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Abstract

Background: Accurate structure prediction methods play an important role for the understanding of RNA function.
Energy-based, pseudoknot-free secondary structure prediction is one of the most widely used and versatile
approaches, and improved methods for this task have received much attention over the past five years. Despite the
impressive progress that as been achieved in this area, existing evaluations of the prediction accuracy achieved by
various algorithms do not provide a comprehensive, statistically sound assessment. Furthermore, while there is
increasing evidence that no prediction algorithm consistently outperforms all others, no work has been done to
exploit the complementary strengths of multiple approaches.

Results: In this work, we present two contributions to the area of RNA secondary structure prediction. Firstly, we use
state-of-the-art, resampling-based statistical methods together with a previously published and increasingly widely
used dataset of high-quality RNA structures to conduct a comprehensive evaluation of existing RNA secondary
structure prediction procedures. The results from this evaluation clarify the performance relationship between ten
well-known existing energy-based pseudoknot-free RNA secondary structure prediction methods and clearly
demonstrate the progress that has been achieved in recent years. Secondly, we introduce AveRNA, a generic and
powerful method for combining a set of existing secondary structure prediction procedures into an ensemble-based
method that achieves significantly higher prediction accuracies than obtained from any of its component procedures.

Conclusions: Our new, ensemble-based method, AveRNA, improves the state of the art for energy-based,
pseudoknot-free RNA secondary structure prediction by exploiting the complementary strengths of multiple existing
prediction procedures, as demonstrated using a state-of-the-art statistical resampling approach. In addition, AveRNA

http://www.cs.ubc.ca/labs/beta/Software/AveRNA.

allows an intuitive and effective control of the trade-off between false negative and false positive base pair
predictions. Finally, AveRNA can make use of arbitrary sets of secondary structure prediction procedures and can
therefore be used to leverage improvements in prediction accuracy offered by algorithms and energy models
developed in the future. Our data, MATLAB software and a web-based version of AveRNA are publicly available at

Background

RNAs are amongst the most versatile and oldest
biomolecules; they play crucial roles in many biologi-
cal processes. As in the case of proteins, the function
of many types of RNAs critically depends on the three-
dimensional structure of the molecules. However, the 3D
structure of RNAs is determined to a larger degree by their
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secondary structure, which arises from base-pairing inter-
actions within an RNA strand and stacking of the resulting
base pairs.

Since the direct determination of 3D structures is
difficult and costly, computational structure prediction
methods, and in particular, secondary structure predic-
tion methods, are widely used. A prominent and versa-
tile approach for predicting RNA secondary structures
is based on thermodynamic models, such as the Turner
model [1], and uses dynamic programming algorithms
(such as the Zuker & Stiegler algorithm [2]), to find a
structure with minimum free energy (MFE) for a spe-
cific RNA sequence. Over the last five years, considerable
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improvements in the predictions obtained by such algo-
rithms have been achieved.

It is important to note that, while it might seem natu-
ral to use experiments to determine the parameters of a
thermodynamic model and machine learning and optimi-
sation to determine those of a stochastic model, because of
the equivalence between the free energy and probability of
RNA structures, in principle, both approaches can be used
in either setting. Indeed, the largest improvement in pre-
diction accuracy has resulted from the use of sophisticated
methods for estimating the thermodynamic parameters of
a given energy model (in particular, the Turner model),
based on a set of reliable RNA secondary structures [3-5].
Particularly good results have been achieved for meth-
ods in which parameter estimation additionally takes into
account thermodynamic data from optical melting exper-
iments, such as CG, LAM-CG and BL, [4,5] and expand
the standard energy model with probabilistic relation-
ships between structural features (e.g., hairpin loops of
different lengths), such as BL-FR [5]. Improved predic-
tion accuracy has also been reported for an approach that
determines structures with maximum expected accuracy
(MEA) rather than minimum free energy, based on base
pairing probabilities obtained from a partition-function
calculation [3,6,7]. CONTRAfold implements a condi-
tional log-linear model (which generalizes upon stochastic
context-free grammars) for structure prediction. Max-
Expect starts from base-pair probabilities calculated by
partition functions [8] and uses dynamic programming
(similar to CONTRAfold) to predict the MEA struc-
ture [6]. And finally, CentroidFold uses a similar strategy
except that it uses a weighted some of true positives and
true negatives as the objective function [7].

While the overall improvement in accuracy achieved
over the baseline provided by the Zuker & Stiegler
algorithm using the Turner model is clearly significant,
there is less certainty about the more modest perfor-
mance relationships between some of the more recent
methods. For example, Lu et al. reported a difference
of only 0.3% in average sensitivity between their Max-
Expect procedure and CONTRAfold 2.0 [3]. Similarly,
Andronescu et al. found a 0.5% difference in average
F-measure between CONTRAfold 2.0 and their CG* pro-
cedure [5]. Whether such small performance differences
can be considered significant is an open question; in fact,
a cross-validation experiment for the BL and LAM-CG
parameter estimation methods suggests that 3% differ-
ences in accuracy may be statistically significant, but
the evidence is far from conclusive [5]. This suggests
that there is a need for methods that make it possi-
ble to assess the statistical significance of differences in
prediction accuracy observed between RNA secondary
structure prediction methods. In this work we present
such methods, based on two well-established resampling
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techniques from statistics, bootstrapped confidence inter-
vals and permutation tests. Using these methods and a
well-studied, large set of trusted RNA secondary struc-
tures, we assess progress and the state of the art in
energy-based, pseudoknot-free RNA secondary structure
prediction.

Also, it has been demonstrated that the accuracies
of predictions based on their BL*, CG* and Turner99
parameter sets (see their Supplementary Results C) are
not consistent across large and diverse sets of RNAs, and
that differences in accuracy for many individual RNAs
often deviate markedly from the average accuracy values
measured across the entire set [5]. This suggests that by
combining the predictions obtained from different proce-
dures, better results can be achieved than by using any
one of the given procedures in isolation. This general idea
has been previously applied to a wide range of problems
in computing science (where it underlies the fundamental
approaches of boosting and bagging [9]). More recently,
it has been used successfully for solving various problems
from computational biology, including gene prediction
[10], clustering protein-protein interaction networks [11],
as well as analysis of data from microarrays [12] and flow
cytometry [13].

Here, we introduce a generic RNA secondary structure
prediction procedure that, given an RNA sequence, uses
an ensemble of existing prediction procedures to obtain a
set of structure predictions, which are then combined on
a per-base-pair-basis to produce a combined prediction.
Empirical analysis demonstrate that this ensemble-based
prediction procedure, which we dub AveRNA, outper-
forms the previous state-of-the-art secondary structure
prediction procedures on a broad range of RNAs. On
the S-STRAND?2 dataset [14], AveRNA obtained an aver-
age F-measure of 71.6%, compared to the previous best
value of 70.3% achieved by BL-FR* [5]. AveRNA can
easily be extended with new prediction procedures; fur-
thermore, it provides an intuitive way of controlling the
trade-off between false positive and false negative predic-
tions. This is useful in situations where high sensitivity
or high PPV may be required and allows AveRNA to
achieve a sensitivity of over 75% and a PPV of over 83% on
S-STRAND2.

Methods

In this section, we first describe the data set and pre-
diction accuracy measures used in our work. Next, we
introduce the statistical methodology for the empirical
assessment of RNA secondary structure prediction algo-
rithms we developed in this work. This is followed by a
brief summary of the set of procedures for MFE-based
pseudoknot-free RNA secondary structure prediction we
used in this work. Finally, we present AveRNA, our novel
RNA secondary structure prediction approach, which
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combines predictions obtained from a diverse given set of
procedures by means of weighted per-base-pair voting.

Data sets

In this work, we used the S-STRAND2 dataset [14],
which consists of 2518 pseudoknot-free secondary struc-
tures from a wide range of RNA classes, including
ribosomal RNAs, transfer RNAs, transfer messenger
RNAs, ribonuclease P RNAs, SRP RNAs, hammerhead
ribozymes and group 1/2 introns [15-20]. This large and
diverse set is comprised of highly accurate structures
and has been used for the evaluation of secondary struc-
ture prediction accuracy in the literature [5]. For the
parts of our work involving the optimization of pre-
diction accuracy, in order to avoid overfitting, we used
a subset of the S-STRAND2 dataset obtained by sam-
pling 500 structures uniformly at random as the basis
for the optimization process, and the full S-STRAND?2
dataset for assessing the resulting, optimized prediction
procedures.

Existing secondary structure prediction methods

We used 10 secondary prediction procedures known
from the literature. The SimFold-V2.0 procedure [21],
which is based on Zuker and Stiegler’s classic dynamic
programming algorithm, was used to predict secondary
structures using six different sets of free energy param-
eters: Turner99 [1]; NOM-CG [4]; DIM-CG [22]; CG*,
BL* and BL-FR* [5]. Furthermore, we used CON-
TRAfold-v1.1, CONTRAfold-v2.0 3], MaxExpect-v5.1 [6]
and CentroidFold-v0.0.9 [7]. The two versions of CON-
TRAfold as well as CentroidFold are based on probabilistic
methods that do not make use of physically plausible
thermodynamic models of RNA secondary structure,
while the seven other procedures are all based on
(variations of) the widely used free energy model by the
Turner group [1].

While we originally also considered taveRNA [23] and
SARNA-Predict [24], it turned out to be infeasible to
run these procedures on the the longer sequences from
the S-STRAND?2 dataset (due to runtime and memory
requirements).

Accuracy measures

Consistent with existing work on RNA secondary struc-
ture prediction, we assessed the prediction accuracy
achieved by a given RNA secondary structure predic-
tion procedure based on a given set of references struc-
tures, using sensitivity, positive predictive value (PPV)
and the F-measure. We define a correctly predicted base-
pair to be a predicted base-pair, exactly identical to one
of the base-pairs in the reference structure. For a single
RNA (sequence, structure) pair, sensitivity is the ratio of
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number of correctly predicted base-pairs to the number
of base-pairs in the reference structure:

#Correctly Predicted Base-Pairs

Sensitivity = ;
Y #Base-Pairs in the Reference Structure

1)

PPV is the ratio of number of correctly predicted base-
pairs to the number of base-pairs in the predicted
structure:

#Correctly Predicted Base-Pairs

PPV = 2)

#Base-Pairs in the Predicted Structure’
and the F-measure is defined as the harmonic mean of
sensitivity and PPV:

2 x sensitivity x PPV

— 3)
sensitivity + PPV

F-measure =

If there are no base-pairs in the predicted structure and
the reference structure, we define PPV and Sensitivity to
be 1 and otherwise 0. The F-measure, sensitivity, and PPV
for the prediction of any individual structure are always in
the interval [0, 1], where 1 characterizes a perfect predic-
tion. When assessing the prediction accuracy on a given
set of structures, we usually report the average F-measure,
sensitivity, and PPV achieved over the entire set.

Statistical analysis of prediction accuracy

To formally assess the degree to which prediction accu-
racy results measured for a given set of RNAs depend on
the precise choice of this set, we employ two well-known
statistical resampling techniques: bootstrap confidence
intervals and permutation tests (see, e.g., [25]). Details on
the respective procedures developed and used in the con-
text of this work are described in the following. Here, we
applied these statistical analysis procedures to the aver-
age F-measure determined for predictions on a given set
of RNAs, but we note that they generalize in a straight-
forward manner to other measures of accuracy and other
statistics of these over the given benchmark set. We note
that these statistical techniques are limited to assessing
the impact of different samples from the same under-
lying distribution — an important issue, considering the
large variation of prediction accuracy within the sets of
RNAs commonly used for evaluating structure prediction
procedures — but do not allow assessment of predic-
tion accuracy might vary as the underlying distribution is
changed (e.g., by modifying the relative representation of
RNAs from different families or of different provenance);
to address this latter question, we use a different approach
described later.

To investigate the consistency of predictions obtained
from different RNA secondary structure prediction pro-
cedures, we used scatter plots as well as the Spearman
correlation coefficient (which, unlike the more widely
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used Pearson product moment correlation coefficient,
also captures non-linear relationships).

Bootstrap percentile confidence intervals

Following common practice (see, e.g., [25]), for a vector f
of F-measure values achieved by a given prediction proce-
dure on the structures contained in a given set S of RNAs
(here, S-SSTRAND?2), we perform the following steps to
determine the 95% confidence interval (CI) for the mean
F-measure:

(1) Repeat for 10* times: from f, draw a uniform random
sample of size |f| with replacement, and calculate the
average F-measure of the sample.

(2) Report the 2.5th and 97.5th percentiles of the
distribution of F-measures from Step 1 as the lower
and upper bounds of the CI, respectively.

The choice of 10* samples in Step 1 follows standard prac-
tice for bootstrap Cls (as illustrated by the results shown
in Figure S2 in the Supporting Information, the results
obtained using different sample sizes are very similar).

Permutation test

Following common practice (see, e.g., [25]), for vectors f4
and fp of F-measure values achieved by given prediction
procedures A and B, respectively, on the structures con-
tained in a given set S of RNAs (here, S-STRAND?2), we
perform the following steps to perform a permutation test
for the null hypothesis that the mean F-measure achieved
by A and B is the same:

(1) Repeat for 10* times: For each RNA in S, swap the
F-measures of A and B with probability 1/2, resulting
in vectors £} and fz, respectively.

(2) Construct the cumulative distribution function (CDF)
of avg(f}) — avg(fy) from the 10* permuted pairs of
vectors f), f5 from Step 1, where avg(-) denotes the
average over the elements of a given vector.

(3) Determine the percentile c of the CDF from Step 2
that is equal to avg(f4) — avg(f), as determined from
the original, unpermuted performance vectors for A
and B; p = (100 — ¢)/100 is the p-value of the test.

(4) Reject the null hypothesis of equal performance if,
and only if, p from Step 3 is smaller than a given
significance threshold «.

The choice of 10* repetitions in Step 1 follows standard
practice for permutation tests. In this work, we used this
test with a standard significance threshold of & = 0.05.

AveRNA

As explained earlier, the key idea behind AveRNA is to
exploit complementary strengths of a diverse set of predic-
tion algorithms by combining their respective secondary
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structure predictions for a given RNA sequence. Our
AveRNA procedure can make use of an arbritrary set of
prediction procedures, A := {A;,Ay,...,Ag}, which it
uses in a black-box manner to obtain predictions for a
given input sequence, s. To emphasise the fact that the
subsidiary structure prediction procedures in A are effec-
tively just an input to AveRNA that can be varied freely by
the user, we use AveRNA(A) to denote AveRNA with set
A of component structure prediction procedures.

Applied to input RNA sequence s, AveRNA(A) first
runs each A; € A on s, resulting in predicted structures
S(A1,5),S8(Ag,5),...,S(Ag, s). Let each of these structures
S be represented by a base-pairing matrix BP(S) defined
by BP(S);j = 1ifiandj form a base-pair in S and BP;; = 0
otherwise, where i,j € {1,2,...,n}. We note that any
RNA secondary structures, pseudo-knotted or not, corre-
sponds to exactly one such binary matrix, but not every
binary matrix represents a valid secondary structure.

We now consider the normalised sum of these binary
matrices:

5 BP(S(AL9))
P= ) (4)

Each entry B;; of this matrix can be interpreted as the
probability of a base pair between bases i and j in input
sequence s, under the assumption that the predictions
obtained from each of the A; should be considered equally
likely to be correct. This is equivalent to tallying votes for
each possible base pair, where each predictor has one vote
per candidate pair i, .

However, it may well be that some predictors are gener-
ally more accurate than others, as is known to be the case
for the set of secondary structure predictors we consider
in this work. Therefore, we associate a weight (in the form
of a real number between 0 and 1) with each predictor and
consider the weighted normalised sum of the individual
secondary structure matrices:

k
P(w) =) w;-BP(S(Ay9)), (5)
=1

where w = (w1, wa, . .., wg), each wy is the weight assigned
to predictor /, and Zle w; = 1. We note that the
unweighted case from above corresponds to w; = 1/k for
each /. Before discussing the interesting question of how
to determine appropriate weights, we describe in the fol-
lowing how we infer the pseudoknot-free RNA structure
ultimately returned by AveRNA from the entries in the
weighted probability matrix P(w).

Structure inference
The final structure prediction returned by AveRNA(A) for
a given sequence can be obtained in different ways. First,
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we note that the problem of extracting a pseudoknot-
free structure from the resulting probability matrix can be
solved using a Nussinov-style dynamic programming (DP)
algorithm to infer maximum expected accuracy (MEA)
structures [6]. We refer to the variant of AveRNA that
uses this procedure as AveRNApp. Unfortunately, this DP
procedure requires ®(#3) running time, which becomes
problematic in the context of the parameter optimisa-
tion described later. Therefore, we designed the following
greedy algorithm as an alternative way for estimating
MEA structures. Let p = (p1,p2, . . .) be the sorted list of
base-pair probabilities in P(w) in decreasing order and
V = (v1,vy,...) be the respective set of base-pairs. For
a given threshold 6 (a parameter of the procedure whose
value we discuss later), we begin with an empty set of base-
pairs S, set i := 1, and repeat as long as p; > 6: (1) Add v;
to S if (and only if) it is compatible with all other pairs in
S, i.e., does not involve a base already paired with another
position or introduce a pseudoknot in S; (2) increment
i. We refer to the variant of AveRNA using this greedy
inference method as AveRNAGyeedy-

We note that, while the greedy inference method is
not guaranteed to find a MEA structure, as we will show
later, it performs very well compared to the exact DP
inference algorithm and is computationally much more
efficient. When either variant of AveRNA is applied to a
set of RNA sequences, prediction and structure inference
are performed for each given RNA sequence indepen-
dently, and the results are independent of the compo-
sition of the set or the order in which sequences are
considered.

Parameter optimization

Clearly, the performance of AveRNA(A) depends on the
set A of component prediction procedures as well as on
the previously mentioned parameters, namely the weights
wy and, for AveRNAGreedy, the pairing threshold 6. Before
using AveRNA(A) for prediction tasks, we would like to
find settings for these parameters that would result in
optimised prediction accuracy obtained on a set of ref-
erence RNAs (in terms of mean F-measure over the set).
We solved the resulting numerical optimisation problem
using a well-known procedure called covariance matrix
adaptation evolution strategy (CMA-ES) [26,27]. CMA-
ES is a non-convex, gradient-free parameter optimization
procedure that has proven to be empirically successful
in many real-world applications and appeared to be the
most appropriate tool for finding performance-optimising
parameters of AveRNA. We used the MATLAB imple-
mentation of CMA-ES with default settings, except that
we had to increase the maximum number of iterations to
100, since in some cases we observed clear evidence that
a global optimum was not reached with the lower default
setting for this parameter [28].
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Time complexity

The running time required to run AveRNA(A) (with a
fixed set of parameters) is essentially the sum of the
running times of the component prediction procedures
Aj,...,Ar (Where we note that in principle, these can be
run in parallel and the time required for inferring the out-
put structure from these results). While for AveRNApp,
the latter time is of order ®(#%), and therefore no worse
than the complexity of most RNA secondary structure
prediction methods based on dynamic programming, for
AveRNAG cedys it is O(n?) in the (unrealistic) worst case
and negligible in practice.

Parameter optimisation requires substantially more
computational effort, but has to be performed only once,
off-line, very much like optimisation of the parameters of
a given energy model. In the context of AveRNApp, each
iteration of this optimisation process involves running the
@ (n®) DP procedure on all sequences in the given training
set of RNAs, and as we will demonstrate later, it turns out
to be important to use reasonably large and diverse train-
ing sets. In our experiments, using a training set of 500
sequences, one iteration of CMA-ES on AveRNApp took
653 250 seconds (i.e., more than 750 CPU days for the full
optimization). Each iteration of optimising AveRNA G eedy
on the other hand, took only 2880 seconds (i.e, the
full optimization required less than 4 CPU days). Note
that these runtimes do not include the time required by
the individual algorithms for predicting the structures,
which are the same for both approaches and need to be
expended only once at the beginning of the optimisation
process. Once the parameters of AveRNA are optimised,
it runs efficiently, as described at the beginning of this
section.

Ablation analysis

Measuring the contribution of each algorithm to AveR-
NAs performance can help us answer a wide range of
questions, including the following: Which component
prediction procedure contributes the most to the over-
all performance of AveRNA? Is there a certain number of
component prediction procedures that must be included
before the ensemble method outperforms the individual
ones? Are there prediction procedures that can com-
pensate for each other, in the sense that including one
procedure from a certain set is important, but adding oth-
ers from the same set does bring significant further gains?
For AveRNA(A) with A = {A;, Ay, ...,Ax} we assessed
the contribution of each A; using the following ablation
procedure:

(1) Determine the A; € A for which AveRNA(A \ {4;})
performs worst!, i.e., whose average F-measure on
the give set of RNAs is lowest.

(2) Remove A; from Step 1 from A.
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(3) If A still contains more than two algorithms, go to
Step 1 and iterate.

Step 1 involves re-optimising the parameters of AveRNA
for each set of component algorithms, starting from the
values of AveRNA(A).

Results

In our computational experiments, we pursued two
major goals: firstly, to critically assess the state of
the art in predicting pseudoknot-free MFE RNA sec-
ondary structures, and secondly, to demonstrate that our
AveRNA ensemble-based structure prediction method
does indeed achieve significantly better results than pre-
vious algorithms.

Performance of existing prediction methods
Table 1 shows the the mean F-measure value for each
method on the S-SSTRAND?2 dataset, along with bootstrap
confidence intervals calculated as explained in the previ-
ous section, which are also shown graphically in Figure 1.
Table 2 shows the results (p-values) obtained from permu-
tation tests for each pair of methods. As can be seen from
this table, the only statistically insignificant performance
differences were observed between 799 and CONTRAfold
1.1, and between CONTRAfold 2.0 and NOM-CG.
Consistent with previous work [5], we found that the
oldest algorithm, 799, achieves a mean F-measure just
below 0.6. CONTRAfold 1.1 performs slightly better than
T99 on our benchmark set, but the performance advan-
tage is not statistically significant; we believe that the rea-
son for this lies primarily in the fact that it was trained on
a small set of RNAs not representative of the broad range
of structures found in S-STRAND2. MaxExpect and Cen-
troidfold do perform significantly better than 799, but fall
short of the performance achieved by CONTRAfold 2.0.

Table 1 Prediction accuracy for various prediction algorithms
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The latter method was trained on the S-STRAND2
dataset, which partly explains why it, exactly like NOM-
CG, achieves an average F-measure that is 0.026 higher
than that of CONTRAfold 1.1.

The methods recently developed by Andronescu et al.,
DIM-CG, CG*, BL* and BL-FR*, each achieve significantly
better performance than any of the previously mentioned
methods; although the confidence intervals obtained
for these methods show some overlap, the respective
differences in mean F-measure are all significant. The
best of these methods, BL-FR*, represents an improve-
ment of more than 0.1 in average F-measure over T99,
and of almost 0.05 over CONTRAfold 2.0.

Performance correlation

For an ensemble-based approach like AveRNA to work
well, the set of component prediction algorithms need to
have complementary strengths, as reflected in less-than
perfect correlation of prediction accuracy over sets of
RNA sequences. As can be seen in Table 2, the pairwise
performance correlation between the procedures we con-
sidered in our study is not very strong (as indicated by
Spearmann corelation coefficients between 0.66 and 0.86).
Figures 2 and 3 illustrate this further by showing the cor-
relation in F-measure across our set of RNAs for the two
pairs of algorithms whose average performance does not
differ significantly, 799 and CONTRAfold 1.1, and CON-
TRAfold 2.0 and NOM-CG, respectively. (In these scatter
plots, each data point corresponds to one RNA from our
S-STRAND?2 set.)

Performance of AveRNA

After optimizing the weights on our training set of
RNAs, we found that there was no statistically signif-
icant difference between the predictions of AveRNApp

Mean (ClI) S-STRAND2 F-measure

Mean testset F-measure

Mean testset 2 F-measure Citation

AveRNA 0.716(0.707,0.725) 0.711(0.701,0.721) 0.725(0.713,0.737) -
BL-FR* 0.703 (0.694,0.712) 0.698 (0.687, 0.708) 0.717 (0.706, 0.729) [5]

BL* 0.688 (0.678, 0.698) 0.686 (0.675, 0.696) 0.704 (0.692,0.715) [5]

cG* 0.676 (0.666, 0.685) 0.673 (0.662, 0.684) 0.690 (0.677,0.702) [4]

DIM-CG 0.668 (0.658,0.678) 0.664 (0.654, 0.674) 0.681 (0.668, 0.695) [5]
NOM-CG 0.656 (0.646, 0.667) 0.653 (0.643, 0.663) 0.667 (0.655, 0.680) [5]
CONTRAfold2.0 0.656 (0.647, 0.665) 0.650 (0.640, 0.660) 0.657 (0.644, 0.668) [3]
CentroidFold 0.643 (0.633,0.652) 0.638 (0.627, 0.648) 0.643 (0.630, 0.655) [7]
MaxExpect 0.625 (0.615, 0.635) 0.619 (0.607, 0.630) 0.633 (0.620, 0.646) [6]
CONTRAfold1.1 0.601 (0.591,0.610) 0.595 (0.584, 0.605) 0.605 (0.592,0.619) [3]
T99 0.597 (0.587, 0.607) 0.591 (0.581, 0.602) 0.606 (0.593,0.619) [1]

F measures and 95% confidence intervals, calculated using bootstrapping, and shown in parentheses.
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AveRNA — ——o
BL-FR* — ——o
BL* — ——o
CG* — ——e
DIM-CG - ——o
NOM-CG —i—e
CONTRAFold2.0 — ——o
CentroidFold — ——o
MaxExpect — ——o
CONTRAFold1.1 — —i—o
T99 - ——e
M T T T 1
0.55 0.60 0.65 0.70 0.75
Confidence Interval
Figure 1 F-measure confidence intervals. 95% Confidence Intervals for the F-measure of different prediction algorithms (red circles) and the
mean F-measure (black crosses). The red rectangles indicate algorithms with statistically insignificant performance differences, as determined by a
permutation test.

Table 2 Spearman correlation for pairs of prediction algorithms
AveRNA BL-FR* BL* CG* DIM-CG NOM-CG CONTRAfold2.0 CentroidFold MaxExpect CONTRAfold1.1 T99

AveRNA
BL-FR* 0.942
BL* 0886 0857
cG* 0814 0774 0821
DIM-CG 0828 0764 0819 0897
NOM-CG 0.788  0.747 0801 0.899 0.877
CONTRAfold2.0 0769 0707 0716 0.733 0.749 0.722

CentroidFold 0.758 0698 0.714 0715 0.741 0.715 0.937
MaxExpect 0.749 0689 0.730 0.732 0.769 0.751 0.755 0.759
CONTRAfold1.1 0.720 0660 0.685 0.707 0.733 0.719 0.799 0818 0.780
T99 0.703 0665 0.691 0.687 0.697 0.728 0.670 0.684 0.749 0.691

Spearman correlation coefficients for the F-measure values of of pairs of prediction algorithms over the S-STRAND2 dataset.
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Figure 2 Scatter plot of F-measures of T99 and CONTRAfold 1.1. Correlation between the F-measure achieved by 799 and CONTRAfold 1.1 on the
RNAs from the S-STRAND?2 dataset. The mean F-measures of these algorithms are not significantly different, but prediction accuracy on individual

and AveRNA Greedy on the S-STRAND? set (as determined
using a permutation test, which yielded a p-value of 0.51).
Because of its substantially lower run-time requirements,
especially during training, we therefore decided to focus
on AveRNAGyeedy for the remainder of our study, and we
refer to this variant simply as AveRNA.

As can be seen in Table 1, AveRNA achieved an average
F-measure of 0.716 on S-STRAND2, compared to 0.703
obtained by the best previous method, BL-FR*.

Moreover, even when assessing AveRNA on a test
set obtained by excluding the 500 sequences used for
parameter optimisation from S-STRAND?2, it achieves
significantly higher prediction accuracy than any of its
constituent algorithms. We note that although this per-
formance improvement might appear to be modest, it is
about as much as the difference between BL* and BL-FR*

and, according to a permutation test, statistically highly
significant (see Table 3).

To study AveRNA’s performance on sets of RNAs of dif-
ferent types and provenance, we optimised the parameters
for AveRNA on subsets of S-STRAND?2, from which one
of the 7 classes that make up the RNA STRAND database
had been excluded, and then tested on the excluded class
only, such that there was not only no overlap between
training and test set, but also very little similarity. This
is a situation where many machine learning techniques
are known to perform quite poorly. The results from this
experiment, shown in Table 4, indicate clearly that, even in
this very challenging setting, AveRNA performs very well:
only on 2 of the 7 classes, AveRNA performs significantly
worse if trained under exclusion of that class, and in the
two remaining cases, the loss in accuracy was only about
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2% (Additional file 1: Table S1 for detailed results from the
respective permutation tests).

We further note that, as per the results shown in Table 4,
prior to AveRNA, the best energy-based prediction algo-
rithm varied between RNA classes. On the other hand,
AveRNA was found to not perform significantly worse
than the previous best method on any of the 7 classes,
and in 2 of them (CRW and RFA - see Additional file 1:
Table S1), it performed significantly better. This sug-
gests (but of course cannot guarantee) that AveRNA is
likely to perform at least as well as other general purpose
energy-based secondary structure prediction algorithms
on previously unseen classes of RNAs. Furthermore,
we also optimised AveRNA on a small part of each of the
7 classes and then evaluated it on the entire class; the
results of this experiment, also shown in Table 4, indicate

that by training a generic version on the broader set of
sequences described earlier gives surprisingly good and
robust performance — only for 3 of the 7 classes (ASE, SPR,
and SRP) the respective class-specific version of AveRNA
performs significantly better and in one class (PDB) it
performs worst. Table 4 also shows the mean sequence
length for every class of RNAs and provides clear evidence
that AveRNA’s performance relative to its constituent
algorithms does not deteriorate with increasing sequence
length.

One interesting property of AveRNA(A) is that the
trade-off between sensitivity and PPV can be easily and
intuitively controlled by the threshold 6 € [0, 1]: For high
0, only base pairs are predicted for which there is high
agreement between the procedures in A, and therefore,
we expect relatively few false positive predictions at the
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Table 3 Pairwise permutation tests between prediction algorithms

AveRNA BL-FR* BL* cG* DIM-CG NOM-CG CONTRAfold2.0 CentroidFold MaxExpect CONTRAfold1.1 T99
AveRNA
BL-FR* 0O
BL* 0 0
cG* 0 0 0.0001
DIM-CG 0 0 0 0.0002
NOM-CG 0 0 0 0 0
CONTRAfold20 0 0 0 0 00001  0.4193
CentroidFold 0 0 0 0 0 0.0001 0
MaxExpect 0 0 0 0 0 0 0 0
CONTRAfold1.1 0 0 0 0 0 0 0 0 0
799 0 0 0 0 0 0 0 0 0 0.1317

P-values obtained from permutation tests to determine the statistical significance of performance differences (in terms of F-measure over the S-STRAND2 dataset)
between prediction algorithms. All p-values larger than a standard significance threshold of 0.05 are bolded, indicating cases where the performance differences are

insignificant.

cost of relatively many false negatives, while for low 0,
even base pairs predicted by very few procedures in A
tend to be included in the overall prediction, leading to
relatively many false positive, but few false negatives.
CONTRAfold 1.1, CONTRAfold 2.0, Centroidfold
and MaxExpect also afford control of this trade-off,
via the parameter y € [—5,6], but in a less intuitive
manner.

Figure 4 illustrates the trade-off between sensitivity and
PPV for all of these algorithms and shows clearly that
overall, AveRNA dominates all previous methods, and in
particular, gives much better results than the previous
best algorithm that afforded control over this trade-off,
CONTRAfold 2.0. We note that, in all cases, as a proce-
dure becomes increasingly more conservative in predict-
ing base pairs, eventually, both sensitivity and PPV drop
(see Additional file 1: Figure S1); we believe this to be a
result of the high detrimental impact of even a small num-
ber of mispredicted base pairs when overall very few pairs
are predicted.

Ablation analysis

The results of the ablation analysis we conducted to study
the relative impact of the various component prediction
procedures in A on the performance of AveRNA(A) are
shown in Table 5. The top 11 rows contain the weights
assigned to each algorithm; cases in which a procedure
from A was dropped during the optimisation process are
indicated by a value of zero. The bottom three rows show
the value of threshold 6 and the average performance on
the training and test sets, respectively.

It is interesting to note that although BL-FR* has a
weight of over 40% in the full ensemble, excluding it
leads to a rather modest drop of only 0.011 in average
F-measure, and this drop in performance is the highest

caused by removing any single procedure from the full set
A. Similarly, the decreases in performance as additional
procedure are removed, are mostly quite small. This indi-
cates that, within the set of prediction procedures we con-
sidered here, there is not only sufficient complementarity
in the strength of individual procedures to obtain bene-
fits from the ensemble-based approach, but also enough
similarity in strength between some of the procedures to
permit compensating for the removal of one by increasing
the weight of others.

As seen in Table 5, up to the point where only one pro-
cedure is left in A, the performance of AveRNA (A) is
always higher than that of any of its constituents, indi-
cating the efficacy and robustness of our ensemble-based
prediction approach.

Training set selection

Clearly, AveRNA’s performance depends on the training
set that is used as a basis for optimising its weight parame-
ters. To study the effect of training set size on performance
(in terms of mean F-measure), we generated 11 train-
ing sets of size 100 and 200, as well as one training set
of size 500 and one set of size 1000. We then optimised
AveRNA(A) for each of these sets and measured the per-
formance obtained on the full S-STRAND?2 test set. As
can be seen from the results of this experiment shown in
the Table 6, decreasing the training set size from 500 to
200 lead to a modest drop in mean F-measure by 0.004,
and further decrease to 100 caused a larger drop by 0.007.
On the other hand, increasing the size of the training set
from 500 to 1000 merely resulted in a very small per-
formance improvement of less than 0.001. This indicates
that, while it is important to use a reasonably large and
diverse training set, at least for the set of prediction proce-
dures considered here, there is only very limited value in



Table 4 Class-specific prediction accuracy for various prediction algorithms

ALL ASE CRW PDB RFA SPR SRP TMR

n 2511 386 411 311 257 526 350 269

Testset contribution 0.8 0.83 0.79 0.76 0.78 0.78 0.80 0.87

Mean sequence length 332 959 75 129 116 77 226 362
BL-FR* 0.703 0.606 (0.592, 0.620) 0.613(0.590, 0.637) 0.900 (0.878,0.920) 0.674(0.633,0.713) 0.780 (0.761, 0.800) 0.734(0.712,0.755) 0.589 (0.569, 0.607)
BL* 0.688 0.604 (0.589,0.618) 0.583(0.561, 0.603) 0.894 (0.871,0.915) 0.667 (0.627,0.704) 0.763 (0.742,0.782) 0.717 (0.693, 0.738) 0.568 (0.550, 0.587)
cG* 0.676 0.601 (0.588,0.615) 0.576 (0.556,0.597) 0.891 (0.868,0.911) 0.640 (0.604, 0.675) 0.791 (0.771,0.809) 0.675 (0.651,0.698) 0.496 (0.477,0.515)
DIM-CG 0.668 0.605 (0.592,0.618) 0.559 (0.540,0.577) 0.885 (0.863, 0.906) 0.661 (0.625, 0.696) 0.785 (0.765, 0.804) 0.655 (0.630, 0.680) 0470 (0.451,0.488)
NOM-CG 0.656 0.602 (0.588,0.616) 0.568 (0.547,0.587) 0.885 (0.862, 0.905) 0.637 (0.603, 0.674) 0.739 (0.719, 0.760) 0.660 (0.635, 0.685) 0457 (0.438,0.476)
CONTRAfold2.0 0.656 0.651 (0.639, 0.664) 0.550 (0.532,0.568) 0.869 (0.846, 0.891) 0.607 (0.569, 0.645) 0.746 (0.729,0.763) 0.609 (0.587,0.633) 0.509 (0.488, 0.527)
CentroidFold 0.643 0.642 (0.630, 0.654) 0.537(0.517,0.556) 0.860 (0.833, 0.885) 0.607 (0.568, 0.646) 0.705 (0.683, 0.724) 0.623 (0.600, 0.646) 0492 (0.473,0.512)
MaxExpect 0.625 0.577 (0.564, 0.589) 0.508 (0.488, 0.527) 0.858 (0.828,0.883) 0.644 (0611, 0.680) 0.695 (0.673,0.715) 0.634 (0.608, 0.659) 0.435(0417,0452)
CONTRAfold1.1 0.601 0.590 (0.578, 0.602) 0.440 (0.421,0.459) 0.841(0.817,0.866) 0.597 (0.565, 0.630) 0.690 (0.669,0.712) 0.619(0.594, 0.643) 0.392(0.374,0410)
T99 0.597 0.546 (0.531, 0.560) 0502 (0.481,0.522) 0.860 (0.833, 0.885) 0.625 (0.594, 0.657) 0.583 (0.563, 0.604) 0.689 (0.666, 0.710) 0.389 (0.371, 0.406)
AveRNA 0.716 0.653 (0.641, 0.665) 0.618 (0.600, 0.638) 0.906 (0.884, 0.925) 0.683 (0.645,0.719) 0.794(0.776,0.812) 0.732(0.707,0.753) 0.592 (0.575, 0.608)
AveRNA-| 0.676 (0.663, 0.687) 0.619(0.602, 0.639) 0.901 (0.878,0.922) 0.673 (0.640, 0.707) 0.808 (0.789, 0.825) 0.736 (0.715,0.757) 0.590 (0.569, 0.608)
AveRNA-E 0.650 (0.637, 0.663) 0.617(0.597,0.637) 0.907 (0.885, 0.926) 0.683 (0.646,0.718) 0.794(0.774,0.811) 0.710(0.688,0.733) 0.573(0.555,0.589)

F-measure values for different algorithms for different classes in the S-STRAND2 dataset. AveRNA-I has been trained on 20% of the given class sampled uniformly at random, and the overall F-measure for the entire class is
reported. AveRNA-E has been trained on 20% of S-STRAND2 excluding the given class, and the F-measure for the given class is reported.
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Figure 4 Sensitivity versus PPV. Sensitivity vs positive predictive value (PPV) for different prediction algorithms; for AveRNA, the points along the
curve were obtained by adjusting the pairing threshold 6, and for CONTRAfold 1.1, CONTRAfold 2.0, Centroidfold and MaxExpect by adjusting the
parameter y.

Table 5 Ablation analysis results

0 1 2 3 4 5 6 7 8 9
BL-FR* 40.8030
BL* 34339 36.1240
cG* 0.5814 28.3500 23.6200
DIM-CG 13.3610 2.2809 18.8470 25.2980
NOM-CG 0 14514 7.5372 19.4300 29.6720
CONTRAfold2.0 7.9964 20.2750 24.4660 25.1060 34.6240 48.6310
CentroidFold 6.7425 0.0103 16.4620 15.9370 4.8337 11.1500 48.8500
MaxExpect 18.0520 0 3.8522 14.2290 18.5270 24.7580 56026 24.0080
CONTRAfold1.1 1.8412 8.4554 0 0 33164 5.2330 16.9320 42.9650 62.8050
T99 7.1883 3.0532 52156 0 9.0275 10.2280 286160 33.0280 37.1950 100
Threshold 42.7290 38.8610 35.6670 36.8770 31.2980 344810 31.6520 50 50 50
F (train) 0.7350 0.7163 0.7106 0.7052 0.7002 0.6889 0.6798 0.6640 0.6271 06188
F (test) 0.7158 0.7050 0.6948 0.6886 0.6842 06718 0.6629 06423 06011 0.5967

Each data column corresponds to one stage of the ablation analysis, with the (optimised) weights of each prediction algorithm included in the ensemble shown in the
top part of the table, followed by the (optimised) pairing threshold and the training and testing performance (in terms of mean F-measure) in the bottom part.
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using sets larger than that of size 500 we used for all other
experiments.

We note that we did not use the training set devel-
oped by Andronuescu et al. (2010) in the context of
energy parameter estimation, primarily because many of
the prediction procedures we study here have been opti-
mised on that set (which could have biased AveRNA
to assign higher weights to those algorithms and lead
to poor generalization to test data). We also note
that all training sets we considered were obtained by
random uniform sampling from the full S-STRAND2
set.

Additionally, in Table 2 we have reported the F-
measures of testset2, a new testset which consists of all
members of S-STRAND2 which have not been used by
AveRNA or any of the individual algorithms for training
purposes. Permutation tests on this new test set (Table S2)
confirm that AveRNA remains significantly more accurate
than the other algorithms.

Discussion
To no small extent, our work presented here was moti-
vated by the observation that in many cases, the differ-
ences in accuracy achieved by RNA secondary structure
prediction methods are quite small on average, but tend
to vary very significantly between individual RNAs [5,6].
While this is not surprising, it suggests that care should
be taken when assessing different prediction methods to
ensure statistically meaningful results, and that poten-
tially, benefits could be derived from combining predic-
tions obtained from different methods. The statistical
procedures we use in this work make it possible to
assess statistical significance in a well-established, quan-
titative and yet computationally affordable way, and our
AveRNA procedure provides a practical way for realising
the benefits inherent in a set of complementary prediction
methods.

Our results demonstrate that there has, indeed, been
steady progress in the prediction accuracy obtained
from energy-based RNA secondary structure prediction

Table 6 Impact of training set size on prediction accuracy

Training set size F-measure cl

1000 0.7175 (0.7095,0.7278)
500 0.7167 (0.7075,0.7269)
200 0.7131(0.7108, 0.7140) (0.7041,0.7236)
100 0.7061 (0.7050, 0.7127) (0.6943,0.7184)

Mean F-measure on S-STRAND?2, with 95% confidence intervals shown in the last
column. For the bottom two rows, training set size was sampled 11 times
uniformly at random, and the median (20-, 80-percentiles) of the prediction
accuracies from these samples are reported, along with confidence intervals for
the medians.
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methods. The fact that CONTRAfold 1.1 provides no sta-
tistically significant improvement in accuracy over the
standard 799 energy model when both are evaluated on
our large and diverse set of reference structures needs
to be viewed in light of the fact that CONTRAfold 1.1
was trained on a limited set of RNA structures from the
RFam database. The fact that CONTRAfold 2.0, which
was trained on the the same larger and richer set used
by Andronescu et al. [4], performs much better further
highlights the importance of the training set used as a
basis for empirically optimising the performance of pre-
diction methods. It is interesting to observe that the
performance difference between CONTRAfold 2.0 and
NOM-CG, which are trained on the same set of references
structures, are insignificant, which indicates that both
methods are equally effective in making use of the infor-
mation inherent in this set. However, NOM-CG, thanks
to its additional use of thermodynamic data, produces a
physically plausible energy model, while the probabilistic
model underlying CONTRAfold 2.0 does not produce
realistic free energy values.

We further interpret the fact that DIM-CG, CG*, BL*
and BL-FR* all perform significantly better than CON-
TRAfold 2.0 as evidence that the thermodynamic data
used by the former methods can effectively inform meth-
ods for optimising prediction accuracy based on data. Our
statistical analysis provides further support for the claim
that the computationally more expensive Boltzmann Like-
lihood parameter estimation method leads to better
results than the Constraint Generation method, and that
the additional use of probabilistic feature relationships
enables further significant improvements [5].

The accuracy results we obtained for the MaxExpect
procedure [6] and for Centroidfold [7] are markedly lower
than those reported in the respective original studies,
mainly because our evaluation is based on a more exten-
sive set of reference structures. However, we note that the
underlying approaches of maximizing expected base-pair
accuracy and y —centroid estimators can in principle be
applied to any prediction method that produces probabil-
ity distributions over the secondary structures of a given
sequence. We therefore expect that these ideas can even-
tually be used in combination with parameter estimation
methods, such as the ones that gave rise to the CG*, BL*
and BL-FR* parameter sets.

The results of our correlation analysis revealed that
prediction methods whose accuracy over the entire
benchmark set does not differ much (such as 799 and
CONTRAfold 1.1) show large differences in accuracy on
many individual RNAs. Consistent with earlier observa-
tions that predictions that are slightly suboptimal accord-
ing to a given energy model can sometimes be much
more accurate (see, e.g., [6]), we conjecture that this is a
consequence of systematic weaknesses (such as the lack
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of accounting for interactions between non-neighbouring
bases or the use of an overly simplistic energy model
for multiloops) and inaccuracies (for example, in thermo-
dynamic measurements) in the energy models underly-
ing these procedures. Particularly when using automated
methods for optimising the parmaters of a given energy
models, such weaknesses and inaccuracies could easily
lead to multiple solutions that show similar performance
on average, but give very different results on many indi-
vidual RNAs.

This situation, while at the first glance somewhat unsat-
isfactory, provides the basis for our AveRNA approach,
which obtains more accurate predictions by means of
weighted combination of the predictions obtained from
a set of given prediction procedures. While our study
is focussed on the prediction of pseudoknot-free MFE
structures, we note that the weighted sum calculation per-
formed by AveRNA on base pairing matrices naturally
extends to methods that produce base pairing probabil-
ities and to pseudoknotted prediction methods. In the
latter case, the calculation of the weighted probability
matrix P(w) proceeds exactly as in the pseudoknot-free
case, but the procedure used for structure inference would
have to be modified to produce pseudoknotted MEA
structures. In the former case, probability matrices are
used instead of Boolean matrices, and the result of the
calculation would be normalised to yield a well-formed
base pairing probability matrix. (We note that, in light
of very recent empirical results based on the statisti-
cal approach first developed in the context of the work
presented here, it is not clear that MEA structures deter-
mined from individual base pairing probability matrices
are generally more accurate than MFE structures for the
same energy model [29]; however, it is possible that higher
accuracies can be obtained via ensemble-based MEA pre-
dictions from weighted combinations of multiple base
pairing matrices.) We pursued neither of these directions
here, because currently, the number of high-accuracy pre-
diction procedures for pseudoknotted RNA structures of
base-pair probabilities is more limited and because the
development and assessment of extensions of AveRNA to
those cases pose challenges that are beyond the scope
of this work, but we strongly believe that these direc-
tions are very promising and should be explored further in
the future.

We note, however, that AveRNA as presented here
already realises an advantage usually found only in
approaches that produce base pairing probabilities: an
easy and intuitive way for assessing the confidence with
which certain bases are predicted to pair or remain
unpaired, by means of inspecting the entries of the proba-
bility matrix P(w). Values close to one indicate base pairs
that are predicted consistently by many of the underlying
prediction procedures, and values close to zero indicate
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bases that are consistently predicted to be unpaired. Inter-
mediate values indicate base pairings for which there is
more disagreement between the given prediction proce-
dures. From the fact that by thresholding these values, the
sensitivity and specificity (PPV) for predicting base pairs
can be increased quite substantially (as seen in Figure 4),
we conclude that the set of prediction procedure used by
AveRNA in this work is sufficiently diverse to allow for
this interpretation. The threshold parameter 6 controls
the trade-off between sensitivity and PPV in an intuitive
way. It is conceivable that even higher sensitivity and PPV
values can be obtained by optimising the weight param-
eters of AveRNA specifically for that purpose (something
we did not attempt in this work).

Conclusions

The ensemble-based RNA secondary structure predic-
tion method AveRNA introduced in this work not only
improves over existings state-of-the-art energy-based
methods, but also holds much promise for the future.
AveRNA can make use of arbitrary secondary struc-
ture prediction procedures; in particular, as demonstrated
here, it can be used to combine both MEA and MFE
structures. We expect that by adding new prediction
procedures to the set used by AveRNA, even better
ensemble-based predictions can be obtained. It is con-
ceivable that eventually, a prediction procedure becomes
available that dominates all previous methods, in the
sense that it provides predictions as least as accurate
as these on all RNAs of interest, and in that case, the
ensemble-based prediction approach of AveRNA would
not realise any additional gains. Based on our assess-
ment of existing methods, and considering the weaknesses
and inaccuracies known to exist in all current energy
models, we do not expect this situation to arise in the
foreseeable future. The results of our ablation analysis
further supports the view that further increases in pre-
diction accuracy achieved by the ensemble-based predic-
tion approach underlying AveRNA are likely to arise as
new prediction procedures become available, since — as
seen in Table 5 — that was the case when adding new
procedures to sets of previously known procedures in
the past.

In fact, BL-FR* was introduced when AveRNA was
under development and achieved an F-measure of higher
than the version of AveRNA available at that time. Includ-
ing BL-FR* in AveRNA produced the version of AveRNA
studied here, which — as expected — performs significantly
better than BL-FR*. This suggests that AveRNA not only
represents the state of the art in secondary structure pre-
diction at the time of this writing, but is likely to remain
so, as improved prediction algorithms and energy models
are developed and added to the generic ensemble-based
approach.
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It should be noted, however, that in cases where addi-
tional information about the specific secondary structure
of a particular RNA is available (e.g, in the form of
SHAPE or other footprinting data), prediction methods
that utilise this information should be expected to achieve
higher accuracies (see, e.g., [30]).

We see several avenues for future work: Here, we
focused on pseudoknot free structures, but the general
framework (except the dynamic programming) can be
applied to pseudoknotted structures as well once a wider
range of these algorithms are developed. Similarly, our
framework can be applied to algorithms that are able
to calculate base-pair probabilities (e.g., based on parti-
tion functions) or to algorithms that are able to predict
several sub-optimal structures. New algorithms (e.g,, non-
energy-based methods) or different configurations of the
existing algorithms (using different training strategies)
can be included in AveRNA. We showed that the corre-
lation between the predictions of different algorithms is
not very strong. These algorithms can be studied to iden-
tify their strengths and weaknesses to provide guidance
to the end-users. Alternatively, this information could be
used to design an instance-based selection algorithm that
instead of combining the predictions of all of the algo-
rithms, either selects the most suitable algorithm for each
sequence or selects a number of candidates for AveRNA to
combine.
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