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ABSTRACT New classes of antibiotics are needed to fight bacterial infections, and repur-
posing existing drugs as antibiotics may enable rapid deployment of new treatments.
Screens for antibacterials have been traditionally performed in standard laboratory media,
but bacterial pathogens experience very different environmental conditions during infection,
including nutrient limitation. To introduce the next generation of researchers to modern
drug discovery methods, we developed a course-based undergraduate research experience
(CURE) in which undergraduate students screened a library of FDA-approved drugs for their
ability, in a nutrient-poor medium, to prevent the growth of the human Gram-negative bac-
terial pathogen Salmonella enterica serovar Typhimurium. The nine drugs identified all dis-
rupt DNA metabolism in bacteria and eukaryotes. One of the hit compounds, capecita-
bine, is a well-tolerated oncology drug that is administered orally, a preferred treatment
route. We demonstrated that capecitabine is more effective at inhibiting S. Typhimurium
growth in nutrient-limited than in standard rich microbiological broth, an explanation for
why the antibiotic activity of this compound has not been previously recognized.
Capecitabine is enzymatically converted to the active pyrimidine analogue, fluorouracil
(5-FU), and Gram-positive bacteria, including Staphylococcus aureus, are significantly
more sensitive to 5-FU than Gram-negative bacteria. We therefore tested capecitabine
for efficacy in a murine model of S. aureus peritonitis. Oral capecitabine administration
reduced the colonization of tissues and increased animal survival in a dose-responsive
manner. Since capecitabine is inexpensive, orally available, and relatively safe, it may
have utility for treatment of intractable Gram-positive bacterial infections.

IMPORTANCE As bacterial infections become increasingly insensitive to antibiotics,
whether established, off-patent drugs could treat infections becomes an important ques-
tion. At the same time, basic research has revealed that during infection, mammals starve
pathogens for nutrients and, in response, bacteria dramatically alter their biology.
Therefore, it may be fruitful to search for drugs that could be repurposed as antibiotics
using bacteria grown with limited nutrients. This approach, executed with undergraduate
student researchers, identified nine drugs known to interfere with the production and/or
function of DNA. We further explored one of these drugs, capecitabine, a well-tolerated
human oncology drug. Oral administration of capecitabine reduced infection with
the human pathogen Staphylococcus aureus and increased survival in mice. These data
suggest that capecitabine has potential as a therapy for patients with otherwise untreat-
able bacterial infections.

KEYWORDS antibiotics, capecitabine, course-based undergraduate research
experience (CURE), 5-fluorouracil (5-FU), nucleoside analog, repurposing, Salmonella
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Antimicrobial-resistant pathogens present a growing threat to human health. The rate of
development of new antibiotics has not kept pace with the increasing incidence of resist-

ance due to the difficulty of identifying new chemical classes of antimicrobials (1). Uncertainty
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as to whether new antibiotics could be priced in a manner that would recover research costs
and earn profits also hinders development (2). A rapid, cost-effective alternative to new thera-
pies for untreatable infections is to identify off-patent, well-known drugs with the potential to
be repurposed as antibiotics (3, 4).

Historically, antibiotics have been identified and evaluated by screening for chemi-
cals that prevent bacterial growth in microbiological media that are nutrient rich and
support many rounds of replication. This approach identified most of the clinical anti-
biotic classes currently in use (5, 6). It has the advantage of a large window of detection
and is seemingly logical because bacteria replicate rapidly during the acute stages of
infection. However, prior to rapid replication, bacterial pathogens need to overcome
nutritional immunity, a host defense mechanism that restricts microbial access to metabolic
building blocks (7). For example, growth of the human Gram-negative bacterial pathogen
S. enterica serovar Typhimurium in mammalian cells is limited by access to amino acids (8, 9)
and to carbohydrates or lipids (10, 11). Bacteria respond to nutritional restrictions by reprog-
raming gene expression and activating diverse metabolic and catabolic pathways that enable
virulence (12–14). Researchers have applied this information by screening for compounds that
have antimicrobial activity in nutrient-poor media (15, 16).

We aimed to combine the scientific advances in antibiotic discovery described above
with recent developments in the science, technology, engineering, and math (STEM) edu-
cation field. Student involvement in research during undergraduate education promotes
retention across STEM, reduces the time to graduation, and fosters identity as a scientist
(17–19). To capture these benefits, course-based undergraduate research experiences
(CUREs) engage students in authentic research (18). CUREs provide students with a mean-
ingful connection to research faculty at their institution (20) and increase the participation
of research faculty in teaching (18). For faculty, offering a CURE related to their research
increases satisfaction with teaching and encourages sustained engagement (20). We
worked with a CURE to identify off-patent drugs with potential utility for treating bacterial
infections. The CURE screened a drug library for compounds that inhibit S. Typhimurium
growth under nutrient-limiting conditions and identified nine drugs that prevent
S. Typhimurium replication and are known to interfere with bacterial DNA metabolism.
Two of the drugs, capecitabine and floxuridine, are prodrugs for fluorouracil (5-FU) that
are used in patients to treat cancers (21, 22).

5-FU is a pyrimidine analog with multiple effects on eukaryotic and bacterial cells. It
is enzymatically converted into a series of active metabolites that incorporate into
DNA (dUTP) and cause DNA damage (23). 5-FU derivatives are also incorporated into
mRNA (5-FUTP), causing miscoding and defective protein production (24). The com-
bined effects of 5-FU inhibit bacterial growth but are not bactericidal (25). As with
many drugs, 5-FU is considerably more potent against Gram-positive than Gram-negative
bacteria (25–29). For example, a comparison of Escherichia coli and Staphylococcus aureus
clinical isolates reported 5-FU minimum inhibitory concentrations that differ by 100-fold: 250
mg/ml versus 2 to 4 mg/ml, respectively (25). The heightened sensitivity of Gram-positive
bacteria to 5-FU and other drugs (30, 31) is consistent with their lack of a protective outer
membrane barrier (32, 33).

Floxuridine and one other 5-FU prodrug, 5-fluoro-29-deoxyuridine (FdUrd), mitigate
murine infection with S. aureus, a major human Gram-positive bacterial pathogen that
causes skin and soft-tissue infections and forms biofilms on implants (34). Mice inocu-
lated intraperitoneally (i.p.) with S. aureus have improved survival upon i.p. treatment
with floxuridine starting 1 h after infection and continuing daily for 7 days (35). Similarly,
neutropenic mice inoculated i.p. with S. aureus have improved survival upon i.p. treatment
with FdUrd starting 1 h after infection and continuing daily for 3 days (36). Since floxuri-
dine and FdUrd have antibacterial activity in vivo against S. aureus but are not, like capeci-
tabine, orally available (37), we studied capecitabine further.

Capecitabine was developed in the late 1990s and is used to treat colon, breast,
and gastric cancers (21, 37, 38). It is not by itself considered antibacterial and requires
three metabolic steps for conversion to 5-FU (29, 39). To validate the identification of
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capecitabine as an inhibitor of S. Typhimurium growth, we compared growth in the
presence of capecitabine in the minimal medium versus a rich medium. Since S. aureus
is more sensitive to capecitabine and other 5-FU prodrugs than S. Typhimurium
(25–28, 35, 36, 40), we determined whether capecitabine delivered orally mitigates S.
aureus systemic infection in mice.

RESULTS
Screen of drug library for inhibition of bacterial replication in a nutrient-poor

medium. To identify drugs with antibacterial activity under nutrient-limiting condi-
tions, we worked with students in a CURE to screen a library of 129 drugs approved by
the United States Food and Drug Administration (FDA), the Oncology Drug Set VII from
the National Cancer Institute. We used a virulent strain of S. Typhimurium (SL1344)
grown overnight in a rich medium, lysogeny broth (LB) (41, 42). Cultures were diluted
in M9 minimal medium supplemented with 2% glucose. Students added bacteria into
each well of a 96-well plate, followed by the addition of library compounds to a final
concentration of 10mM. Control samples included vehicle and ampicillin. Plates were
incubated at 37°C without shaking for 24 h, and the optical density at 620 nm (OD620)
was measured to estimate bacterial growth. Vehicle-treated bacteria reached an aver-
age OD620 of 0.192, whereas ampicillin-treated bacteria achieved an OD620 of only 0.05
(Fig. 1). As expected, most library compounds had little or inconsistent effects on
growth (see Table S1 in the supplemental material). Nine compounds consistently pre-
vented bacterial growth, as defined by the cutoff of two standard deviations from the
mean absorbance of the vehicle control. All nine hit compounds are drugs that inter-
fere with DNA metabolism and have been used or explored as human cancer therapies
(Table 1). Five are pyrimidines or pyrimidine prodrugs that inhibit DNA synthesis (aza-
cytidine, capecitabine, decitabine, floxuridine, and gemcitabine). Plicamycin cross-links
DNA, and carboplatin is a prodrug for a DNA cross-linker. Mitomycin alkylates DNA and
also inhibits cellular thioredoxin reductase (43). Bleomycin is a mixture of glycopepti-
des that cleave DNA (44–46). Only one hit compound, capecitabine, is routinely admin-
istered to humans via an oral route (37). We therefore pursued this compound further.

Nutrient limitation sensitizes S. Typhimurium to growth inhibition by capecitabine.
To establish whether we identified capecitabine because we screened in a nutrient-
poor medium, we compared S. Typhimurium growth in the presence of capecitabine
in M9 with 2% glucose to LB. S. Typhimurium was considerably more sensitive to cape-
citabine at 10 and 100mM in M9 than in LB (Fig. 2A and B). We also compared the
effect of a dose range of capecitabine on growth in M9 versus LB under conditions
that as closely as possible mimicked the screen: resuspension of capecitabine in di-
methyl sulfoxide (DMSO) instead of water, growth at 37°C without shaking, and read-
ing of the plate on the spectrophotometer used for the screen, which has a 620-nm fil-
ter (Fig. 2C). Capecitabine was not effective at inhibiting S. Typhimurium growth in LB
until concentrations of 100 mM were reached, whereas 12.5 mM capecitabine inhibited
growth in M9. These observations suggest that experiments performed in rich media
are unlikely to reveal the antibacterial activity of capecitabine. We conclude that under
nutrient-limited conditions, S. Typhimurium is sensitive to growth inhibition by capeci-
tabine and that the use of a nutrient-poor medium in the screen facilitated the identifi-
cation of this drug.

Capecitabine reduces S. aureus colonization of tissues in mice. 5-FU is more
potent against Gram-positive than Gram-negative bacteria (25–29), and two 5-FU pro-
drugs improve survival in S. aureus-infected mice (35, 36). Therefore, we tested capeci-
tabine against S. aureus infection of mice. We used a clinical S. aureus human wound
isolate (ATCC 6538) that is virulent in mice (47–49). S. aureus was inoculated intrave-
nously into BALB/c mice at 5 � 107 CFU, as verified by plating on a selective medium
(50–52). Capecitabine was delivered orally every 12 h over 5 days at 100 or 200mg/kg
of body weight. The dose of 400mg/kg/day is the maximum tolerated by mice (53).
We scored mice daily for health on the basis of coat, posture, and movement (54)
(Fig. 3A). On day four, one mouse in the control group died, and its tissues were
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collected, homogenized, and plated to confirm colonization with S. aureus. After 5
days, remaining mice were euthanized. Tissues were harvested, weighed, homoge-
nized, and plated for CFU enumeration. Mice treated with the higher dose of capecita-
bine had significantly better health scores and reduced bacterial tissue colonization
compared to mock-treated mice (Fig. 3B). These findings indicate that capecitabine
ameliorates acute S. aureus infection of mice.

DISCUSSION

Here, we describe working with a CURE to screen for drugs that inhibit the growth
of a Gram-negative bacterial pathogen, S. Typhimurium. We performed the screen in a
nutrient-poor medium, whereas screens for new antibiotics are more typically per-
formed in a richer medium, such as MHB, which was developed to optimize the growth
of Neisseria species (6, 55). We identified multiple drugs known to interfere with DNA
metabolism. Capecitabine was the only drug identified that is orally available and,

TABLE 1 Hit compounds identified as inhibitors of S. Typhimurium growth in M9 medium

Compound Mean OD600 SEM Mechanism of action; target, if known Delivery routea

Vehicle (DMSO) 0.192 0.003 NA NA
Ampicillin (control) 0.040 0.000 Inhibits cell wall synthesis Oral
13b Azacytidine 0.036 0.000 Inhibits DNA synthesis; pyrimidine, incorporates into DNA i.v., s.c.
16 Bleomycin 0.037 0.001 Inhibits DNA synthesis; unclear i.m., i.p., i.v., s.c.
22 Capecitabine 0.046 0.010 Inhibits DNA synthesis; prodrug for pyrimidine 5-FU, inhibitor of thymidine synthase Oral, i.v.
23 Carboplatin 0.036 0.001 Inhibits DNA synthesis; prodrug for cross-linker of DNA i.v.
40 Decitabine 0.040 0.002 Inhibits DNA synthesis; pyrimidine, incorporates into DNA i.v.
51 Floxuridine 0.036 0.001 Inhibits DNA synthesis; prodrug for pyrimidine 5-FU, inhibitor of thymidine synthase i.v.
56 Gemcitabine 0.052 0.014 Inhibits DNA synthesis; pyrimidine, incorporates into DNA i.v.
78 Mitomycin 0.042 0.000 Inhibits DNA synthesis; alkylates DNA, also other cellular targets i.v.
95 Plicamycin 0.044 0.001 Inhibits DNA synthesis; complexes with DNA and RNA i.v.
ai.m., intramuscular; i.p., intraperitoneal; i.v., intravenous; s.c., subcutaneous; NA, not applicable.
bNumbers correspond to the x axis in Fig. 1 and column A in Table S1.

FIG 1 Screen of a library of FDA-approved drugs by CURE students for the ability to inhibit S. Typhimurium growth in a nutrient-
poor medium identified nine drugs. Shown are mean and SEM values at an OD620 of 2 to 5 after 24 h of compound exposure in M9
minimal medium with 2% glucose at 37°C in static cultures. Vehicle (DMSO at 5%; blue circle) and ampicillin (50 mg/ml, 143 mM;
green triangle) were used. Compounds are arranged alphabetically. The nine hits (red circles) are azacytidine, bleomycin,
capecitabine, carboplatin, decitabine, floxuridine, gemcitabine, mitomycin, and plicamycin. Blue horizontal dashed lines represent two
standard deviations from the means of the vehicle control, the cutoff for identifying a hit. The hits, DMSO, ampicillin, and several
nonhit compounds have error bars that are too small to be visualized on the graph.
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therefore, of practical use for repurposing. We demonstrated that capecitabine is more
potent against S. Typhimurium in minimal than in a standard rich medium, indicating
that screening in nutrient-poor media facilitated the identification of capecitabine.
These observations highlight that screens for new antibacterials performed under con-
ditions that mimic infection identify different compounds than screens performed in
traditional media (15, 56–58). They also underscore the value of working with students
in a CURE format on screens of biological interest (59, 60).

Capecitabine is a 5-FU prodrug (21). Metabolites of 5-FU slow bacterial growth by
interfering with DNA and RNA structure (23, 24). Two other 5-FU prodrugs, floxuridine
and FdUrd, have been demonstrated to mitigate infection in mice inoculated with the

FIG 2 Capecitabine is more effective at inhibiting the growth of S. Typhimurium in nutrient-poor than in rich media. (A and B) S.
Typhimurium was grown in M9 minimal medium with 2% glucose (A) and LB (B) at 37°C with aeration in the presence of the
capecitabine concentrations indicated. OD600 was monitored hourly on a plate reader. Error bars represent SEM from four
independent clones tested in triplicate. Vehicle (10% water) and ampicillin (50 mg/ml) were used. (C) Endpoint experiment
performed under conditions mimicking the screen. S. Typhimurium was grown at 37°C standing, and OD620 was monitored
after 24 h. Vehicle (5% DMSO) and ampicillin (50 mg/ml) were used. Means with SEM from at least 6 biological replicates tested in
triplicate are shown. ***, P , 0.0001; **, P , 0.005; *, P , 0.05, as established by analysis of variance with a Tukey-Kramer honestly
significant difference.

FIG 3 Capecitabine improved health and reduced tissue colonization of S. aureus-infected mice. BALB/c female mice (8 to 9weeks
old) were infected intravenously with 5 � 107 CFU of S. aureus. Mice were treated orally with capecitabine at the dosage indicated or
with sterile water (200 ml) every 12 h for 5 days. (A) Health was monitored every 24 h. Scores were summed to a maximum of six, and
higher scores represent an increased incidence of morbid signs: movement (0 to 3), posturing (0 to 2), and coat condition (0 to 1).
Means with standard deviations from 4 to 5 mice are shown. *, P , 0.01, relative to the corresponding mock-treated sample, as
established by analysis of variance with a Tukey-Kramer honestly significant difference. (B) Tissue colonization. Each circle represents
a tissue from a mouse, and 10 CFU/g was the limit of detection. Open circles show the number of CFU from the mock-treated mouse
that died on day 4, although this mouse was excluded from the geometric mean (gray bars) and statistical analysis. *, P , 0.05, Mann-
Whitney U test, two-tailed.
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Gram-positive pathogen S. aureus (35, 36). 5-FU is approximately 100-fold more potent
at inhibiting the growth of Gram-positive than Gram-negative bacteria (25–29). For
these reasons, we tested capecitabine in mice inoculated with S. aureus, which demon-
strated that capecitabine treatment reduced tissue colonization and increased murine
survival.

The potential for S. aureus to evolve resistance to capecitabine is not practical to
test in broth culture, because S. aureus is not growth inhibited by capecitabine at con-
centrations up to 200 mM (39). However, S. aureus 5-FU-resistant isolates evolved in
MHB harbor mutations in genes consistent with the roles of 5-FU in disrupting DNA
and RNA metabolism. The corresponding mutated proteins convert 5-FU into toxic py-
rimidine analogs or increase concentrations of uracil, which competes with 5-FU ana-
logs and thereby relieves toxicity (29). Resistant mutants grew similarly to the wild-
type parent strain in broth, suggesting similar in vitro fitness levels (29). Whether the
mutants are still able to cause infection in whole animals and remain resistant to 5-FU
and/or capecitabine is unknown but seems unlikely given the centrality of the mutated
genes to nucleotide metabolism and, therefore, bacterial replication.

Selection for bacterial mutants resistant to capecitabine in mice is similarly not fea-
sible due to differences between capecitabine metabolism in primates and mice.
Capecitabine is well absorbed in the murine and primate small intestine (61, 62).
However, in murine intestinal epithelial cells, capecitabine is converted to 5-FU at rates
at least 20 times higher than those in monkey or human intestinal cells (63). As a result,
oral capecitabine causes severe nuclear degradation of intestinal crypt cells in mice at
plasma 59-DFUR concentrations that are benign in cynomolgus monkeys (63, 64). In prima-
tes, capecitabine travels from the intestine to hepatocytes, where the first two steps of ca-
tabolism occur. The third metabolic step, production of 5-FU, is catalyzed in many cell
types (21, 37). Thus, the cytotoxicity of 5-FU is, in effect, distributed across the human
body, mostly affecting rapidly dividing cells, such as in tumors. Mice are more than 6-fold
less tolerant to oral capecitabine than humans: oncology patients typically receive
2,500mg/kg/day of oral capecitabine, whereas mice tolerate only 400mg/kg/day (37, 53,
65, 66). Thus, it would not be possible to select for resistant S. aureus mutants in mice at
capecitabine dosages equivalent to those received by patients.

In humans, capecitabine oral administration is well tolerated, and toxic effects do
not generally become limiting for months (67). The most common toxicities caused by
sustained treatment with capecitabine or 5-FU are cumulative and due to damage to
rapidly dividing cells. Dose-limiting toxicities include diarrhea, cytopenias, hyperbiliru-
binemia, and cutaneous damage, such as hand-foot syndrome (palmar-plantar erythro-
dysesthesia) (67). Some patients experience central neurotoxicity and/or acute cardio-
toxicity (68). However, over the short time frames consistent with antibiotic treatment,
days to weeks, toxicity is rare (67).

Capecitabine tolerability and efficacy against cancer in humans is influenced by genetic
polymorphisms in pyrimidine metabolic and degradative enzymes (37). Infection therapy
would likely be subject to the same polymorphisms, but limitations on time and resources
will likely make it difficult to a priori identify patients with reduced tolerability. However,
there is an approved treatment for capecitabine overdose, uridine triacetate, which com-
petes with the 5-FU derivative fluorouridine triphosphate for incorporation into RNA (69,
70). We conclude that due to its off-patent status, oral formulation, high tolerability, and
evidence for efficacy against S. aureus infection in mice, capecitabine merits exploration as
a potential antibiotic therapy or cotherapy for difficult-to-treat Gram-positive bacterial
infections.

MATERIALS ANDMETHODS
Bacterial strains and media. S. Typhimurium strain (SL1344) is a virulent calf isolate (71). SL1344

was grown in LB (41, 42) with 30 mg/ml streptomycin or in M9 medium (26.11mM Na2HPO4�7H2O,
22.04mM KH2PO4, 18.70mM NH4Cl, 8.56mM NaCl, 0.1mM CaCl2, 63 mM MgSO4) with 2% glucose and
0.04% histidine (SL1344 is a histidine auxotroph). S. aureus strain FDA209 (ATCC 6538) is a human wound
isolate that was established as a standard strain for testing antiseptics by the Insecticide and Fungicide
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Division of the U.S. Food and Drug Administration in 1938 (72, 73). Mannitol salt-selective agar (MSA)
plates with phenol red were used to identify and enumerate S. aureus (74).

Screen. The primary screen was performed by undergraduate researchers within a CURE class (75).
The library was the Approved Oncology Drug Set VII from the National Cancer Institute of the United
States/National Institutes of Health Developmental Therapeutics Program (http://dtp.cancer.gov). We
screened barcoded plates 4845 and 4846 (https://dtp.cancer.gov/organization/dscb/obtaining/available
_plates.htm). The library was solubilized in DMSO (Sigma-Aldrich) at 10mM and stored at 220°C.

S. Typhimurium cultures were grown overnight at 37°C in LB with aeration. Cultures were diluted
100-fold to approximately 5 � 106 CFU/ml in M9. To each 96-well round-bottomed test plate, 90 ml of
diluted culture was added. Library compounds (10mM) were diluted 1:100 into 50% DMSO and 10 ml
was added to the plate, for final concentrations of 10 mM compound and 5% DMSO. Controls within
each plate included DMSO and ampicillin (50 mg/ml; 143 mM). The concentration of ampicillin was cho-
sen based on the need for a robust positive control given varied student pipetting techniques (59); we
used the concentration of ampicillin routinely used to prevent the growth of S. Typhimurium in the labo-
ratory (76). Plates were grown statically for 24 h at 37°C, and the OD620 was the measured with an
accuSkan FC microplate photometer (ThermoFisher Scientific, Waltham, MA). Biological replicates were
independently performed by 2 to 5 student researchers. Outliers for individual compounds were deter-
mined using a Grubs test and eliminated. Compounds with values more than two standard deviations
below the DMSO control were deemed hits.

Growth curves and endpoint analyses. S. Typhimurium cultures were grown overnight in LB at 37°C
with aeration. Cultures were diluted to ;5 � 106 bacteria/ml into M9 or LB. For the growth curve experi-
ments, culture volumes of 180 ml were added to a flat-bottomed 96-well plate. Capecitabine was freshly
diluted in water, and 20 ml volumes were added to reach the final concentrations indicated. Plates were
grown for 24h at 37°C with shaking, and the OD600 was measured hourly in a Synergy 2 multi-mode or Eon
microplate reader (BioTek, Winooski, VT). Mean OD600 and SEM from four biological replicates tested in tripli-
cate were calculated. For the endpoint analysis experiments, S. Typhimurium cultures were grown overnight
at 37°C in LB with aeration. Cultures were diluted 100-fold to approximately 5 � 106 CFU/ml in M9 or in LB.
Diluted culture (90 ml) was added to a 96-well round-bottomed plate. Capecitabine was freshly diluted in
50% DMSO and 10ml was added to culture wells to reach the final concentrations indicated with 5% DMSO.
Plates were grown statically for 24h at 37°C, and the OD620 was measured with an accuSkan FC microplate
photometer (ThermoFisher Scientific, Waltham, MA).

Ethics statement. Animal work was carried out in accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (77). Euthanasia was
carried out by carbon dioxide asphyxiation followed by cervical dislocation. All protocols were approved
by Institutional Committee for Animal Care and Use (protocol number 2445) at the University of
Colorado, Boulder, an Association for Assessment and Accreditation of Laboratory Animal Care (001743)
accredited institution.

Infection of mice. Female BALB/c mice were purchased from Taconic Biosciences (Rensselaer, NY)
and acclimated for 1 week. S. aureus were grown for 18 h overnight at 37°C in LB medium with aeration
and diluted to ;5 � 107 CFU/ml in phosphate-buffered saline (PBS) prior to inoculation. Mice that were
8 to 9weeks old were weighed and then infected intravenously with;5 � 107 CFU of S. aureus, as deter-
mined by plating onto MSA and enumeration of CFU. Mice were treated orally by gavage with 200mg/
kg or 100mg/kg capecitabine in 200 ml of water every 12 h for 5 days. Capecitabine was prepared 1 h
prior to delivery by suspension in sterile water. Control animals were mock treated with water. Prior to
dosing, visual health assessments were performed on the basis of movement (0 for normal, 1 for slow
movement, 2 for movement after prodding, 3 for no movement with prodding), posture (0 for normal, 1
for hunched, 2 for prostrate), and coat health (0 for normal, 1 for a ruffled coat) (54). Scores were
summed to a maximum of 6. Mice that succumbed to infection were scored as 6. Tissues were har-
vested, weighed, and homogenized in 3ml of PBS. Diluted tissues were plated onto MSA and grown
overnight at 37°C to enumerate CFU/ml and/or establish the presence of S. aureus in all tissues har-
vested. After 5 days of treatment, remaining mice were euthanized and tissues were similarly harvested
and processed.

Statistical analysis. Statistical analysis was performed with GraphPad Prism 8 and with JMP version 15.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.9 MB.
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