly expressed in cortical tissues of diabetic rats suffering
the IRI and in HAPI cells (rat immortalized microglia cell
line) undergoing high glucose and hypoxia-reoxygenation. Over-
expressed MALAT1 enhances microglia inflammatory response
through activating the MyD88/IRAK1 (IL-1 receptor-associated
kinase 1)/TRAF6 signaling pathway. Finally, increased MALAT1
aggravates cerebral IRI in diabetic rats (Wang and Zhou,
2018). LncRNA nuclear enriched abundant transcript 1 (NEAT1)
expresses highly in the blood of ischemic stroke patients and
in OGD/R-induced BV2 cells (Ni et al., 2020). One research
reported that NEAT1 can serve as a ceRNA for miR-224 and
thus enhance IL-33 production and promote M2a polarization
in macrophages. NEAT1 can also hinder A1 astrocyte activation
(Liu D. et al., 2021). Ni et al. (2020) found that suppressing
NEAT1 abrogates microglial M1 polarization to reduce neuronal
apoptosis after cerebral IRI.

Stroke
Stroke is a severe disorder with high rates of mortality and
disability around the world. Stroke can be divided into ischemic
stroke (major type) and hemorrhagic stroke (Xu et al., 2021).
Ischemic stroke is mainly due to atherosclerosis in large vessels
and atherosclerotic plaque ruptures. MCAO models in rodents
and OGD in vitro models are usually used for experimental
ischemic stroke researches (Sommer, 2017).

Malate dehydrogenase 2 (MDH2) binds to the mRNA of
neutrophil chemoattractant C-X-C motif ligand 2 (CXCL2)
and reduces CXCL2 mRNA levels (Chen J. et al., 2021).
LncRNA U90926 is highly increased in microglia isolated from
the ischemic hemispheres in C57BL/6J mice. U90926 interacts
with MDH2 to impair the interaction between MDH2 and
CXCL2 mRNA. Increased microglial U90926 enhances CXCL2
protein levels. Increased CXCL2 release from microglia can
ultimately stimulate neutrophil infiltration, which can exacerbate
brain injury during ischemic stroke. Once microglial U90926
is silenced, the neurological function is improved and infarct
volume is diminished in ischemic stroke mice (Chen J. et al.,
2021). LncRNA opa-interacting protein 5 antisense RNA 1
(OIP5-AS1) lowly expresses in the blood of stroke patients.
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It is shown that OIP5-AS1 down-regulation increases miR-
186-5p levels (Chen Y. et al., 2021). Over-expressed miR-186-
5p leads to microglia inflammation and oxidative stress via
blocking the expression of C1q/tumor necrosis factor-related
protein 3 (CTRP3), resulting in neuron damage during ischemic
stroke. Further, OIP5-AS1 up-regulation lessens infarct volume
and weakens neuron apoptosis and loss in rats with ischemic
stroke (Chen Y. et al., 2021). One research demonstrated
that lincRNA-EPS can be loaded in leukosomes (biomimetic
vesicles). And these leukosomes carrying lincRNA-EPS can
target the ischemic area and co-localize with microglia in
ischemic stroke mice (Zhang B. et al., 2020). LincRNA-EPS
from leukosomes impedes microglia activation and microglia
infiltration in vivo. In addition, leukosomes-loaded lincRNA-EPS
can also accelerate neuron regeneration via hindering microglia
inflammation in cerebral infarction (Zhang B. et al., 2020).
It is said that sirtuin1 activation can abolish NF-κB signaling
(Kauppinen et al., 2013). MiR-425-5p can target sirtuin1. In
brain tissues of MCAO mice, SNHG8 expression is down-
regulated. MiR-425-5p can share binding sites with SNHG8
and sirtuin1. SNHG8 functions as a ceRNA for miR-425-5p
and inhibits miR-425-5p effects on sirtuin1 (Tian et al., 2021).
SNHG8 over-expression can attenuate miR-425-5p to increase
sirtuin1 expression and suppress NF-κB phosphorylation.
SNHG8 amplification suppresses microglial activation and
inflammation through the miR-425-5p/sirtuin1/NF-κB pathway,
resulting in diminishing brain microvascular endothelial cell
(BMEC) damage. Furthermore, after ischemic stroke, over-
expressed SNHG8 dampens neuron damage, cerebral edema, and
neurological function loss in mice (Tian et al., 2021). H19 levels
are significantly raised in the plasma isolated from stroke patients
compared to normal people. Repressing H19 reduces HDAC1 to
facilitate microglial polarization from M1 to M2. H19 inhibition
promotes cerebral IL-10 production and decreases cerebral TNF-
α and IL-1β levels in ischemic mice. Therefore, H19 reduction
can inhibit neuroinflammation in ischemic stroke (Wang et al.,
2017). In ischemic stroke mice, H19 siRNA decreases cerebral
ischemic injury and attenuates neurological deficits. Moreover,
H19 would be a promising biomarker to diagnose ischemic
stroke (Wang et al., 2017). LncRNA Nespas is greatly expressed
in ischemic cerebral tissues of MCAO mice and in BV2 cells
subjected to OGD. High Nespas expression hinders transforming
growth factor-beta-activated kinase 1 (TAK1) activation via
abolishing the interaction between tripartite motif 8 (TRIM8)
and TAK1 (Deng et al., 2019). Over-expressed Nespas limits NF-
κB activation through TAK1, which can restrain microglia death
and neuroinflammation in the ischemic microenvironment.
Moreover, Nespas silence in MCAO mice deteriorates ischemic
brain injury (Deng et al., 2019). LncRNA 1810034E14Rik declines
markedly in microglial cells after the OGD exposure. Elevated
1810034E14Rik expression impedes microglia activation and
microglia inflammation in vitro and in vivo (Zhang et al., 2019b).
In addition, up-regulated 1810034E14Rik can abrogate neuronal
damage caused by OGD-treated microglia. Further, enhanced
1810034E14Rik expression promotes motor function recovery
and decreases infarct volumes in MCAO mice (Zhang et al.,
2019b). SNHG14 and cytosolic phospholipase A2 (cPLA2) group

IVA (PLA2G4A) are notably up-regulated in ischemic cerebral
tissues and in OGD-treated BV2 cells. MiR-145-5p is down-
regulated in MACO mice. PLA2G4A is a downstream target
of miR-145-5p. The miR-145-5p inhibitor can increase TNF-α,
and nitrate levels in OGD-treated BV2 cells (Qi et al., 2017).
SNHG14 elevates PLA2G4A expression and abrogates miR-145-
5p expression. Functionally, SNHG14 can facilitate microglia
activation and microglia-mediated neuron apoptosis through
the miR-145-5p-PLA2G4A axis in response to ischemic stroke
conditions. Further, highly expressed SNHG14 can act as an
induction effector of cerebral infarction severity (Qi et al., 2017).
MiR-96-5p abrogates NF-κB signaling and TNF-α production
via suppressing IKKβ expression in OGD-stimulated BV2 cells
(Zhang M. et al., 2021). LncRNA XIST is highly expressed in
BV2 cells exposed to OGD treatment. XIST serves as a sponge
for miR-96-5p to antagonize inhibitory effects of miR-96-5p
on the TNF-α expression. XIST up-regulation increases TNF-α
expression through the miR-96-5p-IKKβ-NF-κB axis (Zhang M.
et al., 2021). Moreover, TNF-α stimulation can increase XIST
mRNA levels in BV2 cells. The XIST-TNF-α feedback enhances
the pro-inflammatory polarization of microglial cells, leading
to exacerbating cerebral neuron apoptosis in cerebral infarction
(Zhang M. et al., 2021).

Neuropathic Pain
Accumulating evidence reveals that neuropathic pain develops
owing to the diseases or damaging stimuli in the nervous system.
Neuropathic pain includes postherpetic neuralgia, trigeminal
neuralgia, and nerve injury pain. Patients with neuropathic
pain usually suffer from allodynia and hyperalgesia (Jensen
and Finnerup, 2014). It is investigated that enhancer of zeste
homolog 2 (EZH2), one RNA-binding protein of Lncenc1,
can promote histone methylation in the promoter of brain-
specific angiogenesis inhibitor 1 (BAI1) and decrease BAI1
expression (Zhang Z. et al., 2021). After nerve injury, lncRNA
embryonic stem cells expressed 1 (Lncenc1) is notably increased
in dorsal root ganglion in mice. Increased Lncenc1 enhances
EZH2 expression to down-regulate BAI1, which can accelerate
microglia activation and microglial inflammatory response.
Decreasing Lncenc1 can impede neuropathic pain development
in rats (Zhang Z. et al., 2021).

Epilepsy
Epilepsy is a neurological disorder characterized by a persistent
predisposition to produce epileptic seizures (Fisher et al., 2014).
Epilepsy includes focal epilepsy, generalized epilepsy, combined
generalized and focal epilepsy, and unknown epilepsy (the
patient has epilepsy but the clinician cannot determine if the
epilepsy is focal epilepsy or generalized epilepsy) (Scheffer
et al., 2017). Temporal lobe epilepsy is the most common form
of focal epilepsy. And patients with temporal lobe epilepsy
usually experience hippocampal sclerosis (Lévesque and Avoli,
2013). Epilepsy can be caused by genetic mutations, stroke,
TBI, infection, cancers, etc. Although there are many anti-
seizure drugs, approximately one-third of patients can’t achieve
seizure control (Devinsky et al., 2018). Recently, rodents
with spontaneous seizures that mimic human epilepsy can be
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used to study epilepsy. For example, the kainic acid (KA)-
induced epilepsy model is widely used to explore pathogenetic
mechanisms of temporal lobe epilepsy (Lévesque and Avoli,
2013). H19 expression is notably higher in the hippocampus
in epileptic rats compared to normal rats (Han C. L. et al.,
2020). Han C. L. et al. (2018) showed that H19 can stimulate
hippocampal microglia and astrocyte activation through the
Janus kinase (JAK)/STAT3 signaling pathway in a KA-induced rat
model of temporal lobe epilepsy. Another research investigated
that H19 can bind to miRNA let-7b and restrain its expression.
Increased H19 promotes STAT3 mRNA expression levels via
sponging let-7b. Subsequently, up-regulated STAT3 results
in microglia and astrocyte activation during epileptogenesis.
Eventually, the activation of both microglia and astrocytes can
aggravate epileptic seizures in rats undergoing temporal lobe
epilepsy induced by KA (Han C. L. et al., 2020). Feng et al.
(2020) revealed that up-regulated 26S proteasome non-ATPase
regulatory subunit 11 (Psmd11) can not only inactivate microglia
and astrocytes but also abrogate neuron injury and inflammation
in the epileptic hippocampus in mice. In addition, Psmd11 is a
downstream target of miR-490-3p (Feng et al., 2020). LncRNA
Peg13 is lowly expressed in epileptic hippocampal tissues from
mice. Peg13 acts as a ceRNA for miR-490-3p. Peg13 competitively
binds with miR-490-3p to elevate Psmd11 expression. Ultimately,
in epileptic mice, high Peg13 expression suppresses epilepsy
progression (Feng et al., 2020).

Depression
Depression is a mood disorder affecting human beings at any
age. Depressed people usually experience persistent sadness,
decreased interest, loss of pleasure, diminished or increased
sleep, etc. Childhood maltreatment (e.g., abuse, loss, and
neglect) and stressful life can increase the risk of depression
(Malhi and Mann, 2018). It is indicated that 2007 lncRNAs
were differentially expressed in peripheral blood of major
depressive disorder (MDD) patients compared to that in
normal people, including 1,556 up-regulated lncRNAs and
441 down-regulated lncRNAs (Liu et al., 2014). LncRNAs
related to cognitive function, synaptic plasticity, and psychiatry
diseases (e.g., schizophrenia) potentially contribute to MDD
(Huang X. et al., 2017). LncRNA uc.80- is down-regulated in the
hippocampus obtained from depressed rats induced by chronic
unpredictable mild stress (CUMS) regiment. Over-expressed
uc.80- inhibits microglia M1 polarization and facilitates microglia
M2 polarization. In addition, uc.80- up-regulation can attenuate
neuron apoptosis mediated by microglia under inflammation
exposure. Functionally, uc.80- over-expression ameliorates
depression via enhancing M2 polarization of microglial cells in
CUMS-treated rats (Gu et al., 2020).

Parkinson’s Disease
Parkinson’s disease, the second most common neurodegenerative
disorder after AD, is characterized by the loss of dopaminergic
neurons within the substantia nigra pars compacta (Jankovic and
Tan, 2020). The clinical features in PD patients include classical
motor symptoms, cognitive impairment, pain, psychiatric
symptoms, etc. (Kalia and Lang, 2015). LncRNA HOXA11-AS

is detected to be up-regulated in the substantia nigra area in
PD mice. HOXA11-AS over-expression can elevate the levels of
inflammatory factors, including, IL-1β, IL-18, IL-6, and TNF-
α in LPS-mediated BV2 cells (Cao et al., 2021). HOXA11-AS
can target miR-124-3p that can target follistatin-like 1 (FSTL1).
Down-regulated HOXA11-AS enhances miR-124-3p expression
to inhibit FSTL1 and NF-κB expressions. The inactivation of
the FSTL1/NF-κB pathway can dampen neuron damage and
inhibit microglial inflammation. Ultimately, HOXA11-AS down-
regulation mitigates PD progression in PD mice (Cao et al.,
2021). MALAT1 highly expresses in 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced PD mouse brain tissues and
in and in LPS/ATP-induced BV2 cells. MALAT1 can recruit
the EZH2 to the promoter of nuclear factor (erythroid-derived
2)-like-2 factor (NRF2) and then inhibit NRF2 expression.
Repressing NRF2 decreases IL-1β, IL-18, and TNF-α in vitro (Cai
et al., 2020b). MALAT1 deficiency can abrogate inflammasome
activation and ROS generation through NRF2 in microglia. The
MALAT1 elimination in PD mice blocks neuron damage by
reducing microglia inflammation (Cai et al., 2020b). LincRNA-
p21 is shown to be induced by p53 in LPS-treated BV2 cells.
LincRNA-p21 acts as a ceRNA for the miR-181 family (miR-181a,
miR-181b, miR-181c, and miR-181d), thus protecting protein
kinase C δ (PKC-δ) from miR-181 family-regulated suppression.
Increased lincRNA-p21 can augment PKC-δ by competitively
binding with the miR-181 family (Ye et al., 2018). In turn,
increased PKC-δ augments the levels of p53 and lincRNA-
p21. The lincRNA-p21 mediated regulatory loop with miR-181
family and PKC-δ can contribute to microglia activation and
inflammation. Besides, increased lincRNA-p21 also accelerates
neuron degeneration caused by microglia inflammation in
PD mice (Ye et al., 2018). The expression levels of SNHG1
are increased in LPS-induced BV2 cells and in brain tissues
in PD patients. SNHG1 is a ceRNA for miR-7. Knocking
down SNHG1 can increase miR-7 to down-regulate NLRP3
expression. Then decreased NLRP3 reduces microglial activation
and inflammation. Eventually, SNHG1 knockdown attenuates
neuronal apoptosis in PD mice (Cao et al., 2018). It is shown
that miR-223-3p can target NLRP3 to impair its expression.
Over-expressed miR-223-3p can impede NLRP3 inflammasome
activation and decrease inflammatory cytokine expressions,
including IL-1β, IL-6, and TNF-α (Xu W. et al., 2020). LncRNA
growth arrest-specific 5 (GAS5) is significantly over-expressed
in PD mice. GAS5 can repress miR-223-3p expression and
abrogates miR-223-3p suppression on NLRP3. Elevated GAS5
can trigger microglia inflammation via the miR-223-3p-NLRP3
axis. Silencing GAS5 can hamper behavioral impairments in the
PD mouse model (Xu W. et al., 2020).

Multiple Sclerosis
Multiple sclerosis is a chronic inflammatory disease in the
central nervous system. The MS pathological process consists
of multifocal inflammation, demyelination, reactive gliosis,
and axonal degeneration (Baecher-Allan et al., 2018). GAS5
is significantly increased in microglia from experimental
autoimmune encephalomyelitis (EAE) mice (an animal MS
model). Up-regulated GAS5 attenuates the expression of
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interferon-regulatory factor 4 (IRF4) via binding with EZH2,
which can impede microglia M2 polarization. Besides, enhanced
microglial GAS5 can exacerbate myelin loss in EAE mice
(Sun et al., 2017).

LONG NON-CODING RNAs IN
ASTROCYTE MEDIATED
NEUROLOGICAL DISEASES

Spinal Cord Injury
Long non-coding RNA SNHG5 expression is increased in
the astrocytes and microglia isolated from SCI rats. High
SNHG5 expression elevates KLF4 expression. Enhanced SNHG5
expression improves cell viability and hampers apoptosis through
KLF4 in astrocytes and microglia. In SCI rats, SNHG5 up-
regulation promotes SCI progression (Jiang and Zhang, 2018).

Traumatic Brain Injury
Extracellular vesicles are cargo-carrying vesicles that can affect
cell communication (Teng and Fussenegger, 2020). MiR-195
can target nucleotide-binding leucine-rich repeat containing
family member X1 (NLRX1). LncRNA nuclear transcription
factor NF-κB interacting lncRNA (NKILA) can be transferred
from astrocytes into neurons through EVs. NKILA functions
as a ceRNA for miR-195. NKILA competitively binds to miR-
195 and counteracts miR-195 inhibitory effect on NLRX1 (He
et al., 2021). NKILA from astrocyte-derived EVs diminishes
miR-195 to augment NLRX1 expression. Subsequently, increased
NLRX1 enhances proliferation and declines apoptosis in injured
neurons. Moreover, in TBI mice, NKILA-enriched EVs from
astrocytes accelerate brain recovery (He et al., 2021). It is reported
that astrocyte swelling is one of the early consequences of
TBI-induced brain edema. When astrocyte swelling occurs, the
astrocyte volume is increased (Zhang et al., 2019d). MALAT1
expression is decreased in the edematous brain after TBI.
Over-expressed MALAT1 abrogates astrocyte swelling through
attenuating aquaporin 4 (AQP4), NF-κB, and IL-6 expressions
in response to trauma. This study suggests the negative
relationship between MALAT1 and TBI-related brain edema
(Zhang et al., 2019d).

Ischemia-Reperfusion Injury
Metastasis-associated lung adenocarcinoma transcript 1 is up-
regulated in OGD/R-treated MA-C cells (astrocyte cells). AQP4
is a downstream target of miR-145. MALAT1 suppression
can reduce AQP4 via stimulating miR-145 expression. AQP4
silence attenuates astrocyte damage under ischemia-reperfusion
conditions in vitro (Wang et al., 2020c). In MACO/R mice,
MALAT1 deficiency decreases cell apoptosis and alleviates
neurological deficits. This research revealed that MALAT1
inhibition can attenuate cerebral IRI through the miR-145-AQP4
axis (Wang et al., 2020c). LncRNA taurine upregulated gene 1
(TUG1) is highly expressed in OGD/R-treated MA-C cells. MiR-
142-3p binds to TUG1 3′UTR. TUG1 is a miRNA sponge of
miR-142-3p (Li et al., 2021). TUG1 down-regulation increases

astrocyte cell viability and hinders astrocyte cell apoptosis via
increasing miR-142-3p expression. This study revealed a positive
relationship between TUG1 and cerebral IRI (Li et al., 2021).

Neuropathic Pain
It is investigated that SNHG5 levels are remarkably increased
in mouse spinal cord after spinal nerve ligation (SNL). In
SNL mice, miR-154-5p elevation restrains CXCL13 protein
levels, and inhibiting SNHG5 augments miR-154-5p levels (Chen
M. et al., 2020). Knocking down SNHG5 dampens astrocyte
activation and microglia activation via the miR-154-5p-CXCL13
axis. Repressing astrocyte activation and microglia activation
can lessen neuropathic pain in SNL mice. This study revealed
that SNHG5 deficiency alleviates neuropathic pain through the
miR-154-5p-CXCL13 axis (Chen M. et al., 2020).

Epilepsy
It is said that adenosine deficiency is a hallmark of epilepsy.
And therapeutic adenosine augmentation can be a promising
approach for epileptic seizures (Boison, 2012). LncRNA cancer
susceptibility candidate 2 (CASC2) is lowly expressed in the
hippocampus in epileptic rats. Elevated CASC2 hinders astrocyte
activation and restrains astrocyte adenosine metabolism via
triggering phosphatase and tensin homolog (PTEN) expression
during epilepsy. Increased CASC2 can also repress epilepsy
seizures in epileptic rats (Zhu et al., 2020). LncRNA urothelial
cancer-associated 1 (UCA1) expression is down-regulated in
the hippocampus of temporal lobe epilepsy rats. UCA1 over-
expression abrogates astrocyte activation and suppresses the
expression of astrocyte glutamate aspartate transporter (GLAST)
(one factor related to epilepsy) in vivo. And UCA1 up-
regulation reduces the frequency of epilepsy seizures and
promotes learning and memory in temporal lobe epilepsy
rats (Wang et al., 2020b). Yu et al. (2020) revealed that up-
regulated UCA1 can enhance myocyte enhancer factor 2C
(MEF2C) expression in IL-1β-treated CTX-TNA2 (the epilepsy
cell models). MEF2C declines inflammatory effector [e.g., IL-
6, TNF-α, and cyclooxygenase 2 (COX-2)] expression via
blocking NF-κB signal in IL-1β-treated astrocytes. Increased
UCA1 ultimately attenuates astrocyte inflammation through
MEF2C/NF-κB pathway, which can hinder epilepsy progression
(Yu et al., 2020). It is indicated that miR-129-5p can diminish
Notch1 mRNA levels. LncRNA NEAT1 expression levels are
elevated in the temporal lobe tissues in epilepsy patients
compared to normal people. NEAT1 can target miR-129-5p and
inhibit its expression (Wan and Yang, 2020). Increased NEAT1
activates the Notch1 signaling pathway by suppressing miR-
129-5p. Finally, NEAT1 up-regulation can enhance astrocyte
inflammatory responses in IL-1β-induced epilepsy cell models
(Wan and Yang, 2020). In the brain, the brain-derived
neurotrophic factor (BDNF) is essential for plasticity, neuronal
survival, dendritic branching, etc. (Lima Giacobbo et al.,
2019). LncRNA plasmacytoma variant translocation 1 (PVT1)
is elevated in hippocampus tissues collected from epileptic rats.
PVT1 down-regulation attenuates the Wnt signaling pathway,
which can boost BDNF expression, impede neuronal loss,
repress astrocyte activation, and decrease pro-inflammatory
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cytokine (e.g., TNF-α, IL-1β, and IL-6) expressions. PVT1 silence
in epileptic rats also promotes spatial memory and learning
(Zhao et al., 2019).

Depression
Postpartum depression (PPD) remains one of the most
common complications caused by childbirth. Stress and
adverse life events can increase the risk of PPD (Payne
and Maguire, 2019). The hormone-simulated pregnancy-
induced PPD mouse model is used to explore the cellular
mechanisms of PPD. It is indicated that oxytocin receptors
play protective roles in PPD (Zhu and Tang, 2020). LncRNA
Gm14205 is noticed to be up-regulated in the hippocampus
in PPD mice. Up-regulated Gm14205 decreases oxytocin
receptors, resulting in activating the NLRP3 inflammasome
in hippocampal astrocytes. This study suggests a positive
relationship between Gm14205 and PPD progression
(Zhu and Tang, 2020).

Multiple Sclerosis
Long non-coding RNA Gm13568 expression is stimulated
in astrocytes after IL-9 treatment. Gm13568 interacts with
CREB-binding protein (CBP)/P300 to facilitate the expression
and activation of Notch1 (Liu X. et al., 2021). The activated
Notch1/STAT3 pathway contributes to the secretion of
inflammatory cytokines (e.g., IL-6, TNF-α, and interferon-
inducible protein-10) in activated astrocytes. As a result,
Gm13568 promotes astrocyte inflammation to worsen the EAE
process (Liu X. et al., 2021).

Alzheimer’s Disease
Alzheimer’s disease, a frequent neurodegenerative disorder, is
the leading cause of dementia among elderly individuals. AD
patients usually suffer from memory impairment, executive
dysfunction, language problems, etc. (Scheltens et al., 2016).
MEG3 expression is declined in the hippocampus tissues in AD
rats. Up-regulated MEG3 suppresses astrocyte activation and
neuronal damage via abrogating PI3K/AKT signaling pathway.
Moreover, increased MEG3 can relieve cognitive impairment in
AD rats (Yi et al., 2019).

CIRCULAR RNAs IN MICROGLIA AND
ASTROCYTE MEDIATED
NEUROLOGICAL DISEASES

Spinal Cord Injury
It is reported that treating astrocytes with TNF-α in vitro can
induce the inflammatory response after SCI. Elevated miR-
488 attenuates inflammatory cytokine secretion in TNF-α-
treated astrocytes. Chemokine CC motif ligand 2 (CCL2) is a
downstream target of miR-488 (Chen et al., 2022). CircPrkcsh is
up-regulated in mouse injured spinal cords and in TNF-α-treated
astrocytes. CircPrkcsh serves as a miRNA sponge for miR-488.
Silencing circPrkcsh decreases CCL2 expression via miR-488 up-
regulation (Chen et al., 2022). Chen et al. (2022) revealed that

circPrkcsh knockout represses inflammatory response after SCI
through the miR-488-CCL2 axis.

Ischemia-Reperfusion Injury
Neural stem cells (NSCs) can differentiate into neurons and
astrocytes. The NSCs are important for brain tissue regeneration
and tissue repair after injury (Gage and Temple, 2013). The
expression of circRNA TTC3 (circTTC3) is up-regulated in
MCAO/R mice. CircTTC3 can sponge miR-372-3p that targets
Toll-like receptor 4 (TLR4). Depleting circTTC3 suppresses
OGD-induced astrocyte injury and promotes NSC proliferation
and differentiation via the miR-372-3p-TLR4 axis. The circTTC3
knockdown in MCAO/R mice can alleviate cerebral IRI
(Yang et al., 2021).

Stroke
The expression levels of circHECTD1 are over-expressed in
the plasma collected from acute ischemic stroke patients.
TCDD inducible poly (ADP-ribose) polymerase (TIPARP) is
a downstream target of miR-142. CircHECTD1 can bind to
miR-142 and function as a miR-142 sponge to inhibit miR-142
repression on TIPARP. Down-regulating circHECTD1 eliminates
TIPARP through miR-142 (Han B. et al., 2018). Knockdown of
circHECTD1 can attenuate astrocyte autophagy via the miR-
142-TIPARP axis, resulting in blocking astrocyte activation.
Decreased circHECTD1 can lessen cerebral ischemic stroke
injury in MCAO mice (Han B. et al., 2018). This research also
revealed that circHECTD1 could be a promising biomarker for
acute ischemic stroke diagnoses (Han B. et al., 2018). CircSHOC2
is found to be abundant in exosomes derived from ischemic-
preconditioned astrocytes. MiR-7670-3p can bind to sirtuin 1
(SIRT1) 3′UTR. CircSHOC2 serves as a miRNA sponge for
miR-7670-3p and attenuates miR-7670-3p inhibitory effects on
SIRT1 expression (Chen W. et al., 2020). Exosomal circSHOC2
from astrocytes can abrogate neuron apoptosis and neuron
damage through the miR-7670-3p-SIRT1 axis. Finally, exosomal
circSHOC2 ameliorates ischemic stroke-associated brain injuries
(Chen W. et al., 2020).

Epilepsy
CircHivep2 is shown to be notably diminished in KA-treated BV2
cells and in hippocampus tissues of epilepsy mice. Suppressor
of cytokine signaling-2 (SOCS2) is a target of miR-181a-5p.
CircHivep2 binds to and sponges miR-181a-5p. CircHivep2
can decline miR-181a-5p to increase SOCS2 in KA-treated
BV2 cells (Xiaoying et al., 2020). CircHivep2 elevation can
attenuate microglia activation and microglia inflammation via
the miR-181a-5p-SOCS2 axis. Over-expressed circHivep2 can
ameliorate epileptic seizures in epilepsy mice (Xiaoying et al.,
2020). CircIgf1r is up-regulated in the brain tissues in mice
with status epilepticus. Inhibiting circIgf1r drives astrocyte
A2 polarization via promoting autophagy. Therefore, circIgf1r
inhibition reduces astrocyte-associated neuronal toxicity in the
epilepsy cell model. Moreover, circIgf1r deficiency in epilepsy
mice can impede neuronal damage and dampen epileptic
discharge (Shao et al., 2021).
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Depression
CircSTAG1 is significantly declined in the plasma and whole
blood in depressed patients. In astrocytes, over-expressed
circSTAG1 increases the demethylase alkB homolog 5 (ALKBH5)
levels in the cell cytoplasm and reduces ALKBH5 translocation
into the cell nucleus (Huang et al., 2020). Thus, circSTAG1
over-expression facilitates the methylation of fatty acid amide
hydrolase (FAAH) mRNA and inhibits FAAH expression.
Increased circSTAG1 ultimately hampers astrocyte dysfunction
and thereby hinders depressive-like behaviors in mice with MDD
(Huang et al., 2020). In the plasma and hippocampi of depressed
mice, circHIPK2 expression levels are increased (Zhang et al.,
2019c). One study indicated that circHIPK2 deficiency can inhibit
astrocyte activation via reducing autophagy (Huang R. et al.,
2017). Zhang et al. revealed that circHIPK2 expression can
be attenuated by the transplantation of the NLRP3-deficient
gut microbiota in depressed mice. Suppressing circHIPK2 can
block astrocyte dysfunction and therefore reduce depression in
mice (Zhang et al., 2019c). It is shown that increased HECT
domain E3 ubiquitin protein ligase 1 (HECTD1) can reduce 90-
kDa heat shock protein (HSP90) expression via ubiquitination.
MiR-9 can bind with the 3′UTR of HECTD1 and repress
HECTD1 expression (Zhang Y. et al., 2020). CircRNA DYM
(circDYM) expression is down-regulated in the peripheral blood
in patients with MDD CircDYM functions as a molecular sponge
to interfere with miR-9 activity, leading to increased HECTD1.
CircDYM over-expression inhibits HSP90 expression through the
miR-9-HECTD1 axis, which can reduce microglial activation.
Therefore, increased circDYM restrains depression in depressed
mice (Zhang Y. et al., 2020).

Alzheimer’s Disease
The circNF1-419 expression levels are up-regulated in senescent
astrocytes. Up-regulated circNF1-419 promotes autophagy in
astrocytes in vitro (Diling et al., 2019). In AD mice, astroglial
circNF1-419 over-expression enhances autophagy via binding
to Dynamin-1 and Adaptor protein 2 B1 proteins. Eventually,
circNF1-419 up-regulation leads to repressing senile dementia in
AD mice (Diling et al., 2019).

Targeted Therapy
Long non-coding RNAs and circular RNAs participate in
various neurological diseases, suggesting their potential to act as
therapeutic targets. Bexarotene, which is a selective agonist of
retinoid X receptor, can suppress TBI progression in mice (Zhong
et al., 2017a). Bexarotene can stimulate NEAT1 expression to
inhibit neuron apoptosis and microglial inflammation, resulting
in promoting motor and cognitive function recovery in TBI
mice (Zhong et al., 2017b). Curcumin, an anti-inflammatory
agent, can be delivered into microglial cells via exosomes.
Exosomal curcumin can repress LPS-induced brain inflammation
and myelin oligodendrocyte glycoprotein (MOG)-induced EAE
development in mice (Zhuang et al., 2011). Moreover, one
research suggested that curcumin can increase GAS5 expression
to alleviate post-stroke depression in rats (Cai et al., 2020a).
Berberine belongs to traditional Chinese medicine. Berberine

can elevate circHDAC9 expression in human neurons. Elevated
circHDAC9 protects human neuron cells from 42-residue β-
amyloid (Aβ42)-triggered neuronal damage via sponging miR-
142-5p (Zhang N. et al., 2020). As mentioned above, targeting
lncRNAs and circRNAs will be a promising strategy for the
treatment of neurological diseases.

Dexmedetomidine
Dexmedetomidine (DEX), an anesthetic adjuvant, has various
advantages in clinical applications, including hemodynamic
stability, the ability to promote postoperative recognition,
sedative and analgesic effects (Zhao Y. et al., 2020). DEX reduces
high-mobility group box 1 (HMGB1) via eliminating SNHG14,
resulting in attenuating microglial activation. Subsequently, DEX
restrains neurological deficits induced by IRI in vivo (Ta Na
et al., 2020). Deng et al. indicated that DEX can increase lncRNA
LOC102546895 levels in hippocampus tissues in rats undergoing
postoperative cognitive dysfunction (POCD). LOC102546895
promotes the expression of Neuronal Per-Arnt-Sim domain
protein 4 (Npas4) (one protective neuronal transcription factor),
impedes proliferation, and enhances apoptosis in microglial
cells (Deng et al., 2020). DEX treatment hampers inflammatory
response and neuron injury in the hippocampus. DEX can also
ameliorate cognitive deficits in POCD rats (Deng et al., 2020).

Valproate
Valproate is an eight-carbon branched-chain fatty acid and
possesses anticonvulsant properties. Valproate is approved for
the management of epilepsy, bipolar disorders, and migraine
(Löscher, 1999). Li et al. reported that valproate can decline
lncRNA RMRP levels to activate PI3K/AKT pathway, which can
promote proliferation and repress apoptosis in microglial cells
in the ischemic stroke cell model (Li and Sui, 2020). In MACO
rats, valproate treatment represses ischemic stroke-induced
disorders, including cell apoptosis and cerebral infarction
(Li and Sui, 2020).

Isosteviol Sodium
It is said that isosteviol sodium has neuroprotective effects
and can block brain damage after ischemic stroke (Rösing
et al., 2020). GAS5 over-expression diminishes miR-146a-5p to
increase Notch1 expression, leading to promoting microglial
M1 polarization and reducing microglial M2 polarization
(Zhang et al., 2019a). Isosteviol sodium increases miR-146a-
5p expression and declines the expression of GAS5 and
Notch1. Functionally, isosteviol sodium enhances microglia M2
polarization through the GAS5-miR-146a-5p-Notch1 axis, which
can ultimately attenuate brain injury caused by ischemic stroke
in mice (Zhang et al., 2019a).

Sulfasalazine
Sulfasalazine is a prodrug used for the treatment of autoimmune
diseases, including rheumatoid arthritis and ulcerative colitis
(Choi and Fenando, 2021). HOTAIR serves as a molecular
sponge for miR-136-5p to promote AKT2 expression. Down-
regulated HOTAIR suppresses the AKT2-NF-κB axis via
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TABLE 1 | LncRNAs and circRNAs in microglia mediated neurological diseases.

Nc-RNA Disease Expression Functions Role References

Ftx SCI Down Ftx↑→miR-382-5p↓→Nrg1↑→inflammation response↓ Suppressor Xiang et al., 2021

lncGm37494 SCI Up lncGm37494↑→miR-130b-3p↓→PPARγ↑→M2 polarization↑→functional
recovery↑

Suppressor Shao et al., 2020

LEF1-AS1 SCI Up LEF1-AS1↓→miR-222-5p↑→RAMP3↓→cell apoptosis↓, cell viability↑ Promoter Cui et al., 2021

F630028O10Rik SCI Up F630028O10Rik↑→miR-1231-5p activity↓→Col1a1↑→PI3K/AKT
pathway↑→microglial pyroptosis↑

Promoter Xu K. et al., 2020

XIST SCI Up XIST↓→miR-27a↑→Smurf1↓→microglia apoptosis ↓, inflammatory injury↓ Promoter Zhao Y. et al., 2020

MALAT1 SCI Up MALAT1↑→miR-199b↓→IKKβ/NF-κB signal↑→inflammatory responses↑ Promoter Zhou et al., 2018

KCNQ1OT1 TBI Up KCNQ1OT1↓→miR-873-5p↑→TRAF6↓→inflammation↓ Promoter Liu D. et al., 2021

HOTAIR TBI Up HOTAIR↓→MYD88↓→microglial activation↓, inflammatory factor
release↓→TBI↓

Promoter Cheng et al., 2021

MEG3 TBI Up MEG3↑→miR-7a-5p↓→NLRP3↑→microglial activation↑, inflammation↓ Promoter Meng et al., 2021

MEG3 IRI Up MEG3↓→KLF4↑→M1 polarization↓, M2
polarization↑→neuroinflammation↓→cerebral IRI↓

Promoter Li T. et al., 2020

SNHG4 IRI Down SNHG4↑→miR-449c-5p↓→STAT6↑→inflammatory responses↓, neuronal
damage↓

Suppressor Zhang N. et al., 2020

SNHG3 IRI Up SNHG3↓→HDAC3↓→microglial activation↓, inflammatory factor release↓ Promoter Huang D. et al., 2021

MALAT1 IRI Up MALAT1↑→MyD88/IRAK1/TRAF6 signal↑→inflammatory response↑→cerebral
IRI↓

Promoter Wang and Zhou, 2018

NEAT1 IRI Up NEAT1↓→M1 polarization↓→neuronal apoptosis↓ Promoter Ni et al., 2020

U90926 Stroke Up U90926↓→CXCL2↓→neutrophil infiltration↑→brain injury↑ Promoter Chen J. et al., 2021

OIP5-AS1 Stroke Down OIP5-AS1↓→miR-186-5p↑→CTRP3↓→microglia inflammation↑, oxidative
stress↑→neuron damage→

Suppressor Chen Y. et al., 2021

lincRNA-EPS Stroke Up lincRNA-EPS→microglia inflammation↓→neuron regeneration↑ Suppressor Zhang B. et al., 2020

SNHG8 Stroke Down SNHG8↑→miR-425-5p↓→sirtuin1↑→NF-κB pathway↓→microglial
activation↓, inflammation↓?BMEC damage↓

Suppressor Tian et al., 2021

H19 Stroke Up H19↓→HDAC1↓→M2 polarization↑→neuroinflammation↓ Promoter Wang et al., 2017

Nespas Stroke Up Nespas↑→TAK1↓→NF-κB↓→microglia death↓, neuroinflammation↓ Suppressor Deng et al., 2019

1810034E14Rik Stroke Down 1810034E14Rik↑→microglia activation↓, inflammation↓, neuronal damage↓ Suppressor Zhang et al., 2019a

SNHG14 Stroke Up SNHG14↑→miR-145-5p↓→PLA2G4A↑→microglia activation↑, neuron
apoptosis↑

Promoter Qi et al., 2017

XIST Stroke Up XIST↑→miR-96-5p activity↓→IKKβ↑→TNF-α↑→pro-inflammatory
polarization↑→neuron apoptosis↑

Promoter Zhang M. et al., 2021

Lncenc1 Neuropathic pain Up Lncenc1↑→EZH2↑→BAI1↓→microglia activation↑, inflammatory response↑ Promoter Zhang Z. et al., 2021

H19 Epilepsy Up H19↑→JAK/STAT3 pathway↑→microglia activation↑, astrocyte activation↑ Promoter Han C. L. et al., 2018

H19↑→let-7b↓→STAT3↓→microglia activation→, astrocyte
activation↑→epileptic seizures↑

Promoter Han T. S. et al., 2020

Peg13 Epilepsy Down Peg13↑→miR-490-3p↓→Psmd11↑→epilepsy progression↓ Suppressor Feng et al., 2020

uc.80- Depression Down uc.80-↑→M1 polarization↓, M2 polarization↑, neuron
apoptosis↓→depression↓

Suppressor Gu et al., 2020

HOXA11-AS PD Up HOXA11-AS↓→miR-124-3p↑→FSTL1↓→NF-κB↓→neuron damage↓,
microglial inflammation↓→PD progression↓

Promoter Cao et al., 2021

MALAT1 PD Up MALAT1↓→NRF2↑→microglial inflammation↓→neuron damage↓ Promoter Cai et al., 2020b

lincRNA-p21 PD Up p53→lincRNA-p21↑→PKC-δ↑→microglia activation↑, inflammation↑→neuron
degeneration↑

Promoter Ye et al., 2018

SNHG1 PD Up SNHG1↓→miR-7↑→NLRP3↓→microglial activation↓,
inflammation↓→neuronal apoptosis↓

Promoter Cao et al., 2018

GAS5 PD Up GAS5↑→miR-223-3p↓→NLRP3↑→microglia inflammation↑ Promoter Xu S. et al., 2020

GAS5 MS Up GAS5↑→IRF4↓→M2 polarization↓→myelin loss↑ Promoter Sun et al., 2017

CircHivep2 Epilepsy Down CircHivep2↑→miR-181a-5p↓→SOCS2↑→microglia activation↓, microglia
inflammation↓→epileptic seizures↓

Suppressor Xiaoying et al., 2020

(Continued)
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TABLE 1 | (Continued)

Nc-RNA Disease Expression Functions Role References

CircDYM Depression Down CircDYM↑→miR-9 activity↓→HECTD1↑→HSP90↓→microglial
activation↓→depression↓

Suppressor Zhang S. et al., 2020

ncRNA, non-coding RNA; SCI, spinal cord injury; Nrg1, Neuregulin-1; PPARγ, peroxisome proliferator-activated receptor γ; LEF1-AS1, lymphoid enhancer-binding factor
1 (LEF1) antisense RNA 1; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; XIST, X-inactive specific transcript; Smurf1, smad ubiquitination regulatory factor
1; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; IKKβ, IkappaB kinase β; NF-κB, nuclear factor kappa B; TBI, traumatic brain injury; KCNQ1OT1,
KCNQ1 overlapping transcript 1; TRAF6, tumor necrosis factor receptor-related factor 6; HOTAIR, HOX antisense intergenic RNA; MYD88, myeloid differentiation factor-88
adaptor protein; MEG3, maternally expressed gene 3; IRI, ischemia-reperfusion injury; KLF4, Krüppel-like factor 4; SNHG4, small nucleolar RNA host gene 4; STAT6, signal
transducers and activators of transcription 6; HDAC3, histone deacetylase 3; IRAK1, IL-1 receptor-associated kinase 1; NEAT1, nuclear enriched abundant transcript 1;
CXCL2, C-X-C motif ligand 2; OIP5-AS1, opa-interacting protein 5 antisense RNA 1; CTRP3, C1q/tumor necrosis factor-related protein 3; BMEC, brain microvascular
endothelial cell; TAK1, transforming growth factor-beta-activated kinase 1; PLA2G4A, cytosolic phospholipase A2 (cPLA2) group IVA; TNF-α, tumor necrosis factor α;
Lncenc1, lncRNA embryonic stem cells expressed 1; EZH2, enhancer of zeste homolog 2; BAI1, brain-specific angiogenesis inhibitor 1; JAK, Janus kinase; Psmd11,
26S proteasome non-ATPase regulatory subunit 11; PD, Parkinson’s disease; FSTL1, follistatin-like 1; NRF2, nuclear factor (erythroid-derived 2)-like-2 factor; PKC-
δ, protein kinase C δ; NLRP3, nod-like receptor protein 3; GAS5, growth arrest-specific 5; SOCS2, suppressor of cytokine signaling-2; MS, multiple sclerosis; IRF4,
interferon-regulatory factor 4; circDYM, circRNA DYM; HECTD1, HECT domain E3 ubiquitin protein ligase 1; HSP90, 90-kDa heat shock protein.

TABLE 2 | LncRNA and circRNAs in astrocyte mediated neurological diseases.

NcRNA Disease Expression Functions Role References

SNHG5 SCI Up SNHG5↑→KLF4↓→cell viability↑, apoptosis↓→SCI progression? Promoter Jiang and Zhang, 2018

NKILA TBI Up NKILA↑→miR-195↓→NLRX1↑→neuron proliferation↑, neuron
apoptosis↓→brain recovery↑

Suppressor He et al., 2021

MALAT1 TBI Down MALAT1↑→AQP4↓, NF−κB↓, IL-6↓→astrocyte swelling↓→brain edema↓ Suppressor Zhang et al., 2019c

MALAT1 IRI Up MALAT1↓→miR-145↑→AQP4↓→cell apoptosis↓, neurological deficits↓ Promoter Wang et al., 2020b

TUG1 IRI Up TUG1↓→miR-142-3p↑→cell viability↑, cell apoptosis↓ Promoter Li et al., 2021

SNHG5 Neuropathic
pain

Up SNHG5↓→miR-154-5p↑→CXCL13↓→astrocyte activation↓, microglia
activation↓→neuropathic pain↓

Promoter Chen M. et al., 2020

CASC2 Epilepsy Down CASC2↑→PTEN↑→astrocyte activation↓, adenosine metabolism↓ Suppressor Zhu et al., 2020

UCA1 Epilepsy Down UCA1↑→astrocyte activation↓, GLAST↓ Suppressor Wang et al., 2020a

UCA1↑→MEF2C↑→NF-κB signal↓→astrocyte inflammation↓→epilepsy↓ Suppressor Yu et al., 2020

NEAT1 Epilepsy Up NEAT1↑→miR-129-5p↓→Notch1↑→inflammatory responses↑→ Promoter Wan and Yang, 2020

PVT1 Epilepsy Up PVT1↓→Wnt pathway↓→BDNF↑, neuronal loss↓, astrocyte activation↓,
pro-inflammatory cytokine↓

Promoter Zhao et al., 2019

Gm14205 Depression Up Gm14205↑→oxytocin receptors↓→NLRP3 inflammasome activation↑→PPD↑ Promoter Zhu and Tang, 2020

Gm13568 MS Up IL-9→Gm13568↑→Notch1/STAT3 pathway↑→astrocyte inflammation↑→EAE
process↑

Promoter Liu N. et al., 2021

MEG3 AD Down MEG3↑→PI3K/AKT pathway↓→astrocyte activation↓, neuronal damage↓,
cognitive impairment↓

Suppressor Yi et al., 2019

CircPrkcsh SCI UP CircPrkcsh↓→miR-488↑→CCL2↓→inflammatory response↓ Promoter Chen et al., 2022

CircTTC3 IRI Up CircTTC3↓→miR-372-3p↑→TLR4↓→astrocyte injury↓, NSC proliferation→,
NSC differentiation↑

Promoter Yang et al., 2021

CircHECTD1 Stroke Up CircHECTD1↓→miR-142 activity↑→TIPARP↓→autophagy↓→astrocyte
activation↓

Promoter Han B. et al., 2018

CircSHOC2 Stroke Up CircSHOC2↑→miR-7670-3p activity↓→SIRT1↑→neuron apoptosis↓, neuron
damage↓→brain injuries↓

Suppressor Chen W. et al., 2020

CircIgf1r Epilepsy Up CircIgf1r↓→autophagy↑→A2 polarization↑→neuronal toxicity↓ Promoter Shao et al., 2021

CircSTAG1 Depression Down CircSTAG1↑→FAAH↓→astrocyte dysfunction↓→depressive-like behaviors↓ Suppressor Huang et al., 2020

CircHIPK2 Depression Up CircHIPK2↓→astrocyte dysfunction↓→depression↓ Promoter Zhang et al., 2019b

ncRNA, non-coding RNA; SNHG5, small nucleolar RNA host gene 5; SCI, spinal cord injury; KLF4, Krüppel-like factor 4; NKILA, nuclear transcription factor NF-
κB interacting lncRNA; TBI, traumatic brain injury; NLRX1, nucleotide-binding leucine-rich repeat containing family member X1; MALAT1, metastasis-associated lung
adenocarcinoma transcript 1; AQP4, aquaporin 4; NF-κB, nuclear factor kappa B; IL-6, interleukin-6; IRI, ischemia-reperfusion injury; TUG1, taurine upregulated gene 1;
CXCL13, C-X-C motif ligand 13; CASC2, cancer susceptibility candidate 2; PTEN, phosphatase and tensin homolog; GLAST, glutamate aspartate transporter; MEF2C,
myocyte enhancer factor 2C; NEAT1, nuclear enriched abundant transcript 1; PVT1, plasmacytoma variant translocation 1; BDNF, brain-derived neurotrophic factor;
NLRP3, nod-like receptor protein 3; PPD, postpartum depression; MS, multiple sclerosis; STAT3, signal transducers and activators of transcription 3; EAE, experimental
autoimmune encephalomyelitis; MEG3, maternally expressed gene 3; AD, Alzheimer’s disease; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; CCL2, chemokine
CC motif ligand 2; circTTC3, circRNA TTC3; TLR4, Toll-like receptor 4; NSC, neural stem cell; TIPARP, TCDD inducible poly(ADP-ribose) polymerase; SIRT1, sirtuin 1;
FAAH, fatty acid amide hydrolase.

Frontiers in Molecular Neuroscience | www.frontiersin.org 11 October 2021 | Volume 14 | Article 745066

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-745066 September 29, 2021 Time: 16:40 # 12

Chen et al. NcRNAs in Microglia and Astrocytes

increasing miR-136-5p (Duan et al., 2018). Sulfasalazine can
decrease HOTAIR expression by inhibiting c-Myc in microglia.
Sulfasalazine represses the microglial M1-like phenotype through
the HOTAIR-miR-136-5p-AKT2-NF-κB axis, contributing to
suppressing demyelination (Duan et al., 2018).

DISCUSSION AND CONCLUSION

Microglia and astrocytes are glial cells that maintain tissue
homeostasis in the nervous system. Accumulating evidence
reports that both microglia and astrocytes have pro-inflammatory
phenotype (M1/A1) and anti-inflammatory phenotype (M2/A2).
Activated microglia and activated astrocytes can lead to
inflammation, and the inflammation can contribute to microglial
injuries, astrocyte injuries, and neuron damages. Inflammatory
conditions also accelerate disease progression. LncRNAs and
circRNAs are two ncRNAs involved in neural cell behaviors
and nerve system development. For instance, up-regulated
H19 increases CCL2 expression via sponging miR-1-3p,
which can enhance astrocyte proliferation (Li P. et al., 2020).
Knockdown of circHIPK2 can enhance NSC differentiation
into neurons and promote neuronal plasticity (Wang et al.,
2020a). LncRNA BDNF-antisense (BDNF-AS) is increased

in the human amygdala of alcohol use disorder patients who
started to drink before 21 years old. Up-regulated BDNF-
AS reduces BDNF signaling, resulting in inhibiting synaptic
plasticity in the amygdala (Bohnsack et al., 2019). Xu K. et al.
(2020) proved that circGRIA1 deficiency contributes to the
improvement of synaptogenesis and synaptic plasticity. LncRNA
AtLAS is down-regulated in the dorsal medial prefrontal cortex
in dominant mice. AtLAS can increase synapsin 2b (syn2b)
expression. Syn2b binds with a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptors (AMPAR) to restrain
AMPAR membrane expression. Therefore, syn2b reduces
AMPAR-correlated synaptic transmission. Decreased AtLAS
contributes to enhanced synaptic strength in dominant mice
(Ma et al., 2020).

Here, we found that lncRNAs and circRNAs can display
positive or negative roles in microglia (Table 1) and astrocyte
(Table 2) mediated neurological diseases. And the regulatory
mechanisms of lncRNAs and circRNAs are related to microglia
dysfunction, astrocyte dysfunction, neuron damage, and
inflammation. It is widely indicated that both lncRNAs and
circRNAs can serve as ceRNAs to inhibit miRNA activity. In
this review, the lncRNA/circRNA-miRNA-mRNA regulatory
network also exists in microglia and astrocyte mediated
neurological diseases, including SCI (Figure 1; Shao et al., 2020;

FIGURE 1 | The lncRNA/circRNA-miRNA-mRNA regulatory network in microglia and astrocyte regulated neurological diseases.
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Xu S. et al., 2020; Zhao Q. et al., 2020; Cui et al., 2021; Xiang
et al., 2021; Chen et al., 2022), TBI (He et al., 2021; Liu N.
et al., 2021; Meng et al., 2021), cerebral IRI (Figure 1; Wang
et al., 2020c; Zhang S. et al., 2020; Yang et al., 2021), stroke
(Figure 1; Qi et al., 2017; Han B. et al., 2018; Chen W. et al.,
2020; Chen Y. et al., 2021; Tian et al., 2021; Zhang M. et al.,
2021), epilepsy (Figure 1; Feng et al., 2020; Han C. L. et al., 2020;
Wan and Yang, 2020; Xiaoying et al., 2020), neuropathic pain
(Figure 1; Chen M. et al., 2020), PD (Figure 1; Cao et al., 2018,
2021; Xu W. et al., 2020), and depression (Figure 1; Zhang Y.
et al., 2020). We also found that some therapies can impair the
ncRNA-glial cell axis and thus inhibit disease development. DEX
can suppress SNHG14 to attenuate microglial activation, thus,
to repress IRI (Ta Na et al., 2020). Valproate can decline RMRP
to decrease microglia injuries. Isosteviol sodium promotes
microglia M2 polarization via suppressing GAS5. Valproate and
isosteviol sodium eventually hinder ischemic stroke (Zhang
et al., 2019a; Li and Sui, 2020). Sulfasalazine reduces HOTAIR
expression and therefore represses the microglial M1-like
phenotype, which can finally suppress demyelination (Duan
et al., 2018). These results suggest a promising treatment strategy
based on the ncRNA-glial cell axis for neurological diseases. In
this review, we collected evidence to reveal the relationships
between lncRNAs/circRNAs and neurological diseases. We
hope that this review will provide new sights for more clinical

therapies, thereby allowing us to treat neurological diseases
more effectively.

Recently, increasing evidence reveals that lncRNAs and
circRNAs can be transferred into recipient cells via EVs and
control disease development. For example, astrocytes can transfer
lncRNAs and circRNAs to neurons through EVs and repress
neuron injuries, leading to alleviating nervous system damage
(Figure 2; Chen W. et al., 2020; He et al., 2021). Shao et al.
(2020) found that exosomal lncGm37494 from ADSCs stimulates
microglia M2 polarization to enhance functional recovery after
SCI. One study reported that intranasally delivered lincRNA-
Cox2-siRNA loaded EVs can suppress microglia proliferation
upon LPS treatment in mice (Liao et al., 2020). And
Zhang et al. investigated that lincRNA-EPS can be loaded
in biomimetic vesicles targeting microglia. And lincRNA-EPS-
loaded biomimetic vesicles abolish microglial inflammation
to promote neuron regeneration in vivo (Zhang B. et al.,
2020). These suggest that EV-loaded ncRNAs targeted glial cells
could be promising therapeutic therapies for the treatment of
neurological disorders.

Presently, despite the great progress that has been made
in neurodegeneration, the researches based on the ncRNA-
glial cell axis are still lacking. It is widely suggested that LPS-
induced neuroinflammation can mimic the microenvironment
in neurodegenerative diseases (Hu et al., 2018). LPS-treated

FIGURE 2 | Astrocytes protect neurons against injuries via EVs. Astrocytes transfer lncRNAs and circRNAs to neurons through EVs. Both lncRNAs and circRNAs
can act as miRNA sponges to inhibit miRNA repression on target proteins, which can restrain neuron damage. LncRNAs and circRNAs from astrocyte-derived EVs
are beneficial for tissue repair in the nervous system.
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models may be useful to explore the pathological mechanism in
neurodegeneration.
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