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Abstract 47 

There exists a gap in existing patient education resources for children with chronic 48 

conditions. This pilot study assesses large language models' (LLMs) capacity to deliver 49 

developmentally appropriate explanations of chronic conditions to pediatric patients. Two 50 

commonly used LLMs generated responses that accurately, appropriately, and effectively 51 

communicate complex medical information, making them a potentially valuable tool for 52 

enhancing patient understanding and engagement in clinical settings.  53 
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Introduction 54 

The ability to translate complex medical terminology into commonly understood 55 

phrases is one of the numerous promising applications of artificial intelligence (AI), 56 

particularly large language models (LLMs), in the healthcare field.1-8 LLMs are advanced AI 57 

models designed to understand and generate human-like text by leveraging vast amounts of 58 

data and complex algorithms. Communicating medical information to children with chronic 59 

conditions presents a unique challenge for providers as developmental stages, perspectives, 60 

and understanding vary considerably across ages and disease processes.9 Previous studies 61 

have shown that how providers communicate can affect both health outcomes and patient and 62 

caregiver satisfaction;10,11 particularly, ineffective communication can result in negative 63 

outcomes for children and families.12,13 Therefore, ensuring children comprehend health 64 

information empowers active participation in their medical care, increasing knowledge and 65 

treatment adherence, while reducing adverse events.14,15 66 

There exists a gap in educational materials for pediatric patients with chronic 67 

conditions due to the lack of standardized approaches, particularly for rare diseases, 68 

indicating a scarcity of research in this area. Current materials often fail to cater to the 69 

specific needs of pediatric patients, neither being written in age-appropriate, plain language 70 

nor considering the complexities of multisystemic diseases, or focus on educating the parents, 71 

rather than the patient.15 Recent studies emphasize the significance of tailoring educational 72 

programs to meet the unique needs of pediatric patients with chronic conditions. For instance, 73 

a component-based educational program was successful in improving self-efficacy and 74 

treatment satisfaction among children with rare chronic diseases.16  75 

LLMs offer a novel solution to this challenge. Given this potential, we hypothesize 76 

that LLMs can serve as effective tools for providing age-appropriate explanations of chronic 77 

conditions, thereby enhancing the communication between healthcare providers, caregivers, 78 
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and pediatric patients. This study evaluates the ability of two commonly used LLMs to 79 

generate accurate, complete, and developmentally appropriate explanations of chronic 80 

diseases to children of different ages. By integrating these AI tools into pediatric healthcare 81 

communication, we aim to bridge the gap between clinical knowledge and patient 82 

comprehension, fostering better engagement and adherence to treatment among young 83 

patients. 84 

 85 

Methods 86 

 Two generalist LLMs (GPT-4 [OpenAI] and Gemini 1.0 Ultra [Google]; accessed 87 

January 16, 2024) were asked to respond to the following prompt: “act as a pediatrician and 88 

explain a diagnosis of [CONDITION] to a [AGE]-year-old in language they can understand.” 89 

Responses were generated for five common chronic conditions (asthma, anaphylactic allergy 90 

[peanut allergy], epilepsy, sickle cell disease, and type I diabetes) for children of odd ages 91 

between 5 and 17 (5-year-old, 7-year-old, 9-year-old, 11-year-old, 13-year-old, 15-year-old, 92 

and 17-year-old). Representative responses from GPT-4 and Gemini can be found in 93 

Supplementary Table 1.  94 

A total of 70 LLM responses (35 from each model) were assessed for accuracy, 95 

completeness, age-appropriateness, possibility of demographic bias, and overall quality, 96 

based on an existing framework for the human evaluations of the clinical application of 97 

LLMs and prior literature.17 Demographic bias was defined as whether implementing the 98 

response in clinical practice would favor or disadvantage particular groups based on 99 

demographic characteristics such as race, age, gender, socioeconomic status, or geographic 100 

location. Three pediatric physicians (S.H., A.B., and J.L.) rated the responses based on how 101 

well they aligned with these five criteria using a Likert scale from 1 (highly disagree) to 5 102 

(highly agree). Numeric ratings were treated as continuous variables and summarized as 103 
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means and 95% confidence intervals. A Welch two sample t-test was used to assess 104 

differences in means. P<0.05 was considered statistically significant. Intra-rater reliability 105 

was assessed by calculating Pearson correlation coefficients between individual raters. 106 

Additionally, Pearson correlation coefficients were computed to assess the degree of 107 

correlation between evaluation criteria Analyses were performed in R version 4.2.2. 108 

 109 

Results 110 

 Across both LLMs, responses were rated as highly accurate (GPT-4: 4.37 [4.27-4.47]; 111 

Gemini: 4.55 [4.45-4.65]), highly complete (GPT-4: 4.25, [4.16-4.34]; Gemini: 4.39, [4.28-112 

4.50]), moderately age-appropriate (GPT-4: 3.95, [3.81-4.09]; Gemini: 3.26, [3.09-3.43]), of 113 

moderate quality (GPT-4: 3.88, [3.75-4.01]; Gemini: 3.43, [3.26-3.60]), and with low 114 

possibility of demographic bias (GPT-4: 1.61, [1.49-1.73]; Gemini: 1.16, [1.11-1.21]). 115 

Gemini responses had a significantly lower possibility of demographic bias (p<0.001), while 116 

responses from GPT-4 were of significantly higher quality (p=0.004) and age-appropriateness 117 

(p<0.001) (Table 1). Across both models, age-appropriateness and overall quality tended to 118 

increase with age, while other criteria remained similar (Table 2). There were no differences 119 

in ratings across chronic conditions (Supplementary Table 2). Intra-rater reliability was 120 

high, with an average Pearson correlation coefficient of 0.72 (Supplementary Table 3).  121 

The use of metaphors to explain biological concepts was common throughout 122 

responses (red blood cells are “delivery trucks” around the body, insulin is the “key” to 123 

unlocking the door for glucose to enter cells, a “glitch” in the brain causes an epileptic 124 

seizure). References to superheroes (15.7% of responses), food (12.9% of responses), and 125 

weather (12.9% of responses) were most frequent among all responses. Additionally, the 126 

mention of videogames, sports, and cartoons were common. Some of these responses were 127 

confusing in the context that they were provided (“villains blocking pipes” in a videogame 128 
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may not be easily understandable by all children), could be interpreted as problematic by the 129 

patient (a “glitch in the brain” may seem that something is wrong that can never be fixed), or 130 

risk demographic bias (referring to a child as “kiddo” or “buddy”). 131 

 132 

Discussion 133 

LLMs can generate accurate, complete, age-appropriate chronic disease explanations 134 

with low possibility of demographic bias for children of different ages and chronic 135 

conditions, providing a potential additional source of patient educational materials. These 136 

models are flexible, easy-to-use, and can be implemented at the point of care by clinicians or 137 

at home by parents or caregivers and personalized to a patient’s specific condition and 138 

demographics. Further, technology-based interventions can positively impact pediatric 139 

health-related outcomes,18 further highlighting the potential utility of these tools. 140 

Additionally, the use of AI chatbots is popular among children and adolescents through their 141 

integration into social media platforms, such as Snapchat’s My AI19 and as educational 142 

tools.20 Further, a survey of parents showed an openness towards AI-driven technologies in 143 

pediatric healthcare, with quality, convenience, and cost positively influencing their 144 

openness, but concerns about privacy, the need for human interaction in care, and shared 145 

decision-making were noted.21 146 

Despite these positive findings and likelihood of translatability, there are several 147 

limitations related to the findings. The use of words like “kiddo” or “buddy” as well as 148 

references to sports and videogames may risk biasing patients and decreasing effectiveness of 149 

explanations.14 Further, differences in age-appropriateness, possibility of demographic bias, 150 

and overall quality were noted between GPT-4 and Gemini. This discrepancy in LLM 151 

responses could be due to variations in training data and model architecture.22 Therefore, 152 

clinicians should be cognizant of these potential differences, and evaluate multiple LLM 153 
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output before sharing responses with patients and caregivers. Finally, these responses were 154 

reviewed by pediatric clinicians, rather than children, who may interpret these responses 155 

differently. Evaluation of children’s interactions with LLMs for pediatric healthcare 156 

represents a promising area of future research.  157 

This pilot study shows that LLMs offer a promising tool to explain complex chronic 158 

diseases to children of different ages, with room for improvement. Developing custom-built, 159 

specialty LLMs curated by clinicians and child development experts that incorporate patient-160 

specific details may improve these LLMs ability to act as an explanatory tool.9 However,  161 

LLMs have the potential to aid in closing the existing gap in education materials for pediatric 162 

patients with chronic conditions. 163 
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Table 1 – Overall and age-stratified average reviewer ratings of GPT-4 and Gemini across five evaluation criteria 

Large Language 
Model 

Accuracy, mean 
(95% CI) 

Completeness, 
mean (95% CI) 

Age-
Appropriateness, 
mean (95% CI) 

Possibility of 
Demographic Bias, 
mean (95% CI) 

Overall Quality, 
mean (95% CI) 

GPT-4 4.37 (4.27, 4.47) 4.25 (4.16, 4.34) 3.95 (3.81, 4.09) 1.61 (1.49, 1.73) 3.88 (3.75, 4.01) 
Gemini 4.55 (4.45, 4.65) 4.39 (4.28, 4.50) 3.26 (3.09, 3.43) 1.16 (1.11, 1.21) 3.43 (3.26, 3.60) 
P-value 0.08 0.15 <0.001 <0.001 0.004 
CI = confidence interval 
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Table 2 – Age-stratified average reviewer ratings of GPT-4 and Gemini responses across five evaluation criteria 

Large Language 
Model 

Accuracy, mean 
(95% CI) 

Completeness, 
mean (95% CI) 

Age-
Appropriateness, 
mean (95% CI) 

Possibility of 
Demographic Bias, 
mean (95% CI) 

Overall Quality, 
mean (95% CI) 

GPT-4 
5-Year-Old 4.20 (3.76, 4.64) 4.07 (3.67, 4.47) 3.47 (2.76, 4.18) 1.53 (1.07, 1.99) 3.47 (2.87, 4.07) 
7-Year-Old 4.40 (4.08, 4.72) 4.20 (3.99, 4.41) 4.07 (3.62, 4.52) 1.53 (1.15, 1.91) 3.93 (3.63, 4.23) 
9-Year-Old 4.47 (4.21, 4.73) 4.27 (3.97, 4.57) 4.07 (3.71, 4.43) 1.60 (1.28, 1.92) 3.93 (3.57, 4.29) 
11-Year-Old 4.40 (3.94, 4.86) 4.27 (3.97, 4.57) 4.00 (3.57, 4.43) 1.33 (1.08, 1.58) 3.80 (3.32, 4.28) 
13-Year-Old 4.27 (3.91, 4.63) 4.13 (3.75, 4.51) 3.87 (3.33, 4.41) 1.73 (1.24, 2.22) 3.93 (3.41, 4.45) 
15-Year-Old 4.40 (3.98, 4.82) 4.40 (4.08, 4.72) 3.67 (2.91, 4.43) 1.93 (1.34, 2.52) 3.93 (3.31, 4.55) 
17-Year-Old 4.47 (4.09, 4.85) 4.40 (4.08, 4.72) 4.53 (4.27, 4.79) 1.60 (1.07, 2.13) 4.13 (3.81, 4.45) 
Gemini 
5-Year-Old 4.47 (4.01, 4.93) 4.27 (3.82, 4.72) 2.53 (1.79, 3.27) 1.33 (1.02, 1.64) 2.87 (2.18, 3.56) 
7-Year-Old 4.53 (4.11, 4.95) 4.40 (3.98, 4.82) 2.53 (1.90, 3.16) 1.07 (0.94, 1.20) 3.07 (2.32, 3.82) 
9-Year-Old 4.60 (4.14, 5.06) 4.47 (4.09, 4.85) 3.00 (2.37, 3.63) 1.20 (0.99, 1.41) 3.20 (2.51, 3.89) 
11-Year-Old 4.60 (4.28, 4.92) 4.40 (4.03, 4.77) 3.00 (2.49, 3.51) 1.07 (0.94, 1.20) 3.07 (2.48, 3.66) 
13-Year-Old 4.67 (4.42, 4.92) 4.27 (3.91, 4.63) 3.80 (3.32, 4.28) 1.13 (0.95, 1.31) 4.00 (3.57, 4.43) 
15-Year-Old 4.60 (4.23, 4.97) 4.47 (4.01, 4.93) 3.80 (3.52, 4.08) 1.20 (0.99, 1.41) 3.87 (3.41, 4.33) 
17-Year-Old 4.47 (4.01, 4.93) 4.27 (3.82, 4.72) 2.53 (1.79, 3.27) 1.33 (1.02, 1.64) 2.87 (2.18, 3.56) 
CI = confidence interval  . 
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