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Amyotrophic lateral sclerosis (ALS) is a multifactorial disease, characterized by a
progressive loss of motor neurons that eventually leads to paralysis and death. The
current ALS-approved drugs modestly change the clinical course of the disease. The
mechanism by which motor neurons progressively degenerate remains unclear but
entails a non-cell autonomous process. Astrocytes impaired biological functionality
were implicated in multiple neurodegenerative diseases, including ALS, frontotemporal
dementia (FTD), Parkinson’s disease (PD), and Alzheimer disease (AD). In ALS disease
patients, A1 reactive astrocytes were found to play a key role in the pathology of
ALS disease and death of motor neurons, via loss or gain of function or acquired
toxicity. The contribution of astrocytes to the maintenance of motor neurons by diverse
mechanisms makes them a promising therapeutic candidate for the treatment of
ALS. Therapeutic approaches targeting at modulating the function of endogenous
astrocytes or replacing lost functionality by transplantation of healthy astrocytes, may
contribute to the development of therapies which might slow down or even halt
the progression ALS diseases. The proposed mechanisms by which astrocytes can
potentially ameliorate ALS progression and the status of ALS clinical studies involving
astrocytes are discussed.

Keywords: amyotrophic lateral sclerosis, astrocytes, TDP-43 aggregates, astrocyte cell-based therapy, A1
astrocyte, A2 astrocyte

INTRODUCTION

In Amyotrophic lateral sclerosis (ALS), selective degeneration of both upper and lower motor
neurons (MNs) takes place in the central nervous system. Death of MNs leads to rapid and
progressive paralysis of target muscles, which causes death within 3–5 years from disease
onset, usually due to respiratory failure (Hardiman et al., 2011). The degeneration of MNs
is associated with multiple pathophysiological processes including, mitochondrial dysfunction,
protein aggregation and formation of inclusion bodies, impairment in RNA processing, elevation
in reactive oxygen species (ROS) levels, lack of axonal transport, disruption of the neuromuscular
junction and demyelination (Robberecht and Philips, 2013).

The causes for ALS disease are not well understood. The main pathological characteristic of ALS
is the accumulation of misfolded proteins and cytoplasmic inclusions in MNs and glial cells, in both
motor cortex and spinal cord (Rowland and Shneider, 2001). Around 10–15% of ALS cases are with
family history (i.e., familial), and the other cases without family history but still might be genetic
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(i.e., sporadic) (Kiernan et al., 2011). Familial ALS (fALS)
includes mutations of Cu/Zn superoxide dismutase (Rosen,
1993), TAR-DNA-binding protein of 43 kDa (Neumann et al.,
2006), fused in sarcoma (Fus) (Kwiatkowski et al., 2009; Vance
et al., 2009) and amplification of hexanucleotide (GGGGCC)
repeat expansions in the chromosome 9 open reading frame 72
(C9orf72) (DeJesus-Hernandez et al., 2011; Renton et al., 2011).
In these mutations, misfolded mutated proteins are spreading
(i.e., TDP-43, hSOD1, and FUS), and their aggregation induces
severe neuropathology (McAlary et al., 2019). Interestingly,
some of these misfolded proteins are not confined to the
familial form of the disease where the mutation is known,
but also found in sporadic ALS (e.g., TDP-43 inclusions are
found in 97% of sALS patients) (Prasad et al., 2019). The
mechanism by which ALS mutated proteins become toxic to
MNs may share some similarities with prion aggregation and
propagation. For example, C9orf72 RNA can be translated
into five different dipeptide repeat (DPR) proteins (Mori
et al., 2013a,b) that can spread between cells, similar to TDP-
43 misfolded protein (Westergard et al., 2016). Toxicity by
C9orf72 mutation can also be facilitated by transcription into
long repetitive RNA that forms foci of sense or antisense
RNA, which segregate RNA Binding Proteins (RBPs) and
interfere with their biological activities (Lagier-Tourenne et al.,
2012; Fratta et al., 2013; Gendron et al., 2013; Mizielinska
et al., 2013; Wen et al., 2017). In addition to ALS, the role
of C9orf72 was also identified as the major genetic cause
of frontotemporal dementia (FTD) and FTD-ALS (DeJesus-
Hernandez et al., 2011; Renton et al., 2011; Vatsavayai et al.,
2019). Furthermore, TDP-43 proteinopathy now also constitutes
45% of all FTD molecular pathologies (Arai et al., 2006;
Ferrari et al., 2011; Hergesheimer et al., 2019). Misfolded
protein inclusions are not restricted to ALS and FTD and
were also reported in other neurological diseases such as
Parkinson’s disease (Trist et al., 2017, 2018), Alzheimer’s disease
(Josephs et al., 2014; Nag et al., 2015), and Huntington disease
(Gao et al., 2018).

MNs are the main cells that die in ALS. MNs are substantially
large cells with axon extensions that reach far distance locations
(i.e., from motor cortex to spinal cord and target muscle)
(Ragagnin et al., 2019). The size and function of these cells
force them to be more active as compared to other cell types in
the nervous system, in terms of cytoskeletal dynamics, energy
consumption, RNA metabolism, and proteostasis (Vandoorne
et al., 2018). Consequently, MNs are more vulnerable to
changes in homeostasis, especially to proteinaceous aggregates
(Weishaupt et al., 2016).

The key players in maintaining and supporting MN survival
in the central nervous system are astrocytes. Astrocytes are the
most common cells in the CNS and have multiple functions.
In healthy conditions astrocytes regulate the concentration of
different neurotransmitters and ions, supply various metabolites
and energy, regulate osmolarity, modulate synaptic activity,
secrete neurotrophic and neuroprotective factors, promote
neurogenesis (Allen and Eroglu, 2017; Verkhratsky et al., 2017)
and remyelination (Fasciani et al., 2018), play a role in immune-
modulation (Liddelow and Barres, 2017) and blood-brain barrier

formation (Sweeney et al., 2019) as well as in the glymphatic
system (Louveau et al., 2017).

ROLE AND THERAPEUTIC POTENTIAL
OF ASTROCYTES IN ALS

Upon insult, stress, or injury in the CNS, astrocytes enter a
reactive state, characterized by changes in their morphology and
profile of gene expression. Depending on the signal, astrocytes
can transform into reactive A1-type neurotoxic astrocytes, or
neuroprotective A2-type astrocytes (Liddelow and Barres, 2015).
For example, Neuroinflammatory stimuli, such as LPS, yield
A1 reactive astrocytes that promote neurodegeneration and
neurotoxicity. Formation of A2 is induced by ischemia, the
reactive astrocytes which secrete neurotrophic factors promote
neuroprotection and neural repair (Baldwin and Eroglu, 2017;
Liddelow and Barres, 2017).

Astrocytes of ALS patients present A1 type characteristics and
are actors in the non-autonomous cell disease dogma in ALS
(Ilieva et al., 2009). The role of astrocytes in the progression of
ALS pathology involves several mechanisms that can result in
loss of homeostatic functions or gain of toxic functions. ALS
Astrocytes isolated from both sporadic or familial post-mortem
ALS patients were found to be toxic to healthy MNs in culture
(Haidet-Phillips et al., 2011; Meyer et al., 2014). Toxicity to motor
neurons was also demonstrated following coculture of direct
conversion of SOD1 or C9orf72 mutated ALS patient’s fibroblasts
into induced neuronal progenitor cells (iNSC) and subsequent
differentiation into astrocytes (i-astrocytes) (Meyer et al., 2014).
This toxicity might be mediated by extracellular vesicles secreted
by astrocytes containing miRNA such as miR-494-3p (Varcianna
et al., 2019) or proteins such as SOD1, phospho-TDP-43, and FUS
(Sproviero et al., 2018). Extracellular vesicles such as exosomes
and ectosmes contain a specific composition of proteins, lipids,
RNA, and DNA Cells (Gurunathan et al., 2019). Recent study
demonstrated that mutated astrocytes derived from C9Orf72-
iPSC were toxic to MNs via downregulation of antioxidant
proteins secretion, the toxic effects of astrocytes were correlated
with the length of astrocyte propagation in culture, consistent
with the age-related nature of ALS (Birger et al., 2019). Other
study showed that secretion of Tumor Necrosis Factor-Alpha
(TNFα) by FUS mutated astrocytes was found to contribute
MN-toxicity (Kia et al., 2018). Similar results were obtained
with hSOD1G93A primary astrocytes co-cultured with either WT
MNs or with MNs from ALS mice (Di Giorgio et al., 2007). The
toxic effect on MNs was also demonstrated by the addition of
astrocyte-conditioned-medium, indicating that the mechanism
involves secretion of soluble molecules by mutated astrocytes
(Marchetto et al., 2008).

In contrast, healthy astrocytes protect MNs. Recent study
provides evidence for the beneficial role that astrocytes play
in protecting MNs in ALS (Smethurst et al., 2020). In this
study, the authors first demonstrated that iPSC-derived MNs are
more vulnerable to seeded TDP-43 aggregation (extracted from
sALS post-mortem spinal-cord) than iPSC-derived astrocytes,
indicating a cell-type-specific difference in vulnerability. This
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observation was further validated by the addition of proteasomal-
inhibitors that enhanced the formation and propagation of TDP-
43 aggregates. Under these conditions, the presence of seeded
TDP-43 aggregation significantly increased MNs cell death, but
to a much lesser extent in astrocytes. Next, it was shown that
TDP-43 pathology spreads from MNs to astrocytes preferentially
but could also be observed spreading from astrocytes to
motor neurons. Interestingly, co-culture of healthy iPSC-derived
astrocytes protects iPSC-derived MNs that were pre-exposed
to TDP-43 aggregates for 3 days, by a significant reduction in
TDP-43 aggregates and the apoptotic marker caspase-3 in MNs.
This demonstrates that the presence of astrocytes protects MNs
from seeded TDP-43 aggregation and its toxicity. Intriguingly,
the addition of astrocyte-condition-media alone to iPSC-derived
MNs, pre-exposed to TDP-43 aggregates, had similar effects
on MN. Lastly, the authors demonstrated that highly purified
recombinant TDP-43 oligomers reproduced the observed cell-
type-specific toxicity (Smethurst et al., 2020).

Together, the data suggest that healthy astrocytes can protect
MNs of ALS patients from a distance, through some secreted
product. Among the most studied factors secreted by astrocytes
are neurotrophins (Poyhonen et al., 2019). Neurotrophins are
a family of proteins that induce the survival (Hempstead,
2006), development, and function of neurons (Reichardt,
2006). This includes brain-derived neurotrophic-factor (BDNF),
Nerve-growth-factor (NGF) (Schwartz and Nishiyama, 1994),
Vascular-Endothelial-Growth-Factor (VEGF) (Sondell et al.,
2000), neurotrophin-3 (NT-3) (Thompson et al., 2014), ciliary-
neurotrophic-factor (CNTF) (Thompson et al., 2014), Glial
cell-derived neurotrophic factor (GDNF) (Rowitch, 2004) and
neurturin (NRTN) (Thompson et al., 2014). Lower concentration
of neurtrophins were found in the CSF of ALS patients
(Ramamohan et al., 2007; Deepa et al., 2011; Mishra et al.,
2016; Shruthi et al., 2017) and its supplementation was found
to protect MNs (Storkebaum et al., 2005; Bogaert et al., 2010;
Krakora et al., 2013; Shruthi et al., 2017). Astrocytes also
release extracellular vesicles (Verkhratsky et al., 2016) that might
target near or long-distance sites with a potential selectively to
neurons (Venturini et al., 2019). For example astrocyte-derived
extracellular vesicles were proven positive for neuroglobin,
a protein functioning as neuroprotectant against cell insult
(Venturini et al., 2019). Other groups of proteins secreted by
astrocytes found to protect neurons are metalloproteases and
their inhibitors (Gardner and Ghorpade, 2003) or immune-
modulatory factors (Jha et al., 2019).

THERAPEUTIC APPROACHES
TARGETING ASTROCYTES IN ALS

An interesting hypothesis is that in early-stages of ALS disease
(pre-symptomatic stage), a period that may take years, there is
a process of astrocyte transformation toward the A2-phenotype
with neuroprotective properties. This would support the survival
of MNs and delay disease onset. Then, upon disease onset
and appearance of motor deficiency symptoms, probably after
damage to the MN or astrocytes crosses metabolic threshold, the

astrocytes acquire the A1 phenotype with neurotoxic properties.
Transcriptomic data shows that astroglia in late stage of
disease progression in ALS mouse model acquire A1-reactive
astrocytic phenotype (Miller et al., 2017). In ALS patients’
reactive astrocytes are observed in susceptible areas and the
level of reactivity correlates with the neurodegeneration stage
of ALS patients. These astrocytes are convoyed with numerous
abnormalities of signaling pathways such as impaired lactate
transport (Ferraiuolo et al., 2011), reduction of GLT-1 expression
(Martorana et al., 2012), activation of p75-receptor signaling
and elevation in pro-inflammatory signaling (Hashioka et al.,
2009). In G93A-SOD1 mouse model, reducing mutant SOD1
in astrocytes was found to delay the disease progression, but
not disease onset indicating supporting role of astrocytes toward
disease onset (Yamanaka et al., 2008).

This hypothesis raises questions of (1) What is the astrocyte
profile (A1 vs. A2) at different disease stages? What characterizes
the specific threshold that changes the balance between A1 to A2
astrocytes? (2) Can A2 reactive astrocytes transform directly into
A1 astrocytes and vice versa? Answers to these questions may
provide tools to interfere at specific transformation checkpoints
and exploit astrocytes neuroprotective properties to treat ALS.
Thus, targeting astrocytes offers a promising approach to treat
ALS and maybe also other neurological conditions.

ASTROCYTE-BASED CELL THERAPY

One therapeutic approach is to restore the functionality of
endogenous malfunctioning astrocytes by transplantation of
healthy human astrocytes. This might become a double-edged
sword approach, in which astrocytes provide neurotrophic
factors and neuroprotective support through the reduction of
misfolded proteins such as TDP-43 to the diseased MNs from
one hand, and from other hand might become malfunctioning or
even toxic, A1 reactive astrocytes, once they will be introduced
to hostile environment ALS patients CNS enriched with
aggregations of mis-folded proteins. Comprehensive preclinical
studies demonstrated that transplantation of glial-precursor-
cells that were generated from iPSCs, or embryonic-stem-cells
(ESC), had the potential to delay disease onset and ameliorate
clinical symptoms in rodent models of ALS disease (Lepore
et al., 2008; Kondo et al., 2014; Izrael et al., 2018) and
shown to be safe (Izrael et al., 2018). However, other studies
show that astrocytes acquire toxic neuroinflammatory role in
response to the cerebrospinal-fluid from ALS patients (Mishra
et al., 2016). The transplantation of human glial-restricted
progenitors did not result in motor neuron protection or any
therapeutic benefits on functional outcome measures (Lepore
et al., 2011). Transplantation of genetically modified GDNF
neural-stem cells presented efficient delivery of GDNF and
preservation of motor neurons, however, MNs survival was not
accompanied by continued innervation of muscle end-plates and
thus resulted in no improvement in ipsilateral limb use (Suzuki
et al., 2007). The difference observed between the therapeutic
effect of transplanted cells might reside from difference in
the population of astrocytes and their progenitors and should
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be further investigated. These encouraging results led to the
currently ongoing first-in-human phase I/IIa clinical study to
evaluate the safety and efficacy of intrathecal transplantation of
clinical-grade human astrocytes (AstroRx R©) derived from human
ESC in patients with ALS (ClinicalTrials.gov ID-NCT03482050).
The advantage of intrathecal cell injection to cerebrospinal
fluid is the distribution of human astrocytes throughout the
neural axis, where the cells can reach and exert their effects
on both upper and lower MNs. In addition, lumbar puncture
is a standard clinical procedure and is generally safe. The
mechanisms by which the transplanted astrocytes act still need
to be fully elucidated. Most likely the astrocytes act by secreting
neuroprotective factors that diffuse to the MNs (Gould and
Oppenheim, 2011; Izrael et al., 2018; Thomsen et al., 2018).
But many questions remain: Where they attach? Can astrocytes
migrate from the CSF into the CNS-parenchyma and reach
MNs? Will the astrocytes maintain their A2 characteristics
in the hostile CNS environment of ALS or might transform
to A1-phenotype further affecting disease course? How long
will the transplanted astrocytes survive? Will they transform
into the A1 state? The precise mechanisms of action that
contribute to the astrocytes’ effects in vivo still need to
be fully understood, to optimize the potential benefit of
these cells.

In another study, neural progenitor cells that were
manipulated to overexpress glial cell-line derived neurotrophic
factor (GDNF) enhanced the survival of MNs survival and
attenuated the progression of the disease phenotype after their
injection into the spinal cord (Klein et al., 2005) or motor cortex
(Thomsen et al., 2018) of ALS rat model. These encouraging
results led to a Phase I/IIa clinical trial (ClinicalTrials.gov
ID-NCT02943850) aiming to assess the safety of transplantation
of GDNF-producing human astrocyte-precursors into the spinal-
cord lumbar segment of ALS patients. Finally, a phase-I/IIa
clinical trial (ClinicalTrials.gov ID-NCT02478450) will explore
the safety of transplanting Human Glial-Restricted-Progenitor
Cells (Q-Cells R©) into the cervical or lumbar region of the spinal
cord in subjects with ALS (Lepore et al., 2011).

In these clinical trials, the cells are transplanted locally into
the ventral horn (lumbar or cervical regions) in close vicinity
to lower MNs. This might allow the cells to directly exert their
therapeutic activity on a specific set of neurons as compared to
the intrathecal approach.

CELL-BASED THERAPY USING
MESENCHYMAL STEM CELLS

Another cell-based therapy approach is the use of mesenchymal-
stem-cells (MSC). MSC are adult multipotent-precursors that can
be derived from bone-marrow or placenta, with the potential
to differentiate into osteocytes, chondrocytes, fibroblasts, and
adipocytes (Pittenger et al., 1999). MSC are not natural
residence of the CNS but can be induced to secrete some
of the neurotrophic factors secreted by astrocytes (Bahat-
Stroomza et al., 2009). Recently, single-dose transplantation of
autologous MSC that were induced to secrete neurotrophic

factors (NurOwn) showed that single combined intramuscular
and intrathecal transplantation of MSC-NTF cells demonstrated
early promising signs of efficacy and shown to be safe
(ClinicalTrials.gov ID NCT02017912) (Berry et al., 2019). These
results lead to the ongoing multi-dose phase-III clinical trial
in rapidly progressing ALS patients (ClinicalTrials.gov ID-
NCT03280056). Preclinical studies in ALS animal model showed
that transplantation of MSCs, have the potential to reduce MNs
death, prolong animal survival and improved motor performance
over sham-injected animals (Suzuki et al., 2008; Boucherie et al.,
2009; Uccelli et al., 2012; Marconi et al., 2013). Intrathecal
injection of autologous undifferentiated bone-marrow-derived
MSCs (NEURONATA-R) to ALS patients (ClinicalTrials.gov ID-
NCT01363401) resulted in stabilization of the ALSFRS-R score
in all patients over 6 months after first cell injection. Also, levels
of CSF immunomodulatory cytokines such as IL-10, TGF-β, and
IL-6 were increased after MSC injection, this suggest that the
effect of MSC treatment on ALS patients might be mediated by
an immune response (Oh et al., 2015).

OTHER STRATEGIES TARGETING
ASTROCYTES ACTIVITY

Compounds that can improve endogenous astrocyte
functionality are also being tested. For example, a group
of compounds that encompass astrocytic glutamate uptake.
Excessive activation of glutamate receptor in MNs can result in
cell death (Lapucci et al., 2017). Astrocytes uptake glutamate
through EAAT2 (GLT-1) transporter, thus, increasing GLT-1
transporter expression in astrocytes may improve the survival
of MNs. Compounds such as Class II HDAC inhibitor MC1568
(Lapucci et al., 2017), pyridazine derivative LDN/OSU-0212320
(Kong et al., 2014), b-lactam antibiotics (e.g., ceftriaxone)
(Rothstein et al., 2005), neuroimmunophilin ligand (Ganel et al.,
2006), and FDA-approved drug Riluzole (Liu et al., 2019) were
found to enhance the expression of GLT-1 in astrocytes and delay
symptoms of MN decline and in SOD1G93A mice.

Compounds aiming at targeting endogenous-astrocytes to
reduce oxidative-stress are of great therapeutic potential.
Increasing availability of nicotinamide-adenine-dinucleotide
(NAD+), an essential redox molecule (Belenky et al., 2007),
leads to increased resistance to oxidative-stress and decreased
mitochondrial reactive oxygen production (de Picciotto et al.,
2016; Harlan et al., 2016). Activation of the transcription factor,
erythroid-derived 2, like 2 (Nrf2) in astrocytes confers protection
to neurons in culture and in vivo (Vargas et al., 2008; Chen et al.,
2009). Treatment with nicotinamide-mononucleotide (NMN)
or nicotinamide-riboside (NR) increases NAD+ availability
in mutant hSOD1-expressing astrocytes, leading to increased
resistance to oxidative-stress and reversion of their toxicity
toward co-cultured MNs, through SIRT6 activity to Nrf2
activation (Harlan et al., 2019). Edaravon, the second FDA
approved drug for ALS, is a free-radical-scavenger of peroxyl-
radicals and peroxynitrite, has been shown to inhibit MNs death
in vivo by reducing oxidative-stress (Ito et al., 2008). In a phase-
III clinical trial (ClinicalTrials.gov, NCT01492686) this drug was
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found safe and demonstrated safety and efficacy in ALSFRS-R
(Writing and Edaravone, 2017).

Other mechanism to reduce astrocyte toxicity is by
interfering with neuroinflammatory processes taking place in
the progression of the disease. Pro-inflammatory cytokines
and inflammatory-mediators are also linked to astrocyte-
mediated toxicities. For example, an upregulation of interferon-α
(IFNα) receptor in astrocytes was found in the spinal-cord
of SOD1G93A mice and sALS, and reducing its expression
extended survival in SOD1G93A mice (Wang et al., 2011).
Additionally, mutant-SOD1 expressing astrocytes secrete IFN-
γ, which induces degeneration in motor-neurons in vitro
(Aebischer et al., 2011). The pro-inflammatory mediator,
prostaglandin-D2 (PGD2), has also been linked to motor
neuron death in in vitro experiments using co-culture of ES-
cell derived human MNs and mutant SOD1 astrocytes (Di
Giorgio et al., 2008). Transforming growth-factor β (TGF-
β) is a multi-functional cytokine involved in many biological
functions, including immune homeostasis, neurotrophic
response, and microglial development (Butovsky et al., 2014).
Alterations of TGF-β signaling have been implicated in
ALS due to gene expression profiles (Phatnani et al., 2013).
Next, it was demonstrated that astrocyte-derived TGF-β1
is a negative-regulator of the neuroprotective inflammatory
response mediated by microglia and T-lymphocytes in ALS
mice (Endo et al., 2015). In summary, several treatments have
been tested on ALS animals with the aim of inhibiting or
reducing the pro-inflammatory action of microglia and astrocytes
(Geloso et al., 2017).

An additional way to interfere with endogenous astrocyte
function is gene therapy. The challenges using these therapies
are crossing blood-brain-barrier (BBB) and specifically targeting

endogenous astrocytes cell population. Several clinical studies
such as Tofersen (BIIB067) (Miller et al., 2013), miQure (targets
down regelation of C9orf72) (Martier et al., 2019a,b), and
VM2020 (Sufit et al., 2017) are already testing a gene therapy
approach in the CNS. However, the exact mechanism and effect
of these therapies on astrocytes and neurons crosstalk and
functionality should be further investigated.

CONCLUSION AND OPEN QUESTIONS

In conclusion, astrocytes play a central role in ALS and other
neurodegenerative diseases. Targeting astrocytes functionality
using different therapeutic approaches might provide great
benefit to ALS patients. Many questions are still left open,
such as what defines a different subpopulation of astrocytes
and their response to different pathological insults? What is the
crosstalk between astrocytes and the immune system? What is
the best site in the CNS for astrocyte transplantation? What is
the optimal timing for transplantation during the progression
of the disease as well as the dose of cells to be transplanted?
Is immunosuppression required in the CNS to prevent graft
rejection? Step by step, astrocytes become rising stars and show
great promise in the treatment of ALS, based on preclinical
studies and preliminary results from clinical trials targeting
astrocytes in ALS.
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