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Quantitative texture analysis 
based on dynamic contrast 
enhanced MRI for differential 
diagnosis between primary thymic 
lymphoma from thymic carcinoma
Jia‑jia Zhu1,2, Jie Shen1,2, Wei Zhang1, Fen Wang1, Mei Yuan1, Hai Xu1 & Tong‑fu Yu1*

To evaluate the value of texture analysis based on dynamic contrast enhanced MRI (DCE‑MRI) in 
the differential diagnosis of thymic carcinoma and thymic lymphoma. Sixty‑nine patients with 
pathologically confirmed  (thymic carcinoma, n = 32; thymic lymphoma, n = 37) were enrolled in this 
retrospective study.  Ktrans,  Kep and  Ve maps were automatically generated, and texture features were 
extracted, including mean, median, 5th/95th percentile, skewness, kurtosis, diff‑variance, diff‑
entropy, contrast and entropy. The differences in parameters between the two groups were compared 
and the diagnostic efficacy was calculated. The  Ktrans‑related significant features yielded an area 
under the curve  (AUC) of 0.769  (sensitivity 90.6%, specificity 51.4%) for the differentiation between 
thymic carcinoma and thymic lymphoma. The  Kep‑related significant features yielded an AUC of 0.780  
(sensitivity 87.5%, specificity 62.2%). The  Ve‑related significant features yielded an AUC of 0.807  
(sensitivity 75.0%, specificity 78.4%). The combination of DCE‑MRI textural features yielded an AUC of 
0.962  (sensitivity 93.8%, specificity 89.2%). Five parameters were screened out, including age,  Ktrans-
entropy,  Kep‑entropy,  Ve‑entropy, and  Ve‑P95. The combination of these five parameters yielded the 
best discrimination efficiency  (AUC of 0.943, 93.7% sensitivity, 81.1% specificity). Texture analysis of 
DCE‑MRI may be helpful to distinguish thymic carcinoma from thymic lymphoma.

Thymic carcinoma and thymic lymphoma are the two most common malignant lesions in the anterior medi-
astinal  region1. The clinical manifestations of solid anterior mediastinal masses are usually non-specific, and 
there is considerable overlap between the imaging manifestation of thymic lymphoma and thymic  carcinoma2. 
Differentiation using conventional CT or MRI is challenging and both are subjective with low repeatability. The 
treatment of thymic cancer is mostly surgical resection, combined with comprehensive treatment of radiotherapy 
and chemotherapy, while chemotherapy is the first choice for thymic  lymphoma3,4. Accurate identification of 
thymic carcinoma and thymic lymphoma is fundamental for the pre-treatment diagnosis. Histopathology is 
the gold standard for the diagnosis of mediastinal tumours; however, the sampling of needle biopsy is relatively 
limited, which cannot reflect the whole  lesion5. Imaging examination can evaluate the lesion as a whole. There-
fore, an accurate and reliable imaging method for the evaluation of solid anterior mediastinal tumors is urgently 
needed in clinical practice.

Several studies have described specific imaging approaches that may be of value in the diagnosis of thymic 
tumors. CT has previously been a common method for the identification of thymic tumors, and the value of CT 
perfusion imaging and energy spectrum imaging in the differential diagnosis of thymic carcinoma and lym-
phoma has been  demonstrated2,6,7. Compared with CT, MRI is playing an increasingly important role in disease 
diagnosis, especially functional MRI, due to its accurate assessment of tumor location, expansion method and 
anatomical relationship with adjacent structures of the  disease1. Many studies have been conducted on the dif-
ferentiation and staging of mediastinal masses by diffusion weighted imaging  (DWI)8–10. Previous studies have 
shown that the apparent diffusion coefficient  (ADC) value of high-risk thymomas and thymic carcinoma was 
lower than that of low-risk thymomas, and the ADC value of advanced  (stage III and IV) thymomas was lower 
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than that of early  (stage I and II)  thymomas9. Zhang et al.10 showed that ADC histogram had high diagnostic 
efficacy in distinguishing thymic epithelial tumor from thymic lymphoma, and confirmed that thymic lymphoma 
had lower ADC value. However, some scholars have found no significant difference in ADC values between the 
two groups of anterior mediastinal thymic epithelial tumor and thymic  lymphoma11,12. The differential ability 
of DWI for thymic carcinoma and thymic lymphoma remains controversial. And the routine DWI sequence is 
susceptible to gas and movement, which largely limits its application in mediastinal  lesions13. In recent years, 
researches on deep learning and radiomics have become a hot spot in imaging  research14,15. However, due to the 
relatively low incidence of mediastinal tumors and the small sample size, it is difficult to conduct these studies 
on mediastinal tumors.

Dynamic contrast enhanced MRI  (DCE-MRI) is a non-invasive functional imaging method, which evaluates 
tumor blood perfusion and microvascular permeability by monitoring dynamic changes of MRI contrast agents 
in target  tissues16. At present, DCE-MRI semi-quantitative and quantitative analysis has been widely used in the 
diagnosis, differential diagnosis, prognosis and efficacy evaluation of various solid  tumors17–20. Shen et al.20 previ-
ously analyzed 29 patients with thymic carcinoma and thymic lymphoma, and found that DCE-MRI quantitative 
parameters had significant differences in thymic carcinoma and thymic lymphoma.

Texture analysis can quantitatively analyze the gray distribution characteristics, pixel relations and spatial 
features of images, and the extracted features can quantify the heterogeneity of  tumors21. The assessment of 
tumor heterogeneity by texture analysis imaging has become a non-invasive tool for diagnosis, prognosis and 
treatment response in clinical Settings, such as breast cancer, prostate cancer, glioma or other solid  tumors22–24. 
It is well known that thymic carcinoma is mainly squamous cell carcinoma with clear-cut  atypia25. Lymphoma, 
on the other hand, is described in several previous reports to have homogeneous signal intensity due to the 
intratumoral characteristics of high cellular density, a small amount of stromal tissue and less micro-necrosis26. 
Previous studies have confirmed that thymic carcinoma is more heterogeneous than thymic  lymphoma10,20. The 
value of DCE-MRI texture analysis has been confirmed in breast cancer, glioma, etc.24,27, but no relevant results 
have been found in the differentiation of thymic carcinoma and thymic lymphoma.

The purpose of this study was to investigate the usefulness of texture analysis of DCE-MRI for distinguish 
between thymic carcinoma and thymic lymphoma.

Materials and methods
Patients. This retrospective study was approved by the Institutional Review Board of Jiangsu Province Peo-
ple’s Hospital and Nanjing Medical University First Affiliated Hospital, and the requirement to obtain informed 
patient consent was waived  (Permit Number: 2021-SR-238). All methods were performed in accordance with 
the relevant guidelines and regulations.

In this retrospective study, we reviewed the medical records of patients with thymic carcinoma and thymic 
lymphoma in our hospital from April 2018 to March 2021. The patients who met the following criteria were 
enrolled:  (1) the primary tumours were all confirmed by surgery or percutaneous puncture biopsy;  (2) rou-
tine MRI and DCE-MRI parameters were complete;  (3) no operation, puncture, radiotherapy or endocrine 
therapy was performed before MRI examination. We excluded 12 patients due to the following reasons:  (1) 
inadequate MRI quality  (n = 4);  (2) treated before the examination  (n = 8). Finally, we included a total of 68 
pathologically diagnosed patients, including 32 patients with thymic carcinoma  (22 males, 10 females, mean 
age 55.4 ± 13.1 years) and 37 patients with thymic lymphoma  (18 males, 19 females, mean age 36.4 ± 14.9 years).

Imaging protocol. All MRI examinations were performed using a 3 T MRI system  (MAGNETOM Skyra, 
Siemens Healthcare, Erlangen, Germany) with a 16-channel torso coil. All patients underwent conventional 
MRI and DCE-MRI from the suprasternal notch to the diaphragm. Axial DCE-MRI used the StarVIBE sequence 
that enabled the patient to breathe freely. The conventional imaging protocols included an unenhanced axial 
T1-weighted imaging  (140 ms repetition time  (TR), 2.5 ms echo time  (TE)) and coronal T2-weighted imaging  
(1200 ms TR, 93 ms TE). A bolus of gadolinium-diethylene triamine pentacetic acid  (Magnevist; Bayer Scher-
ing Pharma AG, Berlin, Germany) was injected through the elbow vein via a power injector with a flow rate of 
4.0 mL/s at the dose of 0.1 mmol/kg, followed by a 20 ml bolus of saline administered at the same injection rate. 
During the entire acquisition process, First, three non-enhanced datasets were acquired using T1W imaging 
starVIBE with flip angles of 5°, 10°, and 15°, respectively, to obtain the T1 map. Second, the dynamic sequence 
was acquired after T0 baseline acquisitions and thirty-one contrast-enhanced image sets were acquired. The 
StarVIBE DCE-MRI detailed imaging parameters were as follows: 3.19 ms TR/1.13 ms TE, 3 mm section thick-
ness, 400  mm2 field of view  (FOV), 160*224 matrix, 15° flip angle. The temporal resolution was 8.8 s, and the 
total acquisition time was 5 min 8 s.

Imaging processing. DCE-MRI data were uploaded and processed with an in-house software  (Omin-
Kinetics; GE Healthcare, Shang Hai, PR China). For the selection of the arterial input function  (AIF), a free-
hand region of interest  (ROI) was placed in the descending aorta on DCE-MRI images. The mean size of the 
ROIs ranged from 6–9  mm2. The AIF curve was approved by a senior chest radiologist to ensure its accuracy. 
The Extended Tofts Linear two-compartment model was used to calculate the pharmacokinetic parameters. 
Determine the location of the lesion by combining T2WI and DCE, adjust the image to the phase with the most 
obvious enhancement, draw the ROI on each cross section manually, and fuse the lesions in the software to 
generate the three dimensional ROI  (3D-ROI). Measurement was carried out along the edge of the lesion tissue, 
ensuring that ROI was smaller than that of the lesion, reducing the effect of volume effect and making the lesion 
tissue in the region of interest more representative. The necrotic, cystic and bleeding areas should be avoided 
as far as possible. DCE-derived parametric maps, including the volume transport constant   (Ktrans), plasma rate 
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constant   (Kep), and the extracellular space volume percentage   (Ve) were calculated based on the Tofts model 
automatically. The texture parameters were acquired using the same software  (Omin-Kinetics; GE Healthcare, 
Shang Hai, PR China). Features utilized in our study include mean, median, 5th/95th percentile (P5/P95), skew-
ness, kurtosis, diff-variance, diff-entropy, contrast and entropy.

Texture analysis of DCE-MRI images was performed by two experienced chest radiologists with 7 and 3 years 
of experience, both of them blinded to the clinical information and final histopathological results. The measure-
ments of the two readers were used for the evaluation of the interobserver reproducibility.

Statistical analysis. All statistical analyses were performed using the SPSS software package  (version 26.0, 
Chicago, IL, USA) and MedCalc  (version 20.0.4, Mariakierke, Belgium). The normality of data distributions 
was analyzed using the Kolmogorov–Smirnov test. All numeric data with normal distributions were reported 
as mean ± standard deviation. Otherwise, medians  (25th–75th percentile) were reported. Independent sample 
t-test or Mann–Whitney U test was used to compare the differences in texture parameters between the two 
groups. Logistic regression was used to screen parameters and receiver operating characteristic  (ROC) curve 
was used to evaluate the diagnostic value of each parameter in differentiating thymic carcinoma and thymic 
lymphoma. P < 0.05 were determined to be of statistical significance.

The inter-observer reproducibility of parameters measurement in this study were assessed using intraclass 
correlation coefficient  (ICC) with 95% confidence intervals  (CIs) and applying a two-way ICC with random 
rater assumption. The ICC was interpreted as follows: < 0.40, poor; 0.40–0.60, moderate; 0.61–0.80, good; > 0.81, 
excellent.

Result
A significant difference was observed in patient age between the two groups  (p < 0.001), while no differences on 
distribution of patient gender  (p > 0.05)  (Table 1). The pathological classification of the thymic carcinoma and 
lymphoma groups was shown in Table 1.

Detailed comparisons of DCE-MRI texture parameters of both groups were summarized in Table 2. Their 
abilities to distinguish between thymic carcinoma and thymic lymphoma are shown in Table 3. Representative 
cases are shown in Figs. 1 and 2.

The mean, median, P95, and entropy of the  Ktrans-related parameters were significantly higher in the thymic 
carcinoma than in the lymphoma  (p = 0.026, 0.017, 0.014, 0.016, respectively), while the contrast of the 
 Ktrans-related parameter was significantly higher in lymphoma than in the the thymic carcinoma  (p = 0.033). 
The mean, median, entropy, and diff-entropy of the  Kep-related parameters were significantly higher in the thymic 
carcinoma than in the lymphoma  (p = 0.004, 0.005, < 0.001, 0.015, respectively). With regard to the Ve-related 
parameters, mean, median, P95, entropy, and diff-entropy were significantly higher in the thymic carcinoma 
than in the lymphoma  (p = 0.014, 0.019, < 0.001, 0.004, 0.010, respectively).

The  Ktrans-related significant features  (including mean, median, P95, contrast and entropy) yielded an AUC 
of 0.769  (sensitivity 90.6%, specificity 51.4%) for the differentiation between thymic carcinoma and thymic lym-
phoma. We obtained an AUC of 0.780  (sensitivity 87.5%, specificity 62.2%) for the differentiation between the 
two groups with all these significant  Kep-related features  (including mean, median, entropy, and diff-entropy). 
Differentiation between thymic carcinoma and thymic lymphoma by using Ve-related significant features  
(including mean, median, P95, entropy, and diff-entropy) yielded an AUC of 0.807  (sensitivity 75.0%, speci-
ficity 78.4%). The combination of significant DCE-MRI textural features yielded an AUC of 0.962  (sensitivity 
93.8%, specificity 89.2%) for the differentiation between thymic carcinoma and thymic lymphoma. Details are 
shown in Table 3 and Fig. 3.

Five parameters were screened out after logical analysis, including age  (AUC of 0.806, 96.9% sensitivity, 
64.9% specificity),  Ktrans-entropy  (AUC of 0.671, 78.1% sensitivity, 56.8% specificity),  Kep-entropy  (AUC of 
0.723, 90.6% sensitivity, 51.4% specificity),  Ve-entropy  (AUC of 0.679, 78.1% sensitivity, 51.4% specificity), and 
 Ve-P95  (AUC of 0.738, 78.1% sensitivity, 64.9% specificity). The combination of those five parameters exhibited 
the better diagnostic performance in the determination of thymic carcinoma from lymphoma  (AUC of 0.943, 
93.7% sensitivity, 81.1% specificity). ROC curve analysis results were shown in Table 4. The ROC curves regarding 
texture parameters to differentiate thymic carcinoma from thymic lymphoma are shown in Fig. 4.

Table 1.  Clinical characteristics of the patients. SCC squamous cell carcinoma, HL Hodgkin lymphoma, 
DLBCL diffuse large B-cell lymphoma, TLL T-cell lymphoblastic lymphoma, MALT Lymphoma Mucosa 
associated lymphoid tissue lymphoma, MCL Mantle cell lymphoma.

Prameters Thymic carcinoma  (n = 32) Thymic lymphoma  (n = 37) P value

Age 54.31 ± 12.25 36.95 ± 15.51  < 0.001

Gender (male/female) 22/10 18/19 0.092

Pathologic types  (n) SCC  (29) HL  (16)

Adenocarcinoma  (3) DLBCL  (13)

TLL  (5)

MALT Lymphoma  (2)

MCL  (1)
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The two groups of data achieved good repeatability within and between observers  (ICCs, ranges from 0.769 
to 0.907).

Discussion
In clinical practice, conventional MRI and DWI are not always accurate in the identification of mediastinal 
tumors. Conventional MRI cannot provide reliable and comprehensive information on tumor physiology such 
as microvascularity, angiogenesis, or metabolism, all of which are also important in the identification of tumor 

Table 2.  DCE-MRI texture-derived parameters of the thymic carcinoma and lymphoma groups. *Significant 
differences.

Characteristics Thymic carcinoma  (n = 32) Thymic lymphoma  (n = 37) P value

Ktrans

Mean 0.279 ± 0.114 0.220 ± 0.096 0.026*

Median 0.268 ± 0.104 0.208 ± 0.096 0.017*

P5 0.090 (0.054–0.134) 0.064 (0.044–0.135) 0.512

P95 0.479 ± 0.107 0.404 ± 0.131 0.014*

Skewness 1.152 (0.799–2.036) 1.305 (0.863–2.584) 0.665

Kurtosis 4.447 (2.125–8.162) 4.42 (1.832–19.541) 0.572

Diff-variance 0.000257 (0.000179–0.000428) 0.000274 (0.000176–0.000520) 0.880

Contrast 0.000455 (0.000343–0.000712) 0.000302 (0.000212–0.000625) 0.033*

Diff-entropy 0.342 ± 0.072 0.309 ± 0.078 0.086

Entropy 6.424 ± 0.693 5.960 ± 0.819 0.016*

Kep

Mean 0.752 ± 0.229 0.579 ± 0.259 0.004*

Median 0.701 ± 0.199 0.539 ± 0.251 0.005*

P5 0.222 (0.157–0.312) 0.177 (0.103–0.306) 0.351

P95 1.011 (0.852–1.245) 0.898 (0.679–1.264) 0.250

Skewness 0.855 (0.350¬-1.603) 1.040 (0.520–1.907) 0.263

Kurtosis 1.752 (0.616–4.147) 1.883 (0.689–10.556) 0.186

Diff-variance 0.000821 (0.000608–0.001318) 0.000666 (0.000567–0.001367) 0.324

Diff-entropy 0.000405 (0.000333–0.000630) 0.000302 (0.000212–0.000625) 0.092

Contrast 0.423 ± 0.036 0.393 ± 0.059 0.015*

Entropy 6.688 ± 0.453 6.086 ± 0.751  < 0.001*

Ve

Mean 0.494 ± 0.180 0.376 ± 0.200 0.014*

Median 0.437 (0.338–0.624) 0.322 (0.188–0.494) 0.019*

P5 0.239 ± 0.123 0.197 ± 0.136 0.201

P95 0.753 ± 0.146 0.587 ± 0.202  < 0.001*

Skewness 1.034 (0.381–1.516) 0.567 (-0.251–1.327) 0.229

Kurtosis 2.539 (0.673–6.896) 1.641 (0.188–5.015) 0.220

Diff-variance 0.001569 (0.000846–0.004472) 0.002621 (0.001201–0.007933) 0.253

Diff-entropy 0.000527 (0.000375–0.001259) 0.000909 (0.000425–0.00240) 0.234

Contrast 0.426 ± 0.061 0.382 ± 0.074 0.010*

Entropy 6.946 ± 0.634 6.455 ± 0.708 0.004*

Table 3.  ROC analyses of DCE-MRI quantitative parameters. Ktrans represents all  Ktrans -related features 
that showed significant differences in univariate analysis  (i.e., mean, median, P95, contrast, and entropy). 
 Kep represents all  Kep -related features that showed significant differences in univariate analyses  (i.e., mean, 
median, entropy, and diff-entropy).  Ve represents all  Ve-related features that showed significant differences in 
univariate analyses  (i.e., mean, median, P95, entropy, and diff-entropy).

Parameters AUC (95%CI) Cut-off Sensitivity Specificity

Ktrans 0.769 (0.651–0.862) 0.313 0.906 0.514

Kep 0.780 (0.664–0.871) 0.440 0.875 0.622

Ve 0.807 (0.694–0.892) 0.531 0.750 0.784

Ktrans +  Kep +  Ve 0.962 (0.886–0.993) 0.438 0.938 0.892



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12629  | https://doi.org/10.1038/s41598-022-16393-y

www.nature.com/scientificreports/

 types28. Previous studies have confirmed that tumor blood volume and permeability obtained by DCE-MRI imag-
ing technology have been found to be related to tumor type and degree of  malignancy29. Tumors are heterogene-
ous at both genetic and histopathological levels, and heterogeneity exists in the number of cells, angiogenesis, 
extracellular matrix and necrotic area in different  tumors16. It is important to assess tumor heterogeneity because 
tumors with high intra-tumor heterogeneity have poor prognosis, which may be secondary to inherent invasive 
biology or therapeutic  resistance30. The value of DCE-MRI texture analysis in evaluating tumor heterogeneity 
has been widely  demonstrated24,27,31. Shen et al.20 previously confirmed the value of DCE-MRI in distinguishing 
thymic carcinoma and lymphoma, but it could not adequately explain the heterogeneity of thymic carcinoma 
and thymic lymphoma.

In our study, we found that age and most of the DCE-MRI-derived texture parameters had significant dif-
ferences between thymic carcinoma and thymic lymphoma. Age was significantly different between thymic 
carcinoma and thymic lymphoma  (P < 0.05). It was reported that thymic lymphoma was more common in young 
people and thymus carcinoma was more common in middle-aged and elderly  people1,2,7, which was consistent 
with our study. The texture parameters with significant differences in  Ktrans,  Kep and  Ve were combined and the 
diagnostic efficiency was calculated. It was found that  Ve had higher diagnostic efficiency. Combine all of the 
above parameters, the differential performance was improved with an AUC of 0.962, confirming the important 
value of DCE-MRI texture parameters in differentiating thymic carcinoma and thymic lymphoma. After logistics 

Figure 1.  A 49-year-old man with thymic carcinoma (a) Dynamic contrast-enhanced scan showed anterior 
mediastinal mass, with cystic necrotic areas inside after enhancement; (b) Delineated the lesion; (c-e) 
Correspond to the generated Ktrans Map, Kep Map, and Ve Map; (f) Pathological sections (HE staining, 200 
times magnification).

Figure 2.  A 52-year-old female with Hodgkin’s lymphoma (a) Axial position of dynamic enhanced scan 
showed anterior mediastinal mass, and uneven enhancement of the lesion after enhancement; (b) Delineated 
the lesion; (c-e) Correspond to the generated Ktrans Map, Kep Map, and Ve Map; (f) Pathological sections (HE 
staining, 200 times magnification).
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regression screening, four texture parameters are obtained, namely,  Ktrans-entropy,  Kep-entropy,  Ve-entropy and 
 Ve-P95. Combined age with  Ktrans -entropy,  Kep-entropy,  Ve-entropy and  Ve-P95, the identification efficiency was 
significantly improved with the AUC was 0.943.

Ve can indirectly reflect the density of tumor cells, which is inversely proportional to the density of tumor 
 cells16. In general, tumors with a high degree of malignancy are histologically characterized by dense cell den-
sity, reduced extracellular space and dense lesion structure, resulting in a corresponding decrease in ADC value 
reflecting cell  density32. Previous studies have shown that lymphoma is a cell-rich tumor composed of atypi-
cal lymphocytes of uniform size, while thymic carcinoma often presents uneven signal due to internal cystic 
degeneration, necrosis or  hemorrhage20,25,26. Zhang et al.10 studied 15 cases of thymic carcinoma and 13 cases 
of thymic lymphoma and found that the ADC value of thymic lymphoma was significantly lower than that of 
thymic carcinoma, which may increase the  Ve parameters in the thymic carcinoma, the mean, median, P95 and 
entropy of  Ve in thymic carcinoma group were higher than those in thymic lymphoma group  (P < 0.05) in this 
study. Entropy is one of the most commonly used and effective texture features, which refers to the disorder 
degree of pixel intensity relationship in  ROI33. The higher the entropy, the higher the heterogeneity. Diff-entropy 
is a random measure of the gray difference between adjacent voxels. The relationship between heterogeneity and 
diff-entropy is not clear. In previous studies, we found that the value of diff-entropy was higher in the lesions 
with a higher degree of  malignancy31, which was consistent with our findings.

Both  Ktrans and  Kep are positively correlated with vascular permeability and angiogenesis in tumor tissues. 
The vascular permeability of thymic carcinoma group is higher than that of thymic lymphoma group due to 
the abundance and immaturity of immature blood vessels and the incomplete structure of endothelial cells in 
 neovascularization20. Shen et al. reported thymic carcinoma had significantly lower Kep than thymic  lymphoma20. 
The differences of the former results may be clarified by the different cohorts of the different thymic and lym-
phoma patients. Some low potential malignancy lymphoma patients like mucosa associated lymphoid tissue 
lymphoma was included in our study while it was not enrolled in the former  study20. A further study to compare 
the different subtypes of lymphoma may be more meaningful in the future. Therefore, the mean, median, entropy, 

Figure 3.  ROC curve of important texture-derived parameters in differentiating between thymic cancer and 
thymic lymphoma Groups.

Table 4.  ROC analyses of texture-derived parameters in differentiating between thymic carcinoma and 
lymphoma groups. *Combination represents the combination of age,  Ktrans-Entropy,  Kep-Entropy,  Ve-Entropy, 
and  Ve.

Parameters AUC (95%CI) Cut-off Sensitivity Specificity

Ktrans- Entropy 0.671 (0.547–0.779) 5.971 0.781 0.568

Kep-Entropy 0.723 (0.602–0.824) 6.155 0.906 0.514

Ve-Entropy 0.679 (0.555–0.786) 6.507 0.781 0.514

Ve-P95 0.738 (0.618–0.836) 0.642 0.781 0.649

Age 0.806 (0.693–0.891) 37 0.969 0.649

Combination* 0.948 (0.867–0.987) 0.344 0.937 0.811
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and diff-entropy of  Kep in the thymic carcinoma group were higher than those in the thymic lymphoma group 
in this study and the mean, median, P95, entropy, and diff-entropy of  Ktrans related parameters are significantly 
higher in thymic carcinoma than in thymic lymphoma.

The present study had some limitations. First, there was a relatively small sample size for this study. A further 
study with more patients is needed to reinforce the statistical persuasiveness. Second, the ROI of the lesions in 
this study was manually delineated, and the microscopic cystic changes, necrosis and bleeding areas inside the 
tumor were inevitable, which may have certain influence on the results. Third, the imaging time was long and 
the post-processing analysis was complex, which make the proposed method infeasible for clinical application. 
Finally, texture features used in our study are relatively simple. Further studies including more comprehensive 
texture features would be a meaningful topic.

In conclusion, whole-lesion histogram and texture analyses of parameters derived from DCE-MRI may be of 
value in differentiating thymic carcinoma from thymic lymphoma. Using texture analyses, DCE-derived features 
can be assessed as potential biomarkers for differentiating between thymic carcinoma and thymic lymphoma.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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