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Recent epidemiological studies show a noticeable correlation between chronic

microbial infections and neurological disorders. However, the underlying

mechanisms are still not clear due to the biological complexity of

multicellular and multiorgan interactions upon microbial infections. In this

review, we show the infection leading to neurodegeneration mediated by

multiorgan interconnections and neuroinflammation. Firstly, we highlight

three inter-organ communications as possible routes from infection sites to

the brain: nose-brain axis, lung-brain axis, and gut-brain axis. Next, we

described the biological crosstalk between microglia and astrocytes upon

pathogenic infection. Finally, our study indicates how neuroinflammation is a

critical player in pathogen-mediated neurodegeneration. Taken together, we

envision that antibiotics targeting neuro-pathogens could be a potential

therapeutic strategy for neurodegeneration.
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1 Introduction

Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS) are

the most common NDs, and these affect millions of people worldwide (1). Many

potential pathogenic processes of AD and PD have been explored since their

discovery. The most widely accepted hypothesis relates to the aggregation of misfolded

proteins such as amyloid-beta (Ab) and tau in AD (2) and a-synuclein (a-syn) in PD

pathology (3) while MS is considered an autoimmune disease (4). Currently, a new

hypothesis has been proposed to indicate microbial infection as a risk factor for NDs, due

to the discovery of infectious agents in the brain tissues of patients with NDs. Besides,

neuroinflammation has demonstrated its potential as a central mechanism causing

neurodegeneration in NDs under microbial infections (5).
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This figure was illustrated at Biorender.com.

Tran et al. 10.3389/fimmu.2022.907804
For instance, decades of research have confirmed the

epidemiological prevalence of bacterial infections in NDs (6–

9). Microbiome-derived lipopolysaccharide (LPS) can activate

microglia, leading to increased AD propagation (10, 11). Viruses

are another risk factor for many neurological disorders; herpes

simplex virus 1 (HSV-1) has been found in both AD and PD

patients (12, 13). In addition, different brain sections of people

with AD have detected the presence of fungal infections (14).

Many studies have shown the involvement of microbial

infections in neurological diseases; however, the role of

infectious agents, including bacteria, viruses, and fungi, in

NDs is still under investigation. More interestingly, the brain

does not have its own microbiota, so how do the microbes reach

the CNS?

Multi-organ interactions might be an answer to this question

because many studies have revealed that infectious agents may

be a risk factor for neuroinflammation in the CNS (15–17). The

nose-brain axis is possibly the shortest pathway that allows nasal

microbes to reach the brain via olfactory sensory neurons

(OSNs), which directly contact pathogens (18), whereas the

lung-brain axis is a line of connection between pulmonary

microbes and NDs (19). Importantly, the concept of targeting

the gut and its microbiota to heal brain diseases was presumed to

be outlandish throughout the early years of the past decade (20).

Since then, however, studies on brain diseases have shifted focus

towards exploring the microbiota-gut-brain axis (21–23). Once

microbes and their products reach the CNS, neuroinflammation

is a consequence of the central immunity fighting microbial

neuroinvasion, which might lead to neurodegeneration and

neuron death.

Neuroinflammation is generally our defensive response

against microbial infections, traumatic brain injury, or toxic

aggregates while clearing wastes producing cytokines (24).

Microglia and astrocytes, the most abundant brain immune

cells, mainly contribute to the neuroinflammatory processes in

NDs. Both alter their morphology and promote the generation of

inflammatory mediators under microbial infections, which
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might be defined as infective neuroinflammation. Typically,

their neuroinflammation has protective roles; however, certain

pathogens trigger detrimental proinflammation, which could

result in synaptic damage, cell loss, and entanglement of

neurogenesis (25).

Therefore, this review provides a concept of infective

neuroinflammation-driven neurodegeneration via multiorgan

interconnections in NDs. We summarize the evidence

supporting the infection hypothesis of NDs and discuss the

latest discoveries in this field by firstly demonstrating three

possible routes for the penetration of infectious agents into the

CNS, including the nose-brain axis, lung-brain axis, and gut-

brain axis. We then discuss the biological roles of microglia and

astrocytes in the neurodegenerative neuroinflammation under

microbial infections. Finally, we introduce how infective

neuroinflammation-driven neurodegeneration, with a

classification of the microbial infections by bacteria, viruses,

and even fungi. Taken together, our review may help identify

critical questions for future studies focused on an understanding

of the physiology and etiology of brain disorders derived from

microbes, in addition to offering a new therapeutic strategy

for NDs.
2 Routes for microbiota invasion
into the brain

2.1 Nose-brain axis: Olfactory pathway

The physiological distance from the nose to the brain is

shorter than the gut-brain axis. However, the nasal cavity is a

complicated system with many layers composed of different cells

(26), including epithelium, neurons, and even immune cells (26),

including epithelium, neurons, and even immune cells

(Figure 1i). Nasal pathogens can reach the brain by bypassing

the blood-brain barrier (BBB) as well as the cerebrospinal fluid

barrier. Infectious agents can invade the CNS via OSNs within

the mucosal layer, which is the most vulnerable route because it

is exposed to the external environment (27). OSNs are the most

abundant cell type on the olfactory epithelial surface, and their

bodies are under a sheet of sustentacular cells that develop

ciliated dendrites into the mucous layer (26). External odorant

signals are delivered through OSN axons to the olfactory bulb of

the brain (28). Due to this anatomical organization, OSNs are

the direct intracellular route for neuroinvasion, and are

especially vulnerable to neurotropic viruses (29).

Evidence has demonstrated that a cytopathic virus, vesicular

stomatitis virus, can invade the olfactory epithelium and be

transferred intracellularly along the axons of OSNs to the CNS,

where the virus is first spotted in the olfactory bulb (30). In the

CNS, microglia are the front-line defense against the

neuroinvasion of the vesicular stomatitis virus (29). In
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addition, the presence of SARS-CoV-2 RNA and protein in

anatomically distinct regions of the nasopharynx and brain has

demonstrated the olfactory pathway as a port of SARS-CoV-2

neuroinvasion (31). Another study showed that methimazole-

mediated injury led to increased Burkholderia pseudomallei in

the olfactory system of animal models, resulting in CNS

infection (32). Even though the nose-brain axis is a highly

potential route to access the brain, there is still limited

knowledge about this pathway, which warrants further

investigation to provide a complete understanding of the

underlying mechanism of how infectious agents move from

the nose to the brain, causing detrimental effects.
2.2 Lung-brain axis

Several studies have recognized that cigarette smoking might

be a risk factor for NDs, including MS (33), AD (34, 35), and PD

(36), thereby suggesting a new pathway known as the ‘lung-brain

axis’. Like other organs, the lungs also have a microbial

community that are known as pulmonary microbes, which can

directly impact the lung health and development of diseases, and

indirectly be detrimental to other organs, including the brain

(37). The human respiratory tract is divided into upper and

lower tracts, which are primarily exposed to airway

microorganisms, including bacteria, viruses, and fungi (38).
Frontiers in Immunology 03
Some of these reside in the alveolar zone of the lower

respiratory tract. The lung-brain axis is a bi-directional

association between acute respiratory distress syndrome and

neurological dysfunction (39), via a complicated pathway

consisting of inflammation and neuroendocrine pathways.

Several studies have shown that multiple routes for lung

infection might affect the CNS. The interaction of microbes

between the lung and CNS might be through direct translocation

via the blood circulation (40) or indirect stimulation of systemic

inflammatory mediators released from the lung under infection

(41), such as the cytokine storms seen in COVID-19

disease (Figure 1ii).

In case of direct translocation, pulmonary microbes and

their soluble components may disrupt the lung alveolar-

capillary barrier, to enter the blood, and then reach the CNS

by disrupting the BBB. Although direct translocation is a

promising route for the lung-brain axis, it has not yet been

well addressed. Pseudomonas aeruginosa, a significant

pathogen that causes pneumonia, can spread from the lungs

to the bloodstream by introducing toxins to the surrounding

lung epithelial cells and damaging the alveoli (42, 43).

Interestingly, P. aeruginosa infection can cause meningitis

and brain swelling (44). Another piece of evidence illustrates

the regulatory roles of pulmonary microbiomes in the

autoimmunity of the CNS and the development of MS (37).

According to that study, the cell wall components of lung
FIGURE 1

The inter-organ communication for pathogens to enter the brain. (i) Nose-brain axis is the first possible pathway that allows infectious agents to
invade the CNS. Nasal pathogens can reach the brain by bypassing the blood-brain barrier (BBB) as well as the cerebrospinal fluid barrier.
Infectious agents can invade the CNS via olfactory sensory neurons lying within the mucosal layer. (ii) Lung-brain axis: Pulmonary microbes and
their soluble components may directly disrupt the lung alveolar-capillary barrier to enter the blood or interact with the local immune system,
subsequently reaching the CNS by disrupting the BBB. (iii) Gut-brain axis serves as another compromising physiological distance connecting the
gut and the brain through blood circulation and the vagus nerve. Bacteria and their components can cross the gut-blood barrier during
disruption, through bloodstreams where bacteria release their metabolites, which cross the BBB and reach the central nervous system. The
vagus nerve is composed of enter-endocrine cells (EECs) located on a gut sensory epithelial layer. The EEC has an extending part called a
neuropod cell, which connects the gut lumen and the brain stem, allowing for bi-directional signaling. This figure was generated using
Biorender.com.
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bacteria continuously send their signals to the brain immune

cells and shift the polarization of the brain-resident microglial

cells to a type I interferon (IFN) signature.

The direct mechanism of viral neuroinvasion is thought to

be via peripheral sensory neurons that regulate the lung and

brain by means of a neuropeptide called acetylcholine (45).

Neurotropic human respiratory viruses, such as respiratory

syncytial virus, remodel gene-related nerve structures in pigs

(46). Among the viral respiratory infections, SARS-CoV-2

showed neurotropism for both the peripheral and central

nervous systems (47), which is associated with neurological

manifestations. It is known that the SARS-CoV-2 might infect

the brain via the nasal route; however, alternative pathways have

also been suggested for its neuroinvasion. One symptom found

in COVID-19 patients is peripheral pain related to IFN-1-

induced hyperexcitability of the dorsal root ganglion neurons,

which suggests that the virus might centripetally enter the CNS

through the vagus nerve (48). Subsequently, the viruses might

propagate from neuron to neuron via synapse connection or

penetrate the blood-cerebrospinal fluid barrier and damage

brain cells (49, 50). In the lung-brain axis, systemic immunity

might play an essential role in this crosstalk due to the

inflammatory factors that are released as a defense mechanism

during the infection stage (51). Upon viral infection, type-III

IFNs secreted by lung dendritic cells can damage the lung

epithelial layer (52). They may also play a role in BBB

breakdown (53). Currently, there is much evidence showing an

interconnection between SARS-CoV-2 infection and its

neurological impact. Some studies have demonstrated direct

neuroinvasion of the virus into the brain (31), while indirect

neurological manifestations have also been indicated via

hypercytokinemia or cytokine storms (54). The subsequent

consequences of SARS-CoV-2-induced cytokines are that these

travel along with the blood and disrupt the BBB, thereby

damaging brain cells. Tumor necrosis factor-alpha (TNF-a)
can be directly transported through the BBB, upon which it

activates the inflammatory state of microglia and astrocytes,

thereby inducing neuronal degeneration (55). Local lung

microbiomes can be considered a warning signal for brain

health, and knowledge about the lung-brain axis has the

potential to serve as the basis for therapeutic strategies for NDs.
2.3 Gut-brain axis

Strong evidence suggests the existence of two main pathways

that allow bi-directional interaction between the gut and the CNS:

systemic circulation and the vagus nerve-mediated route (56, 57)

(Figure 1iii). While these interactions are primarily beneficial,

current studies have begun to focus on the relationship between

the human gut and brain, which has illustrated a highly essential

role of the gut microbiome as a driver of behavior, stress response,

and even some brain diseases (58, 59).
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2.3.1 Bloodstream route: Gut-blood-brain
barrier

The human gut microbiota is an intricate community of

microorganisms that contains almost all bacterial species that

inhabit and critically maintain homeostasis of the

gastrointestinal (GI) tract (60). It can be considered “the best

frenemy forever” because while it is essential and beneficial, it

can also be detrimental to human health. Although most

commensal microbes are dominant in the intestine and help to

maintain human health, alterations in the diet or depression can

modulate the composition of gut microbiota and result in an

imbalance between beneficial and harmful microbes, which

results in intestinal inflammation. The mucus layer, which

includes a firmly adherent inner layer and a loosely adherent

outer layer, serves as the first physical defense in the intestinal

barrier, which prevents toxins or bacteria from directly

contacting the epithelial cells (61). Thus, the first stage of

chronic intestinal inflammation is dysfunction of the mucus

layer under stressful conditions (62). As a result, the barrier is

destroyed and pathogens attack intestinal villi and induce

inflammation by producing toxins (63). Escherichia coli is the

most common pathogenic species associated with the

progression of chronic intestinal inflammation, because it

contains endotoxins such as LPS, which act as inflammatory

mediators in the human gut (64, 65).

Gut bacteria and their components can infiltrate gut-

associated lymphoid tissues and the bloodstream, to interact

with various immune cells and stimulate their responses (66).

Dendritic cells that encounter translocated microbial antigens

confer antigens to B and T cells, to induce their differentiation

and maturation (67). The upregulation of inflammatory

cytokine levels results from innate immune responses

stimulated by bacterial factors (68). Abundant evidence has

demonstrated that bacteria and their components can cause

BBB dysfunction, which is associated with several diseases (69–

71). In a rodent model of sepsis, BBB increased permeability and

TNF levels (72). In meningitis, bacterial transcytosis across the

BBB occurs by means of bacterial pili or cell wall components

with the brain endothelium (73). CNS-tropic bacteria may

penetrate the BBB without disruption, while others require it

(74). Toll-like receptor (TLR)-expressing brain endothelial cells

allow infiltration of LPS from gram-negative bacteria and that of

lipoteichoic acid (LTA) from positive bacteria into the CNS (75).

LPS can be a vital factor for stimulating inflammation of

neuronal-glial cells and brain dysfunction in NDs, either alone

or in combination with other potent neuropathological

stimulants such as Ab or cytokines (76, 77).
2.3.2 Vagus nerve: The interface between the
gut microbe and brain signaling

Initially, neurologists believed that PD starts in the CNS, and

they mainly focused on a-syn as a factor involved in the
frontiersin.org
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pathology of PD in the brain; however, it is unknown where a-
syn is present. Clinical observations have revealed that almost all

patients with PD experience intestinal problems; therefore, it has

been suggested that the GI tract is involved in PD. A study

examining the brain of a patient with PD observed damage in the

vagus nerve, accompanied by damage in the substantia nigra

(SN) (78), which led to the development of a hypothesis for PD

that has drawn much attention from scientists worldwide.

Braak’s postulate of transportation of a-syn from the gut to

the brain says that a-syn is a sub-product derived from the gut,

which enters the enteric nervous system (ENS), and then travels

along the unmyelinated preganglionic fibers of the vagus nerve

to reach the brainstem and cause inflammation in the CNS (79–

81). Proteins deposited in the brain as a-syn or Ab can pass from
one organ of the body to another. However, it is still unclear how

these proteins misfold. Bacterial amyloid proteins may be

involved in pathological protein misfolding in NDs (82). To

investigate the function of amyloid proteins produced by

microbiota, a study was conducted in rats using C. elegans and

E. coli to generate curli, an amyloid protein found in the bacterial

extracellular matrix. An increase in neuronal a-syn
accumulation was observed in both the gut and brain of

laboratory mice, whereas no differences in survival, body

weight, or cytokine circulation were recorded. a-syn exposed

to curli-producing bacteria also showed enhancement of a-syn
propagation in a C. elegansmodel, which illustrates that bacterial

amyloid may function as a trigger to initiate the deposition of

aggregated proteins in the brain, via a mechanism called cross-

seeding, which results in induced neuroinflammation (83).

With respect to the presence of a-syn in the gut, there is a

proposal that enter-endocrine cells (EECs) contain a-syn and

contribute to the pathogenesis of PD. EECs are sensory cells that

produce hormones and connect to enteric neurons, which play a

vital role in transporting proteins from the gut to the brain (84).

The expression of a-syn in multiple EECs has been observed in

both the small and large intestines of mice and humans. Two types

of EECs, cholecystokinin and peptide YY-containing cells, have

been characterized to have the presence of a-syn using several

methods (85). Another animal study published evidence that PD

could begin in the gut, thereby validating Braak’s hypothesis. This

study injected exogenous pathological a-syn and observed its

effect on the misfolding of endogenous synuclein and

transmission through the vagus nerve (86). If a-syn
accumulates in the gut, how does it connect the gut lumen and

nervous system? Several other studies have shown that EECs

possess many properties, such as, they serve as neurons, as well as

express neurotrophin receptors and synaptic proteins.

Furthermore, these cells possess neuropods via a neurofilament-

containing axon-like process (87). The vagus nerve has been

demonstrated to serve as a bridge that allows signals in the ENS

to reach the CNS. Similarly, the dorsal nucleus of the vagus nerve

has been observed in Lewy body displays, which contributes to the

theory of a-syn propagation via this pathway (88, 89).
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3 The roles of microglia and
astrocytes in neurodegenerative
neuroinflammation

Neuro inflammat ion i s genera l ly defined as an

inflammatory response of neuronal immune cells under

various detrimental mediators such as infection, traumatic

brain injury, or toxic molecules, and is indicated by the

generation of several inflammatory cytokines/chemokines,

nitric oxide, and ROS, by innate immune cells in the CNS

(24). Microglia and astrocytes are the most abundant brain

immune cells that mainly contribute to neuroinflammatory

processes in NDs. Both alter their morphology, and promote

the generation of inflammatory cytokines under disease

conditions or infection (Figure 2). The production of these

cytokines s could result in synaptic damage, cell loss, and

entanglement of neurogenesis (25). Two prevalent cytokines

found in AD, interleukin (IL)-1b and TNF-a, induce post-

synaptic receptor activation and activate the nuclear factor

(NF-kB) pathway, resulting in synaptic loss and neuronal

death (90). Furthermore, several inflammatory cytokines in

the cerebrospinal fluid are elevated in patients with NDs (91).

In particular, the expression of TGF-b, MCP-1, and YKL-40 in

the cerebrospinal fluid is induced in AD patients, in addition

to TGF-b1, IL-6, and IL-1b in PD patients. Moreover,

significant induction of G-CSF, IL-2, IL-15, IL-17, MCP-1,

MIP-1a, TNF-a, and VEGF levels has been observed in

amyotrophic lateral sclerosis (ALS) patients. On the other

hand, the release of various anti-inflammatory cytokines, such

as IL-4/10, could play a role in easing excessive chronic

neuroinflammation in NDs. In addition, there are elevations

in peripheral inflammatory cytokines, including IL-6, TNF,

and IL-1b, in PD patients, as compared to those in controls.

Taken together, peripheral and CFS cytokines may serve as

biomarkers for NDs (92).
3.1 Microglia

Microglia are macrophage-like glial cells in the CNS immune

system that have multiple vital roles in normal physiological

conditions and disease progression. Their primary role is

neuroprotection through the clearance of injured cells, during

infection with pathogenic factors (93). Microglial activity is

known to co-exist with maturation of the CNS, by adopting

several regulatory pathways that contribute to the progression of

NDs, such as synaptic pruning, synaptic plasticity preservation,

neuronal apoptosis, and immune surveillance (94). Microglia can

effectively recognize and respond to harmful pathological

mediators, such as pathogens or abnormal proteins, via

pathogens/damage-associated molecular patterns, which are

surface receptors of microglia. Stimulated microglia can degrade
frontiersin.org
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pathogenic factors via phagocytosis or activation of chemokine

receptors and IFNs, which are the main components of the

neuroinflammatory process (95). This activity cannot be

maintained sustainably in microglia of aged brains, due to

functional impairment, thereby increasing the risk of the

pathogenesis of NDs.

Microglia have a complicated action in the orientation of

NDs, because of their various phenotypes and different activation

pathways. Microglia show morphological alterations in aging

brains with decreased branches, leading to reduced surveillance

and further promotion of homeostatic dysfunction. In addition,

microglial phenotypes vary in different brain regions and with

disease progression; indeed, Ab plaque-associated microglia show

significant morphological changes (96). Moreover, microglia in

the late disease state show a more profound phenotypic alteration

than those in the mild stage. Phosphorylated tau (p-tau) protein

can promote microglial phenotypic alteration, resulting in loss of

immune surveillance, and is associated with AD progression via

the formation of neurofibrillary tangles (NFTs) (97). Based on this

evidence, it is believed that changes in microglial phenotype could

facilitate progression to the AD stage.

In the same case of astrocytes, activated microglia are divided

into two main groups: M1 activation expresses inflammatory

characteristics, while M2 activation represents anti-inflammatory

activities. Transcriptomic analysis of AD mice revealed that a

gradual transition of microglia from a disease-associated state is

regulated by the downregulation of homeostatic genes and

upregulation of Apolipoprotein E (APOE) and triggering receptor

expressed on myeloid cells 2 (TREM2), which emphasizes the

essential roles of TREM2 in AD pathogenesis (98). Furthermore,

temporal imaging of the mouse AD brain demonstrated different

gene markers for microglial activation in distinctive states. For
Frontiers in Immunology 06
example, the mild state is marked by proliferation-associated genes,

whereas immune response genes indicate the late state of the disease

(99). The exact role of the microglial phenotype and its contribution

to disease progression are currently being unraveled, to determine

the heterogeneity of microglia in aging brains.
3.2 Astrocytes

Astrocytes are the most common glial cells in the CNS, which

help maintain the BBB function, and support synaptic activities by

releasing neurotransmitters and eliminating neurotoxic

molecules, thus helping in the maintenance of a healthy brain

(100). Reactive gliosis is the response of astrocytes to pathological

mediators that contribute to neuroinflammation. Reactive

astrocytes express glial fibrillary acidic protein (GFAP), which is

an important marker for determining the status of astrocytes in a

disease condition. Inflammatory factors have been shown to

activate the NF-kB signaling pathway, leading to the A1

phenotype of astrocytes, while ischemia stimulates the A2 state

of astrocytes via signal transducer and activator of transcription 3

(STAT3) transcription factor (101). A1 astrocytes produce more

inflammatory mediators that are significantly detrimental to

neuronal cells, whereas the A2 phenotype serves a protective

role by generating neurotrophic factors.

Given their various housekeeping activities, astrocytes are

expected to restore homeostasis in the mild stage of AD. For

example, astrocytes containing Ab-positive granules were found
in the human brain, indicating a contribution of astrocytes in

clearing harmful forms of Ab during disease progression (102).

In addition, astrocytes are recruited to the brain region

containing Ab plaques, to degrade abnormal Ab deposition.
FIGURE 2

Polarization of microglia and astrocytes and their role in causing neurodegeneration upon microbial infection. This figure was illustrated using
Biorender.com.
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Despite the various beneficial roles of astrocytes, the A1

phenotype found in brain tissues of AD patients showed

toxicity of astrocytes towards neurons, by releasing a massive

amount of gamma-aminobutyric acid (GABA) and glutamate,

resulting in synaptic dysfunction and memory impairment

(101). Furthermore, A1 astrocytes also showed their ability to

disrupt the BBB associated with amyloid protein aggregation,

which suggests the pathological role of A1 cells in the generation

of Ab during the early progression of AD (103). Another critical

point is that astrocytes could mediate the detrimental activities

of microglia in AD states, due to their related roles.
Frontiers in Immunology 07
4 Infective neuroinflammation, and
neurodegeneration

4.1 Bacteria-driven neurodegenerative
neuroinflammation

4.1.1 Intestinal bacteria
Targeting the gut and its microbiome to treat brain diseases

may have been considered outlandish throughout the early years

of the past decade (20, 104). However, it has rapidly gained

much attention since 2004, when a correlation between gut
TABLE 1 Association of bacterial infection and neurological disorders.

Names Human organs Associated features References

Helicobacter pylori Gastric lumen APP, APOE, PSEN1, and PSEN2 (120, 121)

Escherichia coli Intestine BBB invasion
Neuroinflammation
Neurodegeneration

(122–124)

Porphyromonas gingivalis Oral cavity Ab and p-tau
Neurodegeneration
Neuroinflammation

(17, 125, 126)

Chlamydia pneumoniae Nasal cavity BBB alteration
Neuroimmune responses

(127, 128)

Mycobacterium tuberculosis Lung BBB disruption
Neuroinflammation

(129, 130)

Lipopolysaccharides BBB disruption
Neuroinflammation
Ab and p-tau

(131–133)

Lipoteichoic acid BBB disruption
Neuroinflammation

(134–136)

Short-chain fatty acids Amyloid pathology
Autoimmune neuroinflammation

(137, 138)

Bacterial DNA Ab and Tau aggregation (117, 139)
f

TABLE 2 Association of viral infection and neurological disorders.

Viruses Associated features References

SARS-CoV-2 Brain invasion
BBB disruption
Microglial activation

(204–206)

Influenza virus Neuroinvasion
BBB disruption
Neuroinflammation

(189, 207, 208)

Human herpes simplex virus BBB apoptosis
Neuroinflammation
Neurodegeneration

(198, 209, 210)

Epstein-Barr virus Neuroinvasion
BBB disruption
Neuroinflammation

(200, 201, 211)

Japanese encephalitis virus BBB disruption
Neuroinflammation
Neuron infection

(212–214)

Zika virus Neuroinvasion
Brain structure alteration
Impairment of synapse

(215–217)
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bacteria and stress response in a mouse model was reported,

which indicated that common microbes in the GI tract could

play a role in the post-natal development of the hypothalamic-

pituitary-adrenal stress response (105). The gut microbiota is the

most critical and complex microbial habitat in the human body,

with an estimated ratio of around 10:1 microbial cells to human

cells (60, 106, 107). Furthermore, an abundance of publications

have revealed that the intestinal microbiome significantly affects

the pathogenesis of mult iple neurological diseases

(Table 1) (108).

Interestingly, alterations in the components of intestinal

bacterial species have been found in APPPS1 mice, with a

reduction in several phyla, including Firmicutes, Actinobacteria,

Verrucomicrobia, and Proteobacteria. In contrast, members of

Bacteroidetes and Tenericutes were found to be significantly

elevated. More importantly, APPPS1 transgenic mice raised in

germ-free conditions partly inhibited the generation of aggregated

Ab, due to increased production of enzymes degrading Ab, which
suggests that the complete knockout of microbiota does not

completely inhibit the development of Ab (109). The

involvement of bacteria in the progression of AD has been

demonstrated in several studies. The use of antibiotics leads to a

reduction in Ab toxicity and plaque formation, while enhancing

memory and learning abilities. Rifampicin and minocycline,

which can penetrate the BBB, are the two most popular

antibiotics used in studies associated with AD, in both human

and mouse models. The administration of rifampicin and

minocycline reduces Ab levels and toxicity, tau phosphorylation,

neuroinflammation, in addition to enhancing memory in APPOSK
mice (110–112). Furthermore, long-term treatment with an

antibiotic cocktail reduced circulating inflammatory cytokines

and chemokines in APPSWE/PS1△E9 double transgenic mice

(113). Helicobacter pylori, an important pathogen of the GI

tract, is the leading cause of inflammation in the gastric lumen.

Infection of H. pylori is a high-risk cause of AD. A study using rat

models showed memory loss and spatial learning defects in

hippocampal dendritic spine cells, which might be due to the

induction of Ab42 levels, by enhancement of g-secretase duringH.
pylori infection (114).

In addition, human studies have demonstrated a co-

operative relationship between gut bacterial dysbiosis and AD.
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An established correlation between irritable bowel syndrome

and a high risk of dementia suggests that gut bacterial imbalance

can be mediated by this association (115). However, the

abundance of phyla in the bacterial community is still debated,

owing to several inconsistent studies, which could be attributed

to the diversity in regions, diet, and the original structure of the

bacterial community. Stool samples from patients with cognitive

impairment and amyloidosis have been shown to display an

increased proportion of harmful bacteria, such as Escherichia

and Shigella, in addition to a reduction in the proportion of

beneficial bacteria. These changes were associated with the

induction of circulating inflammatory markers, leading to the

hypothesis that gut dysbiosis may result in systemic

inflammation and further contribute to disease progression.

Various in vitro studies have demonstrated the detrimental

role of LPS, an element of the bacterial outer membrane, in

amyloid protein accumulation, and that bacterial extracellular

DNA can induce NFT formation (116, 117). The deleterious role

of LPS, which enhances neuroinflammatory responses and

accumulation of neuronal amyloid protein, has been further

confirmed in the APPwe transgenic mouse model (118).

Intriguingly, LPS levels in human AD brains are elevated and

co-localized with Abs. Probiotics have been utilized in AD

treatment, and an enhancement in mini-mental state

examination scores has been recorded after 12 weeks of

probiotic supplementation (119).

4.1.2 Oral bacteria
The oral cavity harbors over 700 bacterial taxa, primarily

Bacillus, Firmicutes, Actinomycetes, and Proteobacteria (140).

Most oral bacteria are anaerobes residing on the subgingival

surface, known as the dental plaque; therefore, daily removal of

the plaque by brushing teeth is essential to prevent disease (141).

However, some bacteria can escape from the oral cavity and

potentially have distinctive colonization in other organs, such as

the heart; for example, infective endocarditis might also be

invasive in the brain (Table 1). The development of chronic

periodontitis, commonly known as gum disease, is a crucial

consequence of a microbial imbalance in the oral cavity.

Periodontal diseases destroy periodontal tissues and are

attributed to several systemic diseases. Gum disease has
TABLE 3 Association of fungal infection and neurological disorders.

Fungi Associated features References

Cryptococcus neoformans BBB invasion
Microglial phagocytosis

(86, 228, 229)

Candida albicans Brain invasion
IL-1b, IL-6, and TNF production
Memory deficits

(230–232)

Aspergillus fumigatus Brain invasion
BBB integrity impairment

(233, 234)

Malassezia Brain invasion (225)
f
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recently been shown to be correlated with the progression of AD,

and periodontitis patients have shown the induction of Ab
deposition in the brain (142, 143). A study found that

Carbachia , Clostridium, Porphyromonas, Helicobacter,

Actinomycetes, Eugenia, Tannella, Hurdella, Micromonas, and

Streptococcus pneumoniae were much more abundant in the oral

microbiota of periodontitis patients than in healthy individuals.

Among the bacterial genera associated with gum disease,

Porphyromonas gingivalis has been highlighted for its

detrimental role in causing features of AD (17).

Porphyromonas gingivalis, a member of the Bacteroidetes

phylum, is a gram-negative bacterium that can cause

inflammation and generate toxins that destroy the tissues

supporting the tooth (144). Cysteine protease or gingipains,

the main toxins produced by P. gingivalis, can escape immune

detection by suppressing adaptive immunity. Furthermore, it has

been proposed that the association of immune suppression and

gingipain-induced tissue destruction enables bacteria to leave

the oral cavity and migrate to the CNS, where they can reside

and cause AD through gingipain activity. Various studies have

shown the co-localization of P. gingivalis and the Abs, both in

vivo and in the human brain (145–147). A recent investigation

illustrated that oral injection with P. gingivalis in mice could

result in bacterial colonization of the brain, induction of Ab
aggregation, and p-tau protein (126). Gingipain inhibition

reduced several hallmarks of AD in a mouse model, such as

the formation of Ab plaques and tau tangles as well as

neuroinflammatory responses and neuronal loss. The recent

discovery of small-molecule inhibitors of gingipains has

introduced a novel approach to advance our understanding of

bacterial infection and AD. It has been found that there is an

induction of serum antibodies marked for several periodontal

disease-associated bacteria, such as Prevotella intermedia,

Actinomyces naeslundii, and Eubacterium nodatum, in AD

samples, even before the onset of AD (142, 148). In addition,

spirochetes, another main cause of periodontitis, have been

shown to be associated with AD, because of their ability to

penetrate the CNS (149). The immunological and genetic

materials of oral Treponema species, Treponema pectinovorum,

and Treponema socranskii, were also found in the brain

specimens of AD patients (150). Based on the significant

correlation between several oral bacteria and AD, oral bacteria

may play a detrimental role in disease progression.

4.1.3 Nasal and lung bacteria
Similar to other regions of the human body, the upper

respiratory tract comprises diverse bacterial species, including

beneficial and pathogenic strains that contribute to human

health (Table 1). Many studies have indicated the

predominance of Bifidobacterium, Staphylococcus, and

Streptococcus in healthy humans (151, 152). Some reports have

demonstrated the potential of nasal bacteria to cause NDs, such
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as Chlamydia pneumoniae causing AD (153) and Staphylococcus

aureus causing MS (154). In addition, olfactory dysfunction can

be an early symptom of PD and the initial stage of a-syn
pathology (78). However, the involvement of nasal bacteria

and NDs has not yet been explored in detail in the case of AD

or MS, although a few studies have revealed the prevalence of

nasal bacteria and olfactory deficits in PD. While there were no

significant differences between the components of nasal bacteria

in PD and healthy people, a study reported that two taxa of

bacteria, Flavobacteriaceae andMarmoricola, were less abundant

in the PD group than in the control group (155). Another study

suggested that nasopharyngeal bacteria may incite rebellion of

innate immune system priming, which may induce the

development of misfolded proteins and oxidative stress in the

CNS (156).

Mycobacterium tuberculosis, a well-known cause of

tuberculosis, is a major invader of the CNS. M. tuberculosis

infection can activate the early response of TLR signaling, to

form myddosomes, and in addition, rearrange the cytoskeleton in

brain endothelial cells, leading to BBB disruption (157, 158).

TNFs, the main inflammatory cytokines, are released by the

innate immune system during M. tuberculosis infection.

However, TNFs are also critical mediators that enhance the

generation of amyloid proteins and their accumulation,

subsequently reducing phagocytic function and further

increasing the loss of neuronal cells, which are essential features

in the pathogenesis of AD (159). During infection, there is an

increase in neuroinflammation by the altered presence of

endothelin-1 (ET-1), which is mainly produced by endothelial

cells to maintain the function of the BBB. Although ET-1 usually

acts as a vasoconstrictor, it is also an inflammatory cytokine that

can induce the aggregation of platelets and production of

leukocyte adhesion molecules. In addition, the generated

cytokines can stimulate vascular dysfunction and inflammatory

responses in the CNS (160). ET-1 overexpression has been

associated with various infectious diseases, suggesting a

relationship between infectious diseases and neuroinflammation.

The induced level of ET-1 has also been shown in neurological

diseases, such as PD (161) and AD (162). Taken together, the

hypothesis that infection may mainly contribute to the

progression of brain diseases is becoming more evident,

particularly in AD.

4.1.4 Bacterial components
The association between LPS levels in the brain and the

pathological development of AD has been demonstrated by

observing the abundant presence of LPS in the neocortex and

hippocampus of AD brains. LPS also has an adherent

attachment to the nuclear periphery in AD brain cells (76).

The brain and blood levels of many types of cytokines were

elevated after LPS injection in male Sprague Dawley rats. In

addition, there was an increase in the levels of soluble Ab and p-
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tau in the whole brain within seven days, which indicates the

possibility of downstream consequences of Ab formation, and

also serves as evidence that LPS reaches the CNS through blood

circulation (163). Moreover, LPS can affect misfolded a-syn
formation and dopaminergic neurodegeneration, the main

hallmarks of PD pathophysiology. A loss of dopaminergic

neurons within four days induced up to 34% loss in the SN, as

compared to that in the control treatment (164). In addition,

LPS can bind to a-syn, to initiate and proliferate

amyloidogenesis in the gut, and then transport it via the vagus

nerve to the CNS (165). ALS and Huntington’s disease (HD) are

two other neuronal disorders in which LPS affects the

pathophysiology. ALS is a disease that affects the voluntary

motor system and is characterized by the degradation of spinal

cord motor neurons. The gene expression of a protein associated

with ALS was increased upon LPS injection, and it has been

observed that the activation of astrocytes and microglia increases

with LPS-induced inflammation in the ALS model (166). The

other neurodegenerative disorder, HD, is characterized by the

presence of motor, cognitive, and behavioral dysfunction. Few

studies have investigated how inflammation affects the

neurodegeneration in HD, but it has been shown that a

peripheral injection of LPS stimulated microglial alterations

and vascular dysfunction in a model of 12-month-old YAC128

transgenic mouse (167).

In vitro experiments have employed LPS, an endotoxin

presents in the outer membrane of numerous gram-negative

bacteria, to mimic bacterial infection. LPS can bind to TLR-4

expressed on the surface of microglia and other immune cells, to

enter the cytosol, where it activates associated inflammatory

responses (168). Communication between TLR-4 and LPS

initiates the formation of a myddosome composed of various

proteins. The myddosome structure can activate the NF-kB

signaling pathway, further stimulating several inflammatory

genes (168). Interestingly, NOD-1 and NOD-2, two primary

nucleotide binding oligomerization domain (NOD)-like

receptors, can detect elements of the bacterial cell wall and

stimulate NF-kB and MAP kinase-dependent inflammatory

responses (169). Furthermore, an in vivo study indicated that

co-stimulation of NOD- and LPS-activated TLR-4 affected brain

function and sickness behavior (170).

Epilepsy, which is an example of infection-mediated

neuroinflammation, is characterized by spontaneous seizures in

the brain. A positive association between infection,

neuroinflammation, and epilepsy has been confirmed by means

of imaging studies of the human brain (171). Bacterial LPS can

initiate epilepsy in in vivomodels, via the activation of IL-1b (15)

and cyclooxygenase-2-dependent inflammation (172), which

indicates a high susceptibility to seizures and a strong oxidative

response during LPS-mediated neuroinflammation (173). In

addition, LTA, a significant component of the cell wall of gram-

positive bacteria, supports the binding of bacteria to brain

microvascular endothelial cells (174). LTA has been detected in
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mouse brain samples and is correlated with the levels of IFN-g, IL-
6, and other cytokines. In the brain, LTA is also related to the

overexpression of circulating corticosterone and reduction of tight

junction proteins expressed in the BBB layer (135). Upon the

onset of bacteriolysis, LTA is produced in circulation and it binds

to TLR-2, to trigger the release of several inflammatory cytokines,

causing BBB disruption and neuroinflammatory responses in the

CNS (134).
4.2 Viruses-driven neurodegenerative
neuroinflammation

The virus is a hazardous infectious agent that causes many

pandemic outbreaks, such as COVID-19, AIDS, and Ebola.

Several brain dysfunctions have been observed in patients with

viral diseases, suggesting that viral infection is a risk factor for

neurological disorders (Table 2) (175). Different viruses have

been shown to correlate with the pathology of brain diseases.

Enterovirus and human herpesvirus are associated with ALS

(176, 177), while Epstein-Barr virus (EBV), cytomegalovirus,

and varicella-zoster virus have been reported in MS patients

(178, 179). In addition, Japanese encephalitis virus (JPV) and

influenza virus have been identified in patients with PD (180),

while three strains of human HSV have been found in the brain

samples of AD patients (181–183). Several studies have indicated

viral neuroinvasion and damage to neural cells in the CNS, either

directly or indirectly, by stimulating neuroinflammatory

responses (184).

In the case of neurotropic viruses, some influenza strains

invade the brain via different cellular routes, either by infecting

brain endothelial cells or through the nerve network (the olfactory

or vagus nerves) (185), followed by polarization of microglia in the

central innate immunity (186). For instance, neurotropic H7N7-

infected mice displayed increased inflammatory gene markers of

activated microglia and loss of neurons in the hippocampus. In

particular, the major histocompatibility complex II (MHC-II) was

strongly expressed, demonstrating a direct interaction between

microglia and the virus. Increased MHC-II expression is a general

feature of microglial activation and inflammation (187), which is

also associated with MS pathogenesis (188). Furthermore, Sic6a3-

associated neuropsychiatric disorders are upregulated after long-

term H7N7 infection (189). Another strain of influenza virus,

H1N1, also showed detrimental effects on the microglia and

neurons in mice, as defined by the high levels of inflammatory

cytokines (IL-1b, IL-6, TNF-a, and IFN-a) and markers for

stimulated microglia, in addition to changing the morphological

characteristics of the hippocampal neurons (186).

Currently, it has been confirmed in clinical studies, animal

models, and cellular models that SARS-CoV-2 is involved in

neuroinvasion and the associated toxicity via neuroinflammation

and neuronal death (190–192). A single-cell transcriptomics study

revealed the strongest alteration of inflammatory-related genes in
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astrocytes and glial cells, by means of RNA sequencing and staining

of the brain tissues of people who died from COVID-19 (193). For

example, increased levels of chitinase 3-like 1, GFAP, and

interferon-induced transmembrane protein 3 are found in

astrocytes, whereas CD14, CD74, and CTSB are induced in

microglia. CHI3L1 is considered a biomarker in mild stages of

MS, and a high level of CHI3L1 in the cerebrospinal fluid is

associated with the development of neurological disorders (194).

In addition, neuronal degeneration and apoptosis are induced by

SARS-CoV-2 infection, along with neuroinflammation (192). Based

on this evidence, neuroinflammation may play a central role in

neuronal death during influenza virus infection.

In addition, human HSV may be another potential viral agent

that contributes to the inflammatory pathways of NDs (195–198).

HSV infection increases encephalitis, which is characterized by

severe neuroinflammation and prolonged neurological deficits

(199). Microglia have been suggested as key players that fight

against HSV infection, by releasing IL-10, an anti-inflammatory

cytokine, which suppresses HSV-triggered neuroinflammation in

microglial cells (195). In contrast, human microglial cells respond

to HSV-1 by generating inflammatory cytokines/chemokines,

including TNF, IL-1b, CCL5, and CXCL10. HSV can bind to

TLR2 expressed in the microglia and astrocytes, to induce

inflammatory cytokines, including IL-6 and IL-1b, which are

associated with an increase in detrimental misfolded proteins

that serve as neurodegenerative markers (196, 197). HSV-1

microglial infection induces inflammatory cytokines and

Inducible nitric oxide synthase by downregulating Fas and

upregulating the FasL signaling pathway (198). Moreover, co-

localization of NO production and Ab accumulation has been

found in HSV-1-infected neurons, in vitro and in vivo (198). EBV

is a member of the herpes virus family; it causes mononucleosis

and is found in MS, which is defined as a chronic

neuroinflammatory condition within the brain (200).

Intravenous peripheral EBV-infected cells break down the BBB,

infiltrate the CNS, and trigger neuroinflammation in the rabbit

brain (201). Cytomegalovirus, which is also a cause of chronic

immune activation in MS, drives autoimmune-mediated

neuroinflammation and demyelination (202, 203).

Another dangerous neurotropic RNA virus is the Japanese

encephalitis virus (JPV), which is transmitted by mosquitoes.

Significantly, this virus can disrupt the BBB after four days of

infection, with viral titers found in the brain on day two,

accompanied by a high level of cytokines, indicating

inflammation-mediated BBB disruption (212). Another report

pointed out that the NLRP3 inflammasome is a key player in the

neuroinflammatory response to JPV infection in the microglia,

which is characterized by increased levels of IL-1b and IL-18

(218). Microglia recognize the JPV via the TLR3 and TLR4

signaling pathways, causing neuroinflammation and leading to

neurodegeneration (219). The Zika virus (ZIKV) is a

neurotropic virus that induces adult neuropathy. ZIKV

infection causes an increase in CXCL12, which regulates
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lymphocyte trafficking through the BBB (220). After infecting

brain microvascular cells, ZIKV is released on the parenchyma

side, and it initiates the alteration of BBB integrity and

upregulation of inflammatory and cell adhesion molecules

(221). In the CNS, microglia and astrocytes are involved in

ZIKV replication and elimination (222).
4.3 Fungi-driven neurodegenerative
neuroinflammation

Approximately 300 out of the 70,000 described fungal

species may be detrimental to human health, and

approximately 10% of these 300 species influence the brain

(223). However, the pathological effects of fungi on the CNS

have not been fully explored (Table 3). Proteomic and genomic

studies have indicated the presence of fungal proteins and DNA

in the brain tissues of AD patients (14). Further evidence

indicated the existence of several fungal species in AD brains,

by means of immunohistochemistry and PCR analysis (14, 224).

In addition, a comprehensive analysis of PD samples identified

that most of the fungal genera Botrytis, Candida, Fusarium, and

Malassezia are accompanied by bacterial species in the CNS,

which suggests that mixed infection with bacteria and fungi may

be risky for PD pathology (225). The fungal genus Malassezia

has also been detected in patients with MS (226), and may use

macrophages to reach the CNS (227).

The BBB is the most promising route for the penetration of

fungi into the CNS, via transcellular migration, paracellular

migration, and the Trojan horse mechanism. Transcellular and

paracellular migrations are direct ways to pass the BBB, via

transcytosis of endothelial cells, while Trojan horses are related

to transport-mediating phagocytosis (235–237). The

translocation of fungi occurs via transcellular and paracellular

mechanisms, which requires contact between fungal proteins

and the BBB. For instance, activation of protein kinase C-alpha

mediates the transcellular transport of Cryptococcus neoformans

through brain microvascular endothelial cells (229). Agglutinin-

like protein precursor (ALs3), a cell surface adhesion protein,

interacts with a heat shock protein of the brain endothelium to

initiate the internalization of Candida albicans (238). Several

studies have demonstrated that T cells, endothelial cells,

microglia, and astrocytes play important roles in inhibiting

fungal proliferation, by releasing cytokines, nitric oxide,

superoxide, and MHC-I/II molecules (239). These cells may

recognize fungal antigens, such as polysaccharide capsules (C.

neoformans), pseudohyphae (C. albicans), or conidia (Aspergillus

spp.), via TLR-2, -4, or -9, while Dectin-1 and Complement

receptor 3 may sense the presence of fungal surface

carbohydrates such as mannose in Aspergillus fumigatus and

b-glucans in C. albicans.

Fungal infection can be controlled by initiating pro-

lymphatic and humoral response-induced microglial activation
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(240, 241). For example, microglial cell-expressed TLR-4 is

predominantly present on the surface, and its interaction with

fungal antigens induces inflammatory responses that mediate T

helper type 1 development to fight against fungi (242). TLR-4

knockout mice are more susceptible to fungal infection and have

reduced clearance of Aspergillus (243). Microglia can

control fungal growth by producing anti-inflammatory

chemokines, such as CCL2, to increase animal susceptibility to

Cryptococcus neoforman infection (244). The anti-inflammatory

cytokine IL-10 is released at a high level, to modulate C. albicans

infection (245).
5 Outlook

In this review, we summarize the possible axes for microbial

invasion into the CNS and the current discoveries connecting

three factors involved in NDs: microbial infection,

neuroinflammation, and neurodegeneration. Pathogens can

reach the brain via the olfactory system, blood circulation, and

vagus nerve pathway. In the CNS, neural immune cells can be

stimulated upon infection and induce inflammatory responses,

causing neuroinflammation, which further leads to neuronal

death. However, there is still a limited understanding of which

pathogens play a dominant role in neuroinflammation and

neurodegeneration, because of the lack of relevant human

models to adopt complicated physiological features. Therefore,

it is necessary to develop human cellular platforms to study the

cellular mechanisms of microbial neuroinvasion, determine the

risk factors for NDs, and provide promising tools for discovering

new treatments.
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M. Nitric oxide influences HSV-1-Induced neuroinflammation. Oxid Med Cell
Longev (2019) 2019:17. doi: 10.1155/2019/2302835

199. Aurelius, E, Andersson, B, Forsgren, M, Sköldenberg, B, and Strannegård,
O. Cytokines and other markers of intrathecal immune response in patients with
herpes simplex encephalitis. J Infect Dis (1994) 170:678–81. doi: 10.1093/infdis/
170.3.678

200. Hassani, A, Corboy, JR, Al-Salam, S, and Khan, G. Epstein-Barr Virus is
present in the brain of most cases of multiple sclerosis and may engage more than
just b cells. PloS One (2018) 13:e0192109. doi: 10.1371/journal.pone.0192109

201. Hassani, A, Reguraman, N, Philip, P, Shehab, S, and Khan, G. Epstein–Barr
Virus infection causes inflammation in the brain in a rabbit model.Mult Scler Relat
Disord (2021) 51:102997. doi: 10.1016/j.msard.2021.102997
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