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Abstract: CMX001, a lipophilic nucleotide analog formed by covalently linking 

3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for 

smallpox. CMX001 has dramatically increased potency versus CDV against all dsDNA 

viruses and, in contrast to CDV, is orally available and has shown no evidence of 

nephrotoxicity in healthy volunteers or severely ill transplant patients to date. Although 

smallpox has been eliminated from the environment, treatments are urgently being sought 

due to the risk of smallpox being used as a bioterrorism agent and for monkeypox virus, a 

zoonotic disease of Africa, and adverse reactions to smallpox virus vaccinations. In the 

absence of human cases of smallpox, new treatments must be tested for efficacy in animal 

models. Here we first review and discuss the rabbitpox virus (RPV) infection of New 

Zealand White rabbits as a model for smallpox to test the efficacy of CMX001 as a 

prophylactic and early disease antiviral. Our results should also be applicable to 

monkeypox virus infections and for treatment of adverse reactions to smallpox vaccination.  
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1. Introduction 

Although variola virus—the causative agent of human smallpox—has been eliminated from the 

natural environment, a human threat from weaponized variola virus remains [1–3]. Studies of variola 

virus antiviral compounds must therefore rely on testing in small animal models in order to evaluate 

potential efficacy [4]. In this study, we have used New Zealand White rabbits intradermally infected 

with rabbitpox virus strain Utrecht (RPV) as a model for smallpox and for human cases of monkeypox 

virus. Briefly, the characteristics that make RPV extremely attractive as a surrogate of variola and 

monkeypox viruses include: genetic similarity to both variola and monkeypox viruses, similarity of the 

pathophysiologic course of disease, low dose of virus to create lethal disease, correlation of viral 

burden with disease progression, and potential to model lesional disease. RPV virus, which causes a 

severe and lethal disease in rabbits, was first identified in the 1940s following an outbreak in a 

laboratory rabbit colony in Utrecht, Netherlands [5,6]. RPV and variola virus belong to the genus 

Orthopoxvirus, a group of viruses which share serological cross reactivity, genomic structure, virion 

morphology, and replication strategy [7–10]. Orthopoxviruses share similar pathogenesis in susceptible 

hosts, although some orthopoxviruses, such as variola virus, are very host restricted [11–14]. Interaction 

between the virus and host immune responses are thought to underlie the host range [15]. RPV is most 

closely related to vaccinia virus and is usually categorized as a subspecies of vaccinia (VV) [16], a 

classification substantiated by comparison of genomic sequences, which show an overall sequence 

similarity of 95% at the amino acid level [17]. RPV has enhanced pathogenicity for rabbits compared 

with VV and can be naturally transmitted in confined populations of rabbits, resulting in rapid spread 

and high mortality [18]. Transmission occurs via naturally generated aerosols in a manner similar to 

smallpox [18–20]. The ability of RPV to be easily spread by aerosol to uninfected rabbits and the 

overall course of disease closely parallels variola infections of human populations [21]. 

Intradermal inoculation of RPV in rabbits is a useful and relevant route of infection to model 

smallpox or monkeypox because a known inoculum volume can be delivered precisely and the course 

of disease is virtually indistinguishable from aerosol mediated rabbit to rabbit infection [19,22,23]. 

While the disease progression of intradermal and aerosol infections are clinically similar, it is 

important to note several differences between the two routes of infection, each offering specific key 

animal model advantages for human smallpox. First, the aerosol route of infection requires twice as 

much virus required to reach the LD50 when compared to intradermally infected animals, i.e., (20 pfu 

for aerosol [22,23] vs. 10 pfu for intradermal). The disease symptoms requiring euthanasia in both 

routes is respiratory distress, however this occurs 1–2 days sooner in aerosol infected animals than in 

intradermally infected rabbits, most likely due to differences in the primary site of infection (RPV 

intradermally inoculated must first replicate at the flank, spread to the lungs and cause pathology while 

RPV introduced via the aerosol route is instilled directly into the lung and does not need not to spread 

to cause respiratory distress). RPV intradermally inoculated into rabbits at very low doses (100 pfu) 

causes a systemic disease, extensive viremia, the development of secondary lesions, subsequent severe 
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respiratory disease and death by nine days post infection. Thus, RPV infection of rabbits is a highly 

sensitive model for orthopoxvirus disease as well as spread and can be used to evaluate efficacy of 

poxvirus vaccines and antivirals. 

CMX001 is a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol 

to cidofovir (CDV). Cidofovir (marketed as Vistide®), an antiviral drug approved for the treatment of 

CMV-retinitis [24,25], is an alternative substrate inhibitor of the DNA polymerases encoded by 

orthopoxviruses, and has shown activity in lethal models of poxvirus infection using mice and 

monkeys [26–30]. Although CDV is the only antiviral drug currently available for use in the event of a 

smallpox outbreak, its utility in an attack would be limited since it must be administered by slow 

intravenous infusion and has the potential for significant nephrotoxicity [31,32]. In an effort to address 

the need for an orally available antiviral drug for human poxvirus infections, a lipid conjugate of CDV 

was synthesized by covalently coupling CDV to hexadecylpropanediol, the resulting compound is 

referred to as CMX001 here forth. The conjugate was designed to resemble a natural phospholipid and 

utilize natural uptake pathways to achieve oral availability, high uptake in target cells and overall 

improved Absorption, Distribution, Metabolism, Excretion (ADME) profiles [33].  

In addition to the overall genetic similarity among orthopoxviruses, including variola and 

monkeypox viruses, the virally encoded DNA polymerase, which is the target of antiviral action for the 

active metabolite of CMX001, shows 97.9% amino acid identity and 99.2% strong similarity between 

RPV and a consensus of 48 variola virus isolates [34]. In vitro studies have shown that CMX001 is 

active against both RPV and variola viruses with IC50 values of 0.5 µM and 0.1 µM, respectively [35]. 

CMX001 has been previously shown to be effective in vivo using murine models of orthopoxvirus 

infections [36–38]. 

We have used the intradermal inoculation RPV model to evaluate the efficacy of CMX001 as a 

potential prophylactic treatment for orthopoxvirus infection [19]. In this communication, our results 

demonstrate that CMX001 is effective in preventing mortality and reducing morbidity when 

administered prior to virus exposure and early in infection as compared to untreated animals. 

2. Results and Discussion 

2.1. The Infection of Rabbits by Rabbitpox Virus: Model Review 

The standardization of the rabbit/RPV model has been previously published [19] by our laboratory 

and the timing of both clinical symptoms and euthanasia criteria appearance are shown in Figure 1. 

The model is reviewed and summarized here to highlight the features important to evaluating antiviral 

compounds. Only the features of smallpox and rabbitpox virus infections are compared but 

monkeypox virus infections share similar properties. This model, which uses New Zealand  

White (NZW) rabbits infected with 100–1000 pfu of RPV (administered bilaterally) by intradermal 

injection, if untreated, is almost uniformly lethal (Figure 2A). There are few differences between 100 

and 1000 pfu observed in RPV infected nine week old NZW rabbits most likely due to the fact the 

doses are 10× and 100×, respectively, the LD50 dose. The appearance of swelling at the primary site of 

infection occurs 12–24 hours earlier in animals infected with 1000 pfu as compared to 100 pfu, but the 

overall symptomology follows the same time line. The disease begins with a local reaction at the site 
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of virus introduction visualized as a raised red swelling within 1–2 days post infection (dpi). The lesion 

continues to grow in both diameter and thickness over the next 6–8 days. Necrosis at the primary site 

of infection develops by 3 to 4 dpi. The lesion reaches maximal diameter of 8–10 cm, with a thickness 

of 1–2 cm and encompasses the entire flank of the rabbit at the time of euthanasia. The progression of 

the primary lesion over time is shown in Figure 3. 

Figure 1. Timeline of disease in 8–10 week old New Zealand White rabbits infected 

intradermally with 1000 pfu rabbitpox virus (RPV). Symptoms in boxes above the timeline 

represent clinical measurements that contribute to euthanasia guidelines. Clinical 

symptoms are located below the timeline. Reproduced with permission from American 

Society for Microbiology [19]. 

 
 

The first clinical signs of systemic disease are the presentation of a fever (Figure 2C) and failure to 

gain weight (Figure 2B) that begins at 3–4 dpi. Weight loss continued until the animals are euthanized. 

A failure to gain weight for young, growing animals is a sign of disease and weight loss is a symptom 

of severe disease. A fever in the rabbits is a body temperature of 39.5°C or higher as measured by the 

subcutaneous temperature transponders. RPV infected animals exhibited fevers generally from 3 dpi to 

euthanasia when the body temperatures of infected animals could on occasion drop drastically. The 

severity of disease is quantified using the clinical score (Figure 2D); RPV infected animals exhibited 

severe disease with an average maximum clinical score of 22.4 points out of a possible 33 points. 

Secondary lesions were initially observed in the ears and generally appear 3–5 dpi, 12–24 hours 

after the first sign of a fever is observed. The lesions first appeared in the ears as small red spots 

typically found at the bend of a blood vessel and are easily visualized by backlighting the ears. The 

progression of these small red spots to pustular lesions on the ears is shown in Figure 3. It is important 

to note that the secondary lesions found in the ears, unlike those observed with vaccinia virus, are 

small because the rabbits succumb to disease before the lesions fully develop. Secondary lesions were 

also found on the nose, eyelids, in and around the mouth, genitals and as a rash across the body of 

the rabbit. 
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Figure 2. Disease in rabbits lethally infected with RPV compared to age/weight matched 

mock infected rabbits. (A) Survival; (B) Average weight change from weight at time of 

infection for each group. Negative values represent weight loss. (C) Average body 

temperatures over time. Temperatures over 39.5 °C are considered a fever. (D) Average 

clinical score over time. Error bars represent SEM. Reproduced with permission from 

American Society for Microbiology [19]. 

 
 

Animals infected with RPV were ultimately euthanized due to respiratory distress characterized by 

open mouth breathing, a decrease in respiration rate to below 40 breaths per minute or severe lung 

sounds. The respiratory symptoms began at approximately 5 dpi and progress to euthanasia criteria 

levels by 7–9 dpi. At the time of euthanasia it was typical to observe profuse mucopurulent discharge 

from the nostrils and severe discharge from the eyes. 

Upon necropsy, virus was recovered from all tissues collected including the skin (both lesion and 

non-lesion containing normal appearing skin), lungs, liver, spleen, gonad and blood. The LD50 of RPV 

in nine week old 3–4 lb NZW rabbits is approximately 10 pfu (data not shown). 

RPV in rabbits shares many of the same pathophysiologic features of variola in humans. The 

replication and spread of RPV and variola within the host are believed to be very similar [15]. In both 

RPV and smallpox, there is an incubation period during which the virus replicates locally and spreads 

to key tissues, most notably the lymphoid cells of the reticuloendothelial system. Replication in these 

cells produces a secondary viremia which results in disseminated infection affecting a wide range of 

organs. Both RPV and smallpox produce fever, malaise, and the typical pox lesions on the skin. In 
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addition, both RPV and smallpox exhibit high mortality rates [15,20]. Monkeypox in humans results in 

a very similar disease although lethality is lower. 

Figure 3. Ears and primary inoculation site of RPV infected NZW rabbits over time. 

Rabbits were infected as described in Figure 2. The top row of photographs shows the 

progression of secondary lesions in the ears of RPV infected rabbits. Arrows note the site 

of secondary lesions. The bottom row of photographs shows the progression of the primary 

lesions over time. Bars represent 1 cm. 

 
 

The occurrence of lesions in the RPV model is an important parallel with smallpox infections. 

Human data with smallpox show a positive relationship between the extent of lesions and the  

mortality rate. For ordinary-type variola major infections, increased severity of lesions—discrete, 

semi-confluent, and confluent—was correlated with increased death rates of 9.3, 37, and 62%, 

respectively [15,39].  

The degree of involvement of the respiratory tract is perhaps the most significant difference 

between RPV and smallpox. In RPV, the respiratory tract is a key site of viral replication whether  

the animals are infected via the respiratory tract, intradermally, or by animal to animal transmission 

[19,20]. Rabbits infected with RPV exhibit obvious signs of respiratory distress including profuse 

mucopurulent discharge from the nostrils and slow, labored, frequently open-mouth  

breathing [19]. Respiratory distress is the most frequent trigger for euthanasia in RPV [19]. In 

smallpox, respiratory distress is usually not cited as the cause of death; however, there is clearly 

respiratory tract involvement. For example, the earliest lesions in smallpox cases are those occurring in 

the oropharyngeal cavities which are thought to be the result of the secondary viremia [15]. 

Furthermore, in his review of literature, Martin [40] noted viral pneumonia and airway compromise as 

key contributing causes of smallpox-related death. Therefore, the difference in respiratory tract 

involvement between RPV and smallpox may be one of degree rather than an absolute difference. 

Another key difference between RPV and smallpox is the time course of the disease. In smallpox, 

deaths occur approximately 22 to 28 days after infection, whereas in RPV, deaths (euthanasia) in 
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vehicle treated intradermally infected animals occur between six and 10 days post infection. Therefore, 

the window of opportunity for effective antiviral therapy is expected to be larger in smallpox compared 

to RPV. 

It is also informative to consider the cause of death in smallpox versus RPV. The cause of death in 

smallpox has been debated over the years, but one current view is that uncontrolled inflammatory 

responses resulting from a deregulated cytokine cascade contribute to a shock-like syndrome, 

hypotension, and failure of key organs [41,42]. As noted above, the most frequent trigger for 

euthanasia in RPV is respiratory distress. However in studies where rabbits were allowed to die 

naturally of the infection, extreme hypotension and elevated potassium levels were cited as the most 

consistent physiological changes [43,44]. In speculating on the cause of the hypotension, Boulter et al. 

comment that “it is more probable that the endogenous mechanisms activated in general inflammation 

... are implicated.” Therefore, the underlying disease processes leading to death may be very similar 

between smallpox and RPV. 

2.2. Efficacy of Prophylactic administration of CMX001 in Preventing RPV Induced Disease 

The initial study performed was to evaluate and determine the minimum dose of CMX001 required 

to protect otherwise lethally infected rabbits from RPV disease. Animals received either 100 or  

1000 pfu RPV. For this report, these animals were grouped together based upon dosage of CMX001 

received. There was no difference between the groups that received 100 or 1000 pfu RPV in severity 

of disease presentation for the initial experiments; therefore, for all future studies 100 pfu RPV was 

used. It is noteworthy that although the clinical presentation was virtually identical, animals receiving 

the higher dose of RPV did exhibit clinical symptoms 12–24 hours earlier than those animals receiving 

100 pfu RPV. CMX001 was administered prior to infection as a pre-exposure prophylactic treatment. 

Protective effects of CMX001 were evaluated at doses of 1, 5, 10 and 20 mg/kg. Animals that received 

dosages of 1, 5 or 10 mg/kg received CMX001 twice a day (BID), morning and late afternoon, for five 

days beginning one day prior to infection. The group of animals receiving 20 mg/kg were administered 

CMX001 once a day (QD) in the morning for five days beginning one day prior to infection. All tested 

doses of CMX001 were protective against lethal RPV disease (Table 1) while vehicle treated animals 

were euthanized at 6.6 ± 0.16 dpi due to respiratory distress.  

Table 1. Minimum dosage of orally administered CMX001 that provides protection to 

RPV disease when treatment is begun one day prior to infection with RPV. QD designates 

drug administered once a day; BID designates drug administered twice a day at 

concentrations indicated in the table. 

CMX001 
Dose (mg/kg)  

Dosing 
Frequency  

Day of Dosing 
(dpi)  

Mean Time to 
Death ± SEM  

Survival at  
Day 14PI  

1 BID  −1 to 3  NA  4/4 (100%)*  
5 BID  −1 to 3  NA  4/4 (100%)*  
10 BID  −1 to 3  NA  6/6 (100%)**  
20  QD  −1 to 3  NA  6/6 (100%)**  

Vehicle  BID −1 to 3  6.6 ± 0.16 0/10 (0%)  
*p = 0.0099; **p = 0.0012 as compared to vehicle. 
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Although all the animals that received CMX001 were protected from lethal RPV disease there was 

a difference in clinical symptoms that was dependent on the dose of CMX001 received. Animals 

treated with 5 or 10 mg/kg BID or 20 mg/kg QD exhibited few clinical symptoms over the course  

of the experiment. All three treatment groups exhibited a positive weight change, indicating a nearly 

constant weight gain, with no significant differences between groups (Figure 4A). Animals that  

received 1 mg/kg of CMX001 exhibited a weight loss profile similar to that of the vehicle treated 

animals (Figure 4A).  

Animals treated with 1 mg/kg CMX001 also exhibited a body temperature increase similar to that in 

both severity and duration compared to the vehicle treated animals (Figure 4B). The 5 mg/kg treated 

group exhibited a mild temperature spike with a maximal temperature of 40.2 °C as compared  

to 41.2 °C for vehicle treated animals. The temperature spike was three days later than that observed 

with either the 1 mg/kg or the vehicle treated animals lasting for approximately the same duration of 

four days (Figure 4B).  

While the animals exhibited both weight loss and fevers, the overall health of the animals treated 

with 1 mg/kg, as measured by the more comprehensive overall clinical score, was markedly lower  

than that of the vehicle treated animals (Figure 4C). The overall level of disease as measured by 

clinical scores demonstrated that animals treated with 5, 10 or 20 mg/kg CMX001 exhibited only  

mild disease (Figure 4C).  

Figure 4. Clinical observations for evaluation of minimum dosage of CMX001 to provide 

protection from RPV disease. Animals were dosed at concentrations and schedules as 

outlined in Table 1. (A) Average weight change from weight at day of infection. Negative 

values indicated weight loss. (B) Average body temperatures. (C) Average clinical scores. 

(D) Pictures of primary lesions from representative animals at 7 dpi. Bars represent 1 cm. 

Black circles denote site of intradermal inoculation. 
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The primary lesions of animals treated with 1 mg/kg CMX001 did become swollen and necrotic but 

did not become as large or edematous as those of the vehicle treated animals (Figure 4D compare first 

and last photographs). Animals treated with 1 mg/kg CMX001 exhibited numerous secondary lesions 

on the ears, nose and mouths (data not shown). The primary lesions of animals treated with 5 mg/kg 

were small in diameter and exhibited necrosis early in the experiment that rapidly resolved to a scab. 

Animals treated with 10 or 20 mg/kg exhibited no noteworthy primary lesion with little to no swelling 

early and no necrosis (Figure 4D). These animals also exhibited few if any secondary lesions on the 

ears, nose or mouth as compared to vehicle or 1 mg/kg CMX001 treated animals (data not shown). 

The clinical score is used as a more comprehensive and inclusive measure of overall health of the 

study animals and as such can be used to gauge the severity of disease observed throughout the course 

of the experiment. A concern with any antiviral treatment is the shifting or simply delaying the disease 

course corresponding to withdrawal of the antiviral agent. Therefore, to assess the level of protection 

CMX001 provided to treated animals, the maximum clinical score and maximum weight loss for each 

animal were compared. 

When the maximum clinical score for a group over the course of the experiment is used as a 

measure of maximal illness observed during the course of the experiment it is observed that treatment 

with CMX001 provides a statistically significant reduction in the disease severity for all treatment 

groups (Figure 5A). While the maximum weight loss for each treatment group is not statistically 

significant when compared to the maximum weight loss of the vehicle treated animals, a dose 

dependent trend was observed (Figure 5B). Animals treated with 1 mg/kg CMX001 did not follow this 

trend, however, exhibited a larger weight loss than vehicle treated animals. This was attributed to a 

combination of multiple secondary lesions in the mouth causing difficulty for the animals to eat food 

and their prolonged survival as compared to vehicle animals. 

Figure 5. Disease severity measurements for evaluation of minimum dosage of CMX001 

to provide protection from RPV disease. Animals were dosed at concentrations and 

schedules as outlined in Table 1. (A) Average maximum clinical scores for each animal per 

group over the course of the experiment. (B) Average maximum percent weight loss from 

weight at day 0 for each animal per group over the course of the experiment. 
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Upon necropsy at euthanasia (14 dpi), no virus was detected in any of the sampled internal organs 

in any of the treated animals. Virus was only detected at the primary site of infection. In contrast, 

vehicle treated animals had virus detected in all tissues sampled as well as at the primary site of 

infection (data not shown). 

2.3. CMX001 Dose Response against RPV Infection 

Based upon results from the experiments to evaluate the efficacy of CMX001 when administered as 

a pre-exposure prophylactic, the next evaluation of CMX001 was to determine whether treatment once 

a day beginning just after exposure during the asymptomatic period would also be effective against 

RPV induced disease. We examined the ability of CMX001 to reduce morbidity and prevent mortality 

at different doses when treatment was initiated at Day 1 post infection where animals received only a 

single daily dose of CMX001. The doses used were 2, 5, 10, and 20 mg/kg once a day for five days 

beginning at 1 dpi. As shown in Table 2, no rabbits treated with CMX001 were euthanized for severe 

RPV disease during the 14-day study period while animals receiving vehicle required euthanasia  

at 7 ± 1 dpi.  

Table 2. Evaluation of minimal dosage of CMX001 that provides protection when 

administered once a day (QD) when dosing is begun 1 day post infection for five days. 

CMX001 Dose 
(mg/kg)  

Dosing 
Frequency  

Day of Dosing 
(dpi)  

Mean Time to 
Death ± SEM  

Survival at  
Day 14PI  

2 QD  1 to 5  NA  4/4 (100%)*  
5 QD  1 to 5  NA  4/4 (100%)*  
10  QD  1 to 5  NA  4/4 (100%)*  
20  QD  1 to 5  NA  2/2 (100%)**  

Vehicle  QD 1 to 5  7±1 0/2 (0%)  
*p = 0.06; **p = 0.33 as compared to vehicle. 

 

Although all rabbits dosed with CMX001 survived, a dose dependent response in disease severity 

was observed between the treatment groups. The degree of weight loss and recovery from RPV disease 

measured by the return of weight gain was CMX001 dose dependent. Animals that received 2 mg/kg 

exhibited mild weight loss from 4 to 10 dpi while the weight loss exhibited by 5 mg/kg treated animals 

was similar in rate to the 2 mg/kg treatment group but returned to a positive weight gain by 8 dpi. 

Rabbits that received 10 or 20 mg/kg CMX001 showed few symptoms including no substantial weight 

loss with a general positive trend in weight change (Figure 6A). The maximum weight loss for each 

group was also evaluated (Figure 7B) and again demonstrated an inverse relationship between the dose 

of CMX001 and weight loss in which the higher doses of CMX001 demonstrated virtually no weight 

loss from baseline weight. 

All treatment groups exhibited temperature spikes from 3 to 8 dpi with similar profiles, however 

there was a dose response trend observed in which the groups treated with lower concentrations of 

drug exhibited higher maximal temperature spikes (Figure 6B). The overall disease as measured by 

clinical scores showed the same trend observed with weight loss and body temperature in which there 

was a dose response where the higher doses of CMX001 led to a lower clinical score indicating fewer 
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symptoms of RPV induced disease (Figure 6C). The primary lesions for all treated groups were similar 

as observed in the first study in which the higher the dosage of CMX001 the less swelling, edema and 

necrosis present (Figure 6D). Animals treated with 20 mg/kg had virtually no sign of a primary lesion 

by 5 dpi while animals treated with 5 or 10 mg/kg exhibited a small slightly swollen area with a central 

scab. Animals treated with 2 mg/kg CMX001 exhibited large primary lesions with necrosis that 

progressed to scabbing with the overall size of the lesions being larger in diameter from the other 

treatment groups. The presence of secondary lesions also inversely corresponded to the dose of 

CMX001 received in which animals that received 20 mg/kg CMX001 had no secondary lesions while 

those that received 2mg/kg had numerous secondary lesions. 

Figure 6. Clinical observations for evaluation of minimum dose of CMX001 required for 

protection from RPV when treatment is begun 1 day post infection. Animals were dosed at 

concentrations and schedules as outlined in Table 2. (A) Average weight change for each 

group. (B) Average body temperatures for each group. (C) Average clinical scores for each 

group. Error bars represent SEM. (D) Representative photos of primary lesions for 

treatment groups at 5 dpi. 

 
 

Again, using the maximum clinical score and weight loss as indications of maximal illness it was 

observed that treatment with CMX001 provides a reduction in the disease severity for all treatment 

groups (Figure 7A). While the maximum weight loss for each treatment group is not statistically 

significant when compared to the −3.31% ± 0.79 weight loss maximum for vehicle treated animals, 

there is a dose dependent trend observed (Figure 7B). While the weight loss for animals treated  

with 2 and 5 mg/kg CMX001 is larger than that observed with vehicle treated animals, this may again 

be attributed to number of secondary lesions in the mouth and prolonged survival as compared to 

vehicle animals. 

We found that the CMX001 given once a day from Day 1 to Day 5 PI protects rabbits from lethal 

disease caused by RPV virus. These animals fared much better than the previous QD group that began 
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treatment at Day -1 instead of Day 1, since the current drug dosing plan afforded the rabbits two extra 

days of drug protection during the actual viral infection. 

Figure 7. Disease severity measurements for evaluation of minimum dose of CMX001 

required for protection from RPV when treatment is begun 1 day post infection. Animals 

were dosed at concentrations and schedules as outlined in Table 2. (A) Average maximum 

clinical scores for each animal per group over the course of the experiment. (B) Average 

maximum percent weight loss from weight at day 0 for each animal per group over the 

course of the experiment. 

 
 

2.4. Comparison of CMX001 Treatment Time of Initiation 

Given that CMX001 at relatively low doses was protective against RPV induced morbidity and 

mortality, we examined the impact of a delay in dosing on the development of severe disease. 

Therefore, we examined the ability of CMX001 to reduce morbidity and prevent mortality when 

administered at 5 mg/kg BID for five days when treatment was initiated at −1, 0, 1, 2, 3, 4, 5, or 6 dpi 

for groups of four female rabbits. The treatment groups have been separated based upon initiation of 

treatment into pre (−1 to 2 dpi) and post symptomatic (3 to 6 dpi) for comparison of all data. The 

systemic RPV induced disease (including fever and secondary lesion formation) is not observable  

until 3–4 dpi and therefore is the rationale for this separation. 

All vehicle treated control rabbits required euthanasia on Day 7 post infection due to respiratory 

failure and severe RPV induced disease. In contrast, all rabbits treated with CMX001 survived for the 

14-day study period when treatment was initiated at 4 dpi or earlier (Table 3). When treatment  
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four rabbits survived. 
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animals had few disease symptoms including fever, weight loss and average clinical score profiles over 

the course of the experiment (Figure 8A–C). All animals in the pre symptomatic treatment groups did 

exhibit a body temperature above 39.5 °C between 4 and 9 dpi and slight weight loss that recovered  

by 12 dpi for all groups. The primary lesions (Figure 8G top row) were increasing larger as the delay 
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by 14 dpi. There were few secondary lesions observed in groups where treatment was initiated  

at −1 to 1 dpi, with more secondary lesions present on animals in which treatment was initiated at 2 

dpi. No animals exhibited severe respiratory disease during the course of the experiment. 

Table 3. Evaluation of survival when dosage with CMX001 is delayed up to 6 days post 

infection. Animals were dosed twice a day (BID) for 5 days beginning at day indicated in 

the days of dosing column of the table. All animals received 5mg/kg CMX0001. 

CMX001 
Dose (mg/kg)  

Frequency of 
Dosing  

Day of Dosing 
(dpi)  

Mean Time to 
Death ± SEM  

Survival at  
Day 14PI  

5 BID −1 to 3 NA  4/4 (100%)  
5  BID  0 to 4  NA  4/4 (100%)  
5  BID  1 to 5  NA  4/4 (100%)  
5  BID  2 to 6  NA  4/4 (100%) 
5  BID  3 to 7  NA  4/4 (100%)  
5  BID  4 to 8  NA  4/4 (100%)  
5  BID  5 to 9  9 ± 0 3/4 (75%) 
5  BID  6 to 10  9.3 ± 0.9 1/4 (25%) 

Vehicle  BID  Vehicle  7 ± 0 0/4 (0%)  

 

Post symptomatic stage treated groups of animals (treatment initiated at 3 to 6 dpi) exhibited more 

pronounced RPV induced disease than in the pre symptomatic treatment groups. Animals that received 

CMX001 treatment beginning at 3 dpi exhibited disease nearly indistinguishable from that of animals 

receiving CMX001 beginning at 2 dpi, however the primary lesion was larger in size and there were 

more secondary lesions, as would be expected from a 1 day delay in initiating treatment. While all the 

animals survived when treatment was begun at 4 dpi, all animals showed numerous secondary lesions 

and fairly substantial weight loss with a larger primary lesion exhibiting necrosis. The three of four 

animals that survived from the group in which treatment was initiated on 5 dpi had numerous 

secondary lesions, weight loss and moderate respiratory disease. When treatment was initiated at 6 dpi 

all animals exhibited severe RPV disease-related symptoms characterized by large, necrotic primary 

lesion, numerous secondary lesions, weight loss and respiratory disease (Figure 8D–F). It is important 

to note that at 5–6 dpi in the course of a normal, untreated RPV infection, the animals are 

demonstrating severe, advanced disease with fevers, weight loss, numerous secondary lesions and 

respiratory disease. 

Maximum clinical score and weight loss were again used as indications of maximal illness over for 

all groups tested. It was observed that in groups in which all animals survived (0 to 3 dpi) with few 

clinical symptoms the maximum average clinical scores were significantly lower than that of the 

vehicle treated animals (Figure 9A). Animals that began treatment 1 day prior to infection had a lower 

maximum clinical score than that of vehicle treated animals, it was, however, not significant. There 

was an advantage noted to having treatment for five days in the presence of virus infection when 

comparing the group in which treatment was initiated on −1 dpi as compared to those that began 

treatment 0 to 2 dpi. As treatment was initiated later in infection, as expected the disease severity 

increased, showing a time of treatment dependence in the maximum disease severity observed. In 



Viruses 2011, 3              

 

 

76

groups in which not all the animals survived (5 and 6 dpi treatment groups), there was little difference 

in the maximum clinical score as compared to vehicle treated animals. 

Figure 8. Clinical observations for evaluation of survival when dosage with CMX001 is 

delayed up to six days post infection. Animals were dosed at concentrations and schedules 

as outlined in Table 3. (A) Average weight change from weight at day of infection. 

Negative values indicated weight loss (B) Average body temperatures. (C) Average 

clinical scores. The higher the number, the more severe the disease presentation.  

(D) Pictures of primary lesions from representative animals at 6 or 7 dpi. Bars represent  

1 cm. Black circles denote site of intradermal inoculation. 
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As observed with the maximum clinical score, the maximum average weight loss also exhibited a 

time of treatment initiation dependence on the maximal weight loss. When treatment was begun by 

2 dpi animals exhibited little weight loss, while when treatment was begun between 3 and 6 dpi 

animals exhibited weight loss in excess of the vehicle treated group (Figure 9B). This is likely due to 

the fact that the vehicle treated animals are euthanized due to severe respiratory disease before 

significant weight loss can occur. 

Figure 9. Disease severity measurements for evaluation of survival when dosage with 

CMX001 is delayed up to six days post infection. Animals were dosed at concentrations 

and schedules as outlined in Table 3. (A) Average of maximum clinical scores for each 

animal per group over the course of the experiment. (B) Average of maximum percent 

weight loss from weight at day 0 for each animal per group over the course of  

the experiment.  

 
 

We found that the initiation of CMX001 treatment can be delayed to 4 dpi for protection against 

RPV induced morbidity and mortality. There was a statistically significant protection against RPV 

induced disease when treatment was delayed up to 5 dpi. This allows for a large window for treatment 

opportunity from pre- to post-exposure and treatment of systemic disease with significant protection 

and reduction in RPV disease. 

3. Experimental Section 
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CV-1 cells were maintained in Minimum Essential Media (MEM) with Earle’s Salts (Gibco, New 
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infections were pad purified over 36% sucrose using standard methods and resuspended in PBS. 

Viruses were titered on CV-1 cells using standard methods. [45,46]  

3.2. Housing of Animals 

For intradermally infected rabbits, 8 week (3–4lb) old NZW rabbits were obtained from Myrtle’s 

Rabbitry (Thompson Station, TN) and housed in standard in stainless steel solid back and side cages at 

20 °C and 12 h light/12 h dark regime. All animals obtained a unique ear tattoo number in the left ear 

prior to arrival at the study site. Animals were allowed to acclimate to their surroundings for 5–10 days 

prior to RPV infection. Food and water were available to the animals ad libitum. Rabbits received 

apples, alfalfa cubes, or fresh greens daily for enrichment. 

All animal procedures were approved by the University of Florida Institutional Animal Care and 

Use Committee. 

3.3. Animal Infections 

Intradermal infection was performed by bilateral shaving of both thighs of the rabbit, sterilizing  

with an isopropanol wipe followed by intradermal injection of 100 or 1000 pfu RPV using a 27 gauge 

needle [19]. The injection site was then traced using a black permanent marker to note the site  

of infection. 

3.4. Monitoring of Animals 

Rabbit were microchipped at the time of infection to transmit body temperature and unique 

identification number (Bio Medic Data Systems, Seaford, DE). Rabbits underwent a complete physical 

daily. Rabbits were euthanized upon the onset of severe respiratory distress (labored, extremely slow 

or open mouth breathing) or weight loss of greater than 15% of initial body weight. 

Clinical scores for each rabbit each day were generated by assigning numerical values of 0 to 4 for 

all clinical measurements obtained during the course of the evaluation of each rabbit. These 

measurements included: weight change (loss, no change or gain), body temperature (low, within 

normal limits, fever), respiration rate (normal, depressed), heart rate (normal, decreased), intake and 

output, overall attitude and posture, presence of secondary lesions (number of secondary lesions and 

number of sites present) and primary site of infection condition (degree of reaction). These scores are 

used as a measure of disease severity, where the higher the number the more severe the disease. 

Weight change was calculated as the percent change from weight on the day of infection with RPV. 

All statistical analysis was performed using an unpaired t test for each group measurement as 

compared to vehicle treatment groups. 

All animal procedures and euthanasia were carried out according to the University of Florida 

IACUC guidelines. 

3.5. CMX001 Dosing of Animals 

Animals were trained for 4–5 days prior to the initiation of the study to readily accept the 10% 

sucrose solution used to deliver CMX001 (HDP-CDV). The 10% sucrose training solution, vehicle 
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solution and CMX001 was administered orally using a 1 mL disposable syringe with the end dipped in 

granulated sugar and fed orally to the animals. The total volume of liquid the animals received was 

approximately 1.0 mL. Dry powdered CMX001 (Chimerix Inc, North Carolina, USA) was dissolved in 

10% sucrose in water with food coloring to the required concentration. Vehicle treated animals 

received 10% sucrose solution only. In a previous pharmacokinetic study all rabbits treated with 

CMX001 for 7 days at doses up to 25 mg/kg/day survived to the scheduled termination. In this special 

issue there is a review on the development of CMX001 for further toxicological data. 

4. Conclusions 

We reviewed the salient features of the rabbitpox virus infection of rabbits as a model system for 

systemic orthopoxvirus disease, key features of human smallpox, monkeypox and certain adverse 

complications arising from vaccination. We then used this system to evaluate the ability of CMX001, 

either administered prophylactically or after exposure but prior to the onset of symptoms to prevent 

death and clinical symptoms. Our findings suggest that CMX001 administered either prophylactically 

or soon after infection prior to the onset of symptoms is very effective in preventing death and 

lessening clinical symptoms of rabbitpox infection. It is important to note that CMX001 has a 

mechanism of action different from that of ST-246 [47], another effective smallpox antiviral drug 

under development. Having multiple antiviral drugs with different mechanisms of action decreases the 

risk of developing resistance. We believe that the powerful antiviral effects of CMX001 suggest that 

the drug would be a very effective treatment for human smallpox or other orthopoxvirus infections. 

Every concentration of CMX001 from 1 mg/kg to 20 mg/kg tested gave significant protection when 

treatment was began prior to or within 24 hours of infection independent of whether the drug was 

administered once or twice a day. 

Treatment could be delayed up to 4 dpi when administered twice a day at 5 mg/kg for five days and 

give complete protection from RPV morbidity and mortality. Administration of CMX001 at 5 dpi 

provided 75% survival in animals evaluated. These results suggest that a strict schedule of dosing is 

not critical to maintain antiviral effects in vivo. It is important to note, perhaps not surprisingly, that 

even though virtually any treatment prevents death, that depending on dose and delay in onset of 

treatment, significant clinical symptoms can occur. The severity of symptoms correlates with lower 

doses and delays in beginning treatment. The delay in treatment post exposure will be examined 

further in light of results in the final study presented in this paper in the accompanying paper dealing 

with post symptomatic treatment with CMX001 of RPV infected rabbits. 
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