1	Pilot Study of Large Language Models as an Age-Appropriate Explanatory Tool for
2	Chronic Pediatric Conditions
3	
4	Cameron C. Young MPhil ^{1,2} , Elizabeth Enichen BA ^{1,2} , Arya Rao BA ^{1,2} , Sidney Hilker MD ^{1,3} ,
5	Alex Butler MD, MS ^{1,3} , Jessica Laird-Gion MD ^{1,3} , Marc D. Succi MD ^{1,2,4}
6	
7	Affiliations
8	¹ Harvard Medical School, Boston, MA,
9	² Medically Engineered Solutions in Healthcare Incubator, Innovation in Operations Research
10	Center, Mass General Brigham, Boston, MA
11	³ Boston Children's Hospital, Boston, MA
12	⁴ Department of Radiology, Massachusetts General Hospital, Boston, MA
13	
14	Corresponding Author
15	Marc D. Succi, MD
16	Mass General Brigham
17	55 Fruit Street Boston, MA 02114
18	Phone: 617-935-9144
19	Email: msucci@mgh.harvard.edu
20	
21	Key Words: large language models; artificial intelligence; pediatric chronic conditions;
22	medical communication
23	
24	Conflicts of Interest: The authors have no relevant financial or non-financial interests to
25	disclose.

26	Funding/Role of the Funde	r: The project described	l was supported in part by	award Number
----	---------------------------	--------------------------	----------------------------	--------------

- 27 T32GM144273 from the National Institute of General Medical Sciences. The content is
- solely the responsibility of the authors and does not necessarily represent the official views of
- 29 the National Institute of General Medical Sciences or the National Institutes of Health.
- 30 Author Contributions: Cameron Young conceptualized and designed the study, drafted the
- 31 initial manuscript, designed the data collection instruments, carried out analyses, and
- 32 critically reviewed and revised the manuscript.
- 33 Ellie Enichen and Arya Rao conceptualized and designed the study and critically reviewed
- 34 and revised the manuscript.
- 35 Drs Sidney Hilker, Alex Butler, and Jessica Laird-Gion collected data and critically reviewed
- and revised the manuscript.
- 37 Dr Marc Succi conceptualized and designed the study, coordinated and supervised data
- 38 collection, and critically reviewed and revised the manuscript for important intellectual
- 39 content.
- 40 All authors approved the final manuscript as submitted and agree to be accountable for all
- 41 aspects of the work.
- 42 Ethics Approval: This study was compliant with all applicable Health Insurance Portability
- 43 and Accountability Act regulations and did not require Institutional Review Board review.
- 44 **Data Statement**: All data will be made available for any research purpose by contacting the
- 45 corresponding author.
- 46

47 Abstract

- 48 There exists a gap in existing patient education resources for children with chronic
- 49 conditions. This pilot study assesses large language models' (LLMs) capacity to deliver
- 50 developmentally appropriate explanations of chronic conditions to pediatric patients. Two
- 51 commonly used LLMs generated responses that accurately, appropriately, and effectively
- 52 communicate complex medical information, making them a potentially valuable tool for
- 53 enhancing patient understanding and engagement in clinical settings.

54 Introduction

55	The ability to translate complex medical terminology into commonly understood
56	phrases is one of the numerous promising applications of artificial intelligence (AI),
57	particularly large language models (LLMs), in the healthcare field. ¹⁻⁸ LLMs are advanced AI
58	models designed to understand and generate human-like text by leveraging vast amounts of
59	data and complex algorithms. Communicating medical information to children with chronic
60	conditions presents a unique challenge for providers as developmental stages, perspectives,
61	and understanding vary considerably across ages and disease processes. ⁹ Previous studies
62	have shown that how providers communicate can affect both health outcomes and patient and
63	caregiver satisfaction; ^{10,11} particularly, ineffective communication can result in negative
64	outcomes for children and families. ^{12,13} Therefore, ensuring children comprehend health
65	information empowers active participation in their medical care, increasing knowledge and
66	treatment adherence, while reducing adverse events. ^{14,15}
67	There exists a gap in educational materials for pediatric patients with chronic
68	conditions due to the lack of standardized approaches, particularly for rare diseases,
69	indicating a scarcity of research in this area. Current materials often fail to cater to the
70	specific needs of pediatric patients, neither being written in age-appropriate, plain language
71	nor considering the complexities of multisystemic diseases, or focus on educating the parents,
72	rather than the patient. ¹⁵ Recent studies emphasize the significance of tailoring educational
73	programs to meet the unique needs of pediatric patients with chronic conditions. For instance,
74	a component-based educational program was successful in improving self-efficacy and
75	treatment satisfaction among children with rare chronic diseases. ¹⁶
76	LLMs offer a novel solution to this challenge. Given this potential, we hypothesize
77	that LLMs can serve as effective tools for providing age-appropriate explanations of chronic
78	conditions, thereby enhancing the communication between healthcare providers, caregivers,

79	and pediatric patients. This study evaluates the ability of two commonly used LLMs to
80	generate accurate, complete, and developmentally appropriate explanations of chronic
81	diseases to children of different ages. By integrating these AI tools into pediatric healthcare
82	communication, we aim to bridge the gap between clinical knowledge and patient
83	comprehension, fostering better engagement and adherence to treatment among young
84	patients.
85	
86	Methods
87	Two generalist LLMs (GPT-4 [OpenAI] and Gemini 1.0 Ultra [Google]; accessed
88	January 16, 2024) were asked to respond to the following prompt: "act as a pediatrician and
89	explain a diagnosis of [CONDITION] to a [AGE]-year-old in language they can understand."
90	Responses were generated for five common chronic conditions (asthma, anaphylactic allergy
91	[peanut allergy], epilepsy, sickle cell disease, and type I diabetes) for children of odd ages
92	between 5 and 17 (5-year-old, 7-year-old, 9-year-old, 11-year-old, 13-year-old, 15-year-old,
93	and 17-year-old). Representative responses from GPT-4 and Gemini can be found in
94	Supplementary Table 1.
95	A total of 70 LLM responses (35 from each model) were assessed for accuracy,
96	completeness, age-appropriateness, possibility of demographic bias, and overall quality,
97	based on an existing framework for the human evaluations of the clinical application of
98	LLMs and prior literature. ¹⁷ Demographic bias was defined as whether implementing the
99	response in clinical practice would favor or disadvantage particular groups based on
100	demographic characteristics such as race, age, gender, socioeconomic status, or geographic
101	location. Three pediatric physicians (S.H., A.B., and J.L.) rated the responses based on how
102	well they aligned with these five criteria using a Likert scale from 1 (highly disagree) to 5
103	(highly agree). Numeric ratings were treated as continuous variables and summarized as

104	manne and 050/ confidence intervals. A Walch two complete text was used to access
104	means and 95% confidence intervals. A Welch two sample t-test was used to assess
105	differences in means. P<0.05 was considered statistically significant. Intra-rater reliability
106	was assessed by calculating Pearson correlation coefficients between individual raters.
107	Additionally, Pearson correlation coefficients were computed to assess the degree of
108	correlation between evaluation criteria Analyses were performed in R version 4.2.2.
109	
110	Results
111	Across both LLMs, responses were rated as highly accurate (GPT-4: 4.37 [4.27-4.47];
112	Gemini: 4.55 [4.45-4.65]), highly complete (GPT-4: 4.25, [4.16-4.34]; Gemini: 4.39, [4.28-
113	4.50]), moderately age-appropriate (GPT-4: 3.95, [3.81-4.09]; Gemini: 3.26, [3.09-3.43]), of
114	moderate quality (GPT-4: 3.88, [3.75-4.01]; Gemini: 3.43, [3.26-3.60]), and with low
115	possibility of demographic bias (GPT-4: 1.61, [1.49-1.73]; Gemini: 1.16, [1.11-1.21]).
116	Gemini responses had a significantly lower possibility of demographic bias (p<0.001), while
117	responses from GPT-4 were of significantly higher quality (p=0.004) and age-appropriateness
118	(p<0.001) (Table 1). Across both models, age-appropriateness and overall quality tended to
119	increase with age, while other criteria remained similar (Table 2). There were no differences
120	in ratings across chronic conditions (Supplementary Table 2). Intra-rater reliability was
121	high, with an average Pearson correlation coefficient of 0.72 (Supplementary Table 3).
122	The use of metaphors to explain biological concepts was common throughout
123	responses (red blood cells are "delivery trucks" around the body, insulin is the "key" to
124	unlocking the door for glucose to enter cells, a "glitch" in the brain causes an epileptic
125	seizure). References to superheroes (15.7% of responses), food (12.9% of responses), and
126	weather (12.9% of responses) were most frequent among all responses. Additionally, the
127	mention of videogames, sports, and cartoons were common. Some of these responses were
128	confusing in the context that they were provided ("villains blocking pipes" in a videogame

129 may not be easily understandable by all children), could be interpreted as problematic by the

130 patient (a "glitch in the brain" may seem that something is wrong that can never be fixed), or

risk demographic bias (referring to a child as "kiddo" or "buddy").

132

133 Discussion

134 LLMs can generate accurate, complete, age-appropriate chronic disease explanations 135 with low possibility of demographic bias for children of different ages and chronic 136 conditions, providing a potential additional source of patient educational materials. These 137 models are flexible, easy-to-use, and can be implemented at the point of care by clinicians or 138 at home by parents or caregivers and personalized to a patient's specific condition and 139 demographics. Further, technology-based interventions can positively impact pediatric 140 health-related outcomes,¹⁸ further highlighting the potential utility of these tools. 141 Additionally, the use of AI chatbots is popular among children and adolescents through their integration into social media platforms, such as Snapchat's My AI¹⁹ and as educational 142 143 tools.²⁰ Further, a survey of parents showed an openness towards AI-driven technologies in 144 pediatric healthcare, with quality, convenience, and cost positively influencing their 145 openness, but concerns about privacy, the need for human interaction in care, and shared decision-making were noted.²¹ 146 147 Despite these positive findings and likelihood of translatability, there are several 148 limitations related to the findings. The use of words like "kiddo" or "buddy" as well as 149 references to sports and videogames may risk biasing patients and decreasing effectiveness of explanations.¹⁴ Further, differences in age-appropriateness, possibility of demographic bias, 150 151 and overall quality were noted between GPT-4 and Gemini. This discrepancy in LLM 152 responses could be due to variations in training data and model architecture.²² Therefore, 153 clinicians should be cognizant of these potential differences, and evaluate multiple LLM

- 154 output before sharing responses with patients and caregivers. Finally, these responses were
- 155 reviewed by pediatric clinicians, rather than children, who may interpret these responses
- 156 differently. Evaluation of children's interactions with LLMs for pediatric healthcare
- 157 represents a promising area of future research.
- 158 This pilot study shows that LLMs offer a promising tool to explain complex chronic
- 159 diseases to children of different ages, with room for improvement. Developing custom-built,
- 160 specialty LLMs curated by clinicians and child development experts that incorporate patient-
- 161 specific details may improve these LLMs ability to act as an explanatory tool.⁹ However,
- 162 LLMs have the potential to aid in closing the existing gap in education materials for pediatric
- 163 patients with chronic conditions.

164		References
165 166	1.	Clusmann J, Kolbinger FR, Muti HS, et al. The future landscape of large language
167	mode	ls in medicine. Commun Med (Lond). Oct 10 2023;3(1):141. doi:10.1038/s43856-023-
168	00370)-1
169	2.	Koranteng E, Rao A, Flores E, et al. Empathy and Equity: Key Considerations for
170	Large	Language Model Adoption in Health Care. JMIR Med Educ. Dec 28 2023;9:e51199.
171	doi:10	0.2196/51199
172	3.	Rao A, Kim J, Lie W, et al. Proactive Polypharmacy Management Using Large
173	Langu	age Models: Opportunities to Enhance Geriatric Care. J Med Syst. Apr 18
174	2024;	48(1):41. doi:10.1007/s10916-024-02058-y
175	4.	Rao A, Pang M, Kim J, et al. Assessing the Utility of ChatGPT Throughout the Entire
176	Clinic	cal Workflow: Development and Usability Study. J Med Internet Res. Aug 22
177	2023;	25:e48659. doi:10.2196/48659
178	5.	Rao A, Kim J, Kamineni M, et al. Evaluating GPT as an Adjunct for Radiologic
179	Decis	ion Making: GPT-4 Versus GPT-3.5 in a Breast Imaging Pilot. J Am Coll Radiol. Oct
180	2023;	20(10):990-997. doi:10.1016/j.jacr.2023.05.003
181	б.	Rao A, Pang M, Kim J, et al. Assessing the Utility of ChatGPT Throughout the Entire
182	Clinic	cal Workflow. medRxiv. Feb 26 2023;doi:10.1101/2023.02.21.23285886
183	7.	Rao A, Kim J, Kamineni M, Pang M, Lie W, Succi MD. Evaluating ChatGPT as an
184	Adjur	nct for Radiologic Decision-Making. medRxiv. Feb 7
185	2023;	doi:10.1101/2023.02.02.23285399
186	8.	Young CC, Enichen E, Rao A, Succi MD. Racial, Ethnic, and Sex Bias in Large
187	Langu	uage Model Opioid Recommendations for Pain Management. PAIN. 2024;
188	9.	Shah NH, Entwistle D, Pfeffer MA. Creation and Adoption of Large Language
189	Mode	els in Medicine. JAMA. Sep 5 2023;330(9):866-869. doi:10.1001/jama.2023.14217

- 190 10. Espinel AG, Shah RK, Beach MC, Boss EF. What parents say about their child's
- 191 surgeon: parent-reported experiences with pediatric surgical physicians. *JAMA Otolaryngol*
- 192 *Head Neck Surg.* May 2014;140(5):397-402. doi:10.1001/jamaoto.2014.102
- 193 11. Hsiao JL, Evan EE, Zeltzer LK. Parent and child perspectives on physician
- 194 communication in pediatric palliative care. *Palliat Support Care*. Dec 2007;5(4):355-65.
- 195 doi:10.1017/s1478951507000557
- 196 12. Dimatteo MR. The role of effective communication with children and their families in
- 197 fostering adherence to pediatric regimens. *Patient Educ Couns*. Dec 2004;55(3):339-44.
- 198 doi:10.1016/j.pec.2003.04.003
- 199 13. Hallman ML, Bellury LM. Communication in Pediatric Critical Care Units: A Review
- 200 of the Literature. Crit Care Nurse. Apr 1 2020;40(2):e1-e15. doi:10.4037/ccn2020751
- 201 14. Bell J, Condren M. Communication Strategies for Empowering and Protecting
- 202 Children. J Pediatr Pharmacol Ther. Mar-Apr 2016;21(2):176-84. doi:10.5863/1551-6776-
- 203 21.2.176
- 204 15. Falcao M, Allocca M, Rodrigues AS, et al. A Community-Based Participatory
- 205 Framework to Co-Develop Patient Education Materials (PEMs) for Rare Diseases: A Model
- 206 Transferable across Diseases. Int J Environ Res Public Health. Jan 5
- 207 2023;20(2)doi:10.3390/ijerph20020968
- 208 16. Niemitz M, Schrader M, Carlens J, et al. Patient education for children with
- 209 interstitial lung diseases and their caregivers: A pilot study. Patient Educ Couns. Jun
- 210 2019;102(6):1131-1139. doi:10.1016/j.pec.2019.01.016
- 211 17. Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge.
- 212 *Nature*. Aug 2023;620(7972):172-180. doi:10.1038/s41586-023-06291-2

- 213 18. McMullan M, Millar R, Woodside JV. A systematic review to assess the effectiveness
- 214 of technology-based interventions to address obesity in children. BMC Pediatr. May 22
- **215** 2020;20(1):242. doi:10.1186/s12887-020-02081-1
- 216 19. Pratt N, Madhavan R, Weleff J. Digital Dialogue-How Youth Are Interacting With
- 217 Chatbots. JAMA Pediatr. Mar 18 2024;doi:10.1001/jamapediatrics.2024.0084
- 218 20. Gill SS, Xu M, Pastros P, et al. Transformative effects of ChatGPT on modern
- education: Emerging Era of AI Chatbots. *Internet of Things and Cyber-Physical Systems*.
- 220 2024;4:19-23. doi:10.1016/j.iotcps.2023.06.002
- 221 21. Sisk BA, Antes AL, Burrous S, DuBois JM. Parental Attitudes toward Artificial
- 222 Intelligence-Driven Precision Medicine Technologies in Pediatric Healthcare. Children
- 223 (*Basel*). Sep 20 2020;7(9)doi:10.3390/children7090145
- 224 22. Lee GG, Latif E, Shi L, Zhai X. Gemini Pro Defeated by GPT-4V: Evidence from
- 225 Education. *arXiv*. 2023;2401.08660doi:10.48550/arXiv.2401.08660
- 226
- 227

Large Language Model	Accuracy, mean (95% CI)	Completeness, mean (95% CI)	Age- Appropriateness, mean (95% CI)	Possibility of Demographic Bias, mean (95% CI)	Overall Quality, mean (95% CI)
GPT-4	4.37 (4.27, 4.47)	4.25 (4.16, 4.34)	3.95 (3.81, 4.09)	1.61 (1.49, 1.73)	3.88 (3.75, 4.01)
Gemini	4.55 (4.45, 4.65)	4.39 (4.28, 4.50)	3.26 (3.09, 3.43)	1.16 (1.11, 1.21)	3.43 (3.26, 3.60)
P-value	0.08	0.15	<0.001	<0.001	0.004

Table 1 – Overall and age-stratified average reviewer ratings of GPT-4 and Gemini across five evaluation criteria

CI = confidence interval

Large Language Model	Accuracy, mean (95% CI)	Completeness, mean (95% CI)	Age- Appropriateness, mean (95% CI)	Possibility of Demographic Bias, mean (95% CI)	Overall Quality, mean (95% CI)
GPT-4		I			
5-Year-Old	4.20 (3.76, 4.64)	4.07 (3.67, 4.47)	3.47 (2.76, 4.18)	1.53 (1.07, 1.99)	3.47 (2.87, 4.07)
7-Year-Old	4.40 (4.08, 4.72)	4.20 (3.99, 4.41)	4.07 (3.62, 4.52)	1.53 (1.15, 1.91)	3.93 (3.63, 4.23)
9-Year-Old	4.47 (4.21, 4.73)	4.27 (3.97, 4.57)	4.07 (3.71, 4.43)	1.60 (1.28, 1.92)	3.93 (3.57, 4.29)
11-Year-Old	4.40 (3.94, 4.86)	4.27 (3.97, 4.57)	4.00 (3.57, 4.43)	1.33 (1.08, 1.58)	3.80 (3.32, 4.28)
13-Year-Old	4.27 (3.91, 4.63)	4.13 (3.75, 4.51)	3.87 (3.33, 4.41)	1.73 (1.24, 2.22)	3.93 (3.41, 4.45)
15-Year-Old	4.40 (3.98, 4.82)	4.40 (4.08, 4.72)	3.67 (2.91, 4.43)	1.93 (1.34, 2.52)	3.93 (3.31, 4.55)
17-Year-Old	4.47 (4.09, 4.85)	4.40 (4.08, 4.72)	4.53 (4.27, 4.79)	1.60 (1.07, 2.13)	4.13 (3.81, 4.45)
Gemini					
5-Year-Old	4.47 (4.01, 4.93)	4.27 (3.82, 4.72)	2.53 (1.79, 3.27)	1.33 (1.02, 1.64)	2.87 (2.18, 3.56)
7-Year-Old	4.53 (4.11, 4.95)	4.40 (3.98, 4.82)	2.53 (1.90, 3.16)	1.07 (0.94, 1.20)	3.07 (2.32, 3.82)
9-Year-Old	4.60 (4.14, 5.06)	4.47 (4.09, 4.85)	3.00 (2.37, 3.63)	1.20 (0.99, 1.41)	3.20 (2.51, 3.89)
11-Year-Old	4.60 (4.28, 4.92)	4.40 (4.03, 4.77)	3.00 (2.49, 3.51)	1.07 (0.94, 1.20)	3.07 (2.48, 3.66)
13-Year-Old	4.67 (4.42, 4.92)	4.27 (3.91, 4.63)	3.80 (3.32, 4.28)	1.13 (0.95, 1.31)	4.00 (3.57, 4.43)
15-Year-Old	4.60 (4.23, 4.97)	4.47 (4.01, 4.93)	3.80 (3.52, 4.08)	1.20 (0.99, 1.41)	3.87 (3.41, 4.33)
17-Year-Old	4.47 (4.01, 4.93)	4.27 (3.82, 4.72)	2.53 (1.79, 3.27)	1.33 (1.02, 1.64)	2.87 (2.18, 3.56)

Table 2 – Age-stratified average reviewer ratings of GPT-4 and Gemini responses across five evaluation criteria

CI = confidence interval