
ORIGINAL RESEARCH
published: 02 February 2022

doi: 10.3389/fneur.2021.769819

Frontiers in Neurology | www.frontiersin.org 1 February 2022 | Volume 12 | Article 769819

Edited by:

Robert David Stevens,

Johns Hopkins University,

United States

Reviewed by:

Vangelis P. Oikonomou,

Centre for Research and Technology

Hellas (CERTH), Greece

Sezen Vatansever,

Icahn School of Medicine at Mount

Sinai, United States

*Correspondence:

Jesus J. Caban

jesus.j.caban.civ@mail.mil

Specialty section:

This article was submitted to

Neurotrauma,

a section of the journal

Frontiers in Neurology

Received: 02 September 2021

Accepted: 09 December 2021

Published: 02 February 2022

Citation:

Dabek F, Hoover P,

Jorgensen-Wagers K, Wu T and

Caban JJ (2022) Evaluation of

Machine Learning Techniques to

Predict the Likelihood of Mental Health

Conditions Following a First mTBI.

Front. Neurol. 12:769819.

doi: 10.3389/fneur.2021.769819

Evaluation of Machine Learning
Techniques to Predict the Likelihood
of Mental Health Conditions
Following a First mTBI

Filip Dabek 1,2, Peter Hoover 1, Kendra Jorgensen-Wagers 3, Tim Wu 1 and Jesus J. Caban 1*

1National Intrepid Center of Excellence (NICoE), Bethesda, MD, United States, 2Computer Science Department, University of

Maryland, Baltimore, MD, United States, 3 Landstuhl Regional Medical Center, Landstuhl, Germany

Objective: Limited research has evaluated the utility of machine learning models and

longitudinal data from electronic health records (EHR) to forecast mental health outcomes

following a traumatic brain injury (TBI). The objective of this study is to assess various

data science and machine learning techniques and determine their efficacy in forecasting

mental health (MH) conditions among active duty Service Members (SMs) following a first

diagnosis of mild traumatic brain injury (mTBI).

Materials and Methods: Patient demographics and encounter metadata of 35,451

active duty SMs who have sustained an initial mTBI, as documented within the EHR,

were obtained. All encounter records from a year prior and post index mTBI date were

collected. Patient demographics, ICD-9-CM and ICD-10 codes, enhanced diagnostic

related groups, and other risk factors estimated from the year prior to index mTBI were

utilized to develop a feature vector representative of each patient. To embed temporal

information into the feature vector, various window configurations were devised. Finally,

the presence or absence of mental health conditions post mTBI index date were used

as the outcomes variable for the models.

Results: When evaluating the machine learning models, neural network techniques

showed the best overall performance in identifying patients with new or persistent

mental health conditions post mTBI. Various window configurations were tested

and results show that dividing the observation window into three distinct date

windows [−365 :−30,−30 : 0, 0 : 14] provided the best performance. Overall, themodels

described in this paper identified the likelihood of developing MH conditions at [14 : 90]

days post-mTBI with an accuracy of 88.2%, an AUC of 0.82, and AUC-PR of 0.66.

Discussion: Through the development and evaluation of different machine learning

models we have validated the feasibility of designing algorithms to forecast the

likelihood of developing mental health conditions after the first mTBI. Patient attributes

including demographics, symptomatology, and other known risk factors proved to be

effective features to employ when training ML models for mTBI patients. When patient

attributes and features are estimated at different time window, the overall performance

increase illustrating the importance of embedding temporal information into the models.
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The addition of temporal information not only improved model performance, but also

increased interpretability and clinical utility.

Conclusion: Predictive analytics can be a valuable tool for understanding the effects

of mTBI, particularly when identifying those individuals at risk of negative outcomes.

The translation of these models from retrospective study into real-world validation

models is imperative in the mitigation of negative outcomes with appropriate and timely

interventions.

Keywords: mild traumatic brain injury (mTBI), mental health, machine learning, data science, predictive modeling,

forecasting

1. INTRODUCTION

Previous estimates suggest that 15–22% of all Service Members
(SMs) have sustained a mild traumatic brain injury (mTBI)
(1, 2).Many SMs develop persistent symptoms such as headaches,
sleep disturbances, cognitive deficits, as well as changes in
mood and behavior (3–5). These symptoms can often be
further compounded due to the environment in which these
injuries were sustained, particularly among combat-related
mTBIs in which co-morbid conditions such as posttraumatic
stress disorder (PTSD) and other mental health (MH) conditions
are prevalent (6–8). As such, SMs and Veterans who have
sustained an mTBI are at greater risk for developing MH
conditions (8).

Despite best practices for treating SMs and Veterans
with mTBI (9), prognosticating recovery from mTBI remains
challenging. Multiple factors can affect symptom progression,
including characteristics of the injury itself (10–12), as well as
premorbid health conditions (10, 13, 14). Research has shown
that the presence of co-morbid conditions, particularly mental
health conditions, can often delay and further complicate the
recovery of mTBI (15, 16). As such, the ability to identify
individuals at risk for developing certain symptoms and
anticipating their needs can greatly improve an individuals’
outcome. Having the appropriate and timely interventions
can assist in a faster resolution of symptoms and a quicker
recovery (13).

In the field of data science for healthcare, the development of
predictive models focuses on creating algorithms and devising
methods that can be used to predict the likelihood of occurrence
or recurrence of a particular event, such as a specific clinical
diagnosis or other negative outcomes. During the last decade
there has been a significant increase in popularity of developing
tools for predicting outcomes at the level of the individual
patient (17). Unfortunately, most models rely on regression
techniques which result in a regression formula that often
simplifies the forecast into a general risk score factor. Regression
techniques often are sensitive to outliers and the data must
be independent. Given those limitations and the continued
growth of standardized clinical data for mTBI patients, additional
research is needed to assess the applicability of advancedmachine
learning (ML) techniques into predicting the probability of
obtaining a mental health diagnosis.

This paper evaluates various methods and techniques in an
attempt to anticipate the outcomes of mTBI. By leveraging
machine learning models and longitudinal EHR data, we hope
to assist clinicians in identifying those individuals at risk for
negative outcomes.

2. BACKGROUND AND SIGNIFICANCE

Healthcare providers have long relied on data to understand the
conditions and prognosis of a patient. The increased availability
of health-related digital data has allowed for the exploration and
evaluation of clinically-relevant issues on a much broader scale.
Researchers and clinicians are no longer limited by finite sample
sizes, often a constraint in many traditional cohort studies. The
ability to analyze larger sample populations enables for more
generalized results, due to diverse populations and settings, along
with improved statistical power (18, 19). This has important
implications when devising policies and establishing evidence-
based clinical practices (20).

Through the widespread adoption of EHR systems, the rapid
growth of healthcare data, and the steps taken by many hospital
organizations to integrate different analytical tools within their
clinical workflow; providers and administrators can now have
greater insight into the etiologies of disease and subsequent
outcomes (21). Currently, many analytical tools that have
been integrated into the clinical workflow and are used to
forecast specific clinical events such as hospital readmission,
cardiovascular conditions, cost of the patient, faud, and negative
outcomes within well-defined conditions (22, 23).

Within TBI research, the development of such forecasting
tools have furthered our understanding of the various clinical
presentations of concussive events and have helped with the
evaluation of treatment efficacy (24). However, much existing
research has focused on estimating the importance of risk factors
and their association with particular outcomes (25–27).

Through the utilization of longitudinal EHR data and the
advancement of data science, we now have the ability to expand
upon previous techniques and incorporate a richer set of clinical
characteristics. Recently, there has been an increased popularity
in the development of these clinical predictive models to assist
clinicians in anticipating outcomes for an individual patient (28,
29). Data science enables the use of structured and unstructured

Frontiers in Neurology | www.frontiersin.org 2 February 2022 | Volume 12 | Article 769819

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Dabek et al. Predicting MH Conditions Post mTBI

EHR data to develop a large set of features that models can use
to perform classifications tasks (17). This increased flexibility
is particularly important when considering the temporal aspect
of events given that the time and sequence of events can play
a vital role when evaluating patient outcomes. Recent research
has stressed the importance of temporal events in predictive
analytics (30, 31). Furthermore, data science techniques such
as feature selection techniques can estimate and even select
particular variables based upon predictive power. Dependent
upon the specific task and its intention, the relevancy of features
can greatly vary, and we can rely uponmachine learning and data
science techniques to assist in this evaluation.

As the quantity and complexity of the healthcare data collected
for patients continues to increase, healthcare providers must
embrace modern techniques that can assist with understanding
a patients’ condition and help evaluate the likelihood of various
outcomes. This paper evaluates the utility of machine learning
models and longitudinal EHR data as a mechanism to assist
clinicians in identifying individuals at risk for developing mental
health conditions. Patient demographics, encounter metadata,
and data science algorithms are used to create clinical prediction
models that can provide insight into potential needs of the
patients. Throughout the paper, various supervised machine
learning models were employed including logistic regression,
support vector machines (SVMs), and neural network (NN)
to develop predictive models capable of identifying patients at
increased risk. In addition, multi-dimensional feature vectors
and optimized observation windows were used to assist providers
at identifying patients at different time intervals. This work serves
as the foundation of some prospective work planned to validate
the use of data science in TBI.

3. OBJECTIVE

The objective of this study was to evaluate the utility of
machine learning models and longitudinal EHR data to predict
the likelihood of developing mental health (MH) conditions
following the first diagnosis of mTBI. Electronic health record
metadata, healthcare utilization, and preexisting conditions were
utilized to generate a unique description of every patient,
train different models, and perform evaluation of different
approaches to determine the likelihood of developing mental
health condition 1 year following injury.

4. MATERIALS AND METHODS

4.1. Data Source
Direct care records were accessed through the Comprehensive
Ambulatory Provider Encounter Record (CAPER) data file
within the Military Health System Data Repository (MDR).
For each encounter, metadata was extracted, which included
International Classification of Diseases (ICD-9 & 10) diagnostic
codes, provider types, procedural terminology codes, clinic codes,
and demographics.

As a retrospective study, a waiver of documentation of
informed consent was requested and approved for this study by

the Walter Reed Institutional Review Board under IRB protocol
#374953. All identifiable data was removed prior to analysis.

4.2. Sample Population
Our sample population included active duty SMs who had
sustained an mTBI, as diagnosed by a healthcare provider
adhering to VA/DoD criteria (9). In order to qualify for the study,
each patient’s direct care encounters had to be documented in the
military EHR between 2005 and 2018. The earliest date of mTBI
diagnosis for each patient was defined as the index date.

To guarantee a complete longitudinal dataset, only SMs with
encounter data greater than 1 year prior to and 1 year post-injury
were included. To ensure that the date of diagnosis accurately
reflects the date of injury, patients were excluded whose initial
mTBI was defined as a personal history of TBI (e.g., ICD-10-CM
code Z87.820, ICD-9-CM code V15.52), a diagnostic category
used to reflect a previous TBI regardless of when it occurred.
Furthermore, to establish that results were not confounded by
subsequent injuries, patients were excluded who had a more
severe diagnosis of TBI up to 1 year after initial injury date.

The dataset consisted of 35,451 active duty SMs whose first
mTBI was documented by a healthcare provider within the
MHS, initially amounting to 4,901,840 direct care outpatient
clinical encounters. Utilizing only encounters 365 days before
and after mTBI diagnosis date, 1,369,740 encounter records were
assessed. Figure 1 illustrates the process and inclusion criteria for
determining the sample population.

4.3. Feature Vectors
In data science and machine learning, features are individual
independent variables directly extracted or derived from the
raw data that are used to described the unique characteristics
of the object under consideration. A feature vector is the n-
dimensional vector of independent features that is used to
describe a given object.

One of the key components of designing ML models is using
domain knowledge to extract features. For this particular effort,
with our sample population defined, the attributes that were
included within the final feature vectors can be categorized into
three domains: demographics, symptomatology, and other risk
factors. Those feature vectors were generated only from the data
from the observation period.

4.3.1. Demographics Features
Although various demographic attributes were available within
the EHR, due to collinearity among variables, our final dataset
included demographics specific to age, gender, and branch of
service (BoS). Existing literature has supported the utility of BoS,
as different branches experience, diagnose, and/or treat TBIs
differently (32).

4.3.2. Symptomatology
To indicate and quantify preexisting conditions, ICD-9-CM
and ICD-10 codes associated with common mTBI symptoms
and complaints (33–35), were obtained. These codes were then
grouped into Enhanced Diagnostic Related Groups (EDRGs)
based on related symptomatology. For example, the Anxiety
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FIGURE 1 | Methodology for selecting sample population.

EDRG included codes such as “300.02-Generalized Anxiety
Disorder,” “300.01-Panic Disorder,” and “F41.9-Anxiety Disorder,
unspecified.” To support the grouping and classification process,
the Expanded Diagnostic Clusters (EDC) used in the John
Hopkins Adjusted Clinical Groups (ACG) model (36), were
employed. To evaluate symptom presence, EDRGs were then
mapped to related encounter-level diagnostic codes and the
frequency for each EDRGwas then computed. Encounter records
within the year prior to index mTBI were utilized to obtain
these counts.

EDRGs related to mental health (e.g., anxiety, depression,
adjustment disorder, etc.) were extracted from encounter records
within the predictive timeframe to define the outcome variable
of presence or not of MH conditions following mTBI. For a
complete list of diagnosis codes, see Supplementary Table 1.

4.3.3. Risk Factors Features
A critical component of feature engineering is the process of
using domain knowledge to extract features. Previous literature
has identified key risk factors for developing mental health
conditions (37). As a result, diagnosis codes specific to suicide
attempts/ideation and substance abuse disorders were obtained
from the Clinical Classifications Software (CCS)mapping created
by the Agency for Healthcare Research and Quality (AHRQ)
(38, 39). Encounter records within the year prior to index mTBI
were used to identify those with preexisting risk factors. The

frequency of these risk factors were then quantified and included
as part of the feature vector.

Once the different sub-components of our feature vectors
were generated, they were combined into an n-dimensional
feature vector:

P1 = {D1,D2,D3, . . . } ∪ {S1, S2, S3, . . . } ∪ {R1,R2,R3, . . . }

where P1 is a sample patient, Di the features associated with
demographics, Si features associated with symptomatology, and
Ri features associated with risk factors. For a complete list of
the different codes that were used for the different EDRGs, see
Supplementary Table 2.

4.4. Window Configurations
As discussed, we recognize the temporal significance of
preexisting symptoms and the specific sequence these conditions
happen. Conditions present 1 year pre-mTBImight hold different
clinical relevance than a condition present at time of injury.
For a model to better learn of these temporal associations and
identify their significance, we sought to build and devise various
observation window configurations.

Based upon clinical knowledge, we first divided the entire
observation period into distinct intervals, referring to them as
“window configurations.” In the past, we had found that 1-
month (30-day) intervals were most effective for splitting EHR
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FIGURE 2 | Different window configurations for the observation period.

FIGURE 3 | Patient’s clinical trajectory, split into observation and prediction periods.

data (40). However, as historical EHR data can be relatively
sparse, various other window configurations were created. These
adaptive configurations grouped observation windows with
sparse clinical data, typically those time periods at greatest
distance from mTBI date. Figure 2 provides an illustration of the
various window configurations, A through G, that we employed
for this particular project.

As noted within Figure 2, several of these configurations
utilize the first 14 days post-mTBI, often referred to as the
“acute phase.” We chose to include this window as the first 14
days post-TBI are considered the crucial period of treatment for
understanding the recovery and long term trajectory of a patient
(41). Therefore, our models leveraged data between [−365 : 14]
days, with respect to mTBI date, for the prediction of events
between [14 : 365] (Figure 3).

It’s important to note that by adding different configuration
windows, the feature vector now is estimated for each window,
thus resulting in vectors like

P1 = {D1,D2,D3, . . . } ∪ {Sw11 , Sw12 , Sw13 , . . . }

∪{Sw21 , Sw22 , Sw23 , . . . } ∪ . . .

{Rw11 ,Rw12 ,Rw13 , . . . } ∪ {Rw21 ,Rw22 ,Rw23 , . . . }

where P1 is a sample patient, Di the features associated with
demographics, Sw1i features associated with symptomatology for
window 1, and Rw2i features associated with risk factors for
window 2.

As detailed above, each patient within the dataset had
attributes specific to three main categories (demographics,
risk factors, and symptoms). Demographics included three
distinct attributes: age, gender, and branch of service. Risk
factors included two attributes: substance abuse and suicide
attempts/ideation. Lastly, symptoms included 14 attributes, each
representing a distinct symptom. As such, each patient had 19
attributes by default. The number of attributes may increase
depending upon the number of window configurations used
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within the model, as symptoms and risk factors were calculated
with respect to the observation windows. For example, if three
observation windows were used (Window Configuration C),
patients would then have 51 attributes; 14 symptoms and two risk
factors for each individual window.

4.5. Models and Metrics
For this study, various supervised machine learning models
were employed. Supervised algorithms are those that learn from
“labeled” data and once trained are tested and used to predict the
classification of “unlabeled” data. As each model type has its own
benefits and limitations, it is important to evaluate and compare
different models and their performances. For completeness,
logistic regression, support vector machines (SVM), random
forests, elastic nets, adaptive boosting (AdaBoost), and neural
networks were all employed. To compensate for class imbalance,
Synthetic Minority Over-sampling Technique (SMOTE) (42),
was also employed on the training set. These techniques were
used in combination to the different model types.

To test and perform a thorough evaluation of the different
models, we split the original dataset into two groups using a
80:20 split: training and testing. The training set was then split
(training/validation) to be used as input variables to create the
model and estimate parameters. The testing dataset was used to
validate, compare, and optimize the different models.

To assist in the tuning of hyper-parameters among the varying
models, grid search was employed on the training data for the
non-neural network approaches. For the neural networks, the
Adam optimizer was used along with its default learning rate. The
network consisted of an input with its dimension in respect to the
size of the corresponding window size, a hidden layer of size 19
with a tanh activation function, and then a single output node
that used a sigmoid activation function. The network was trained
using the binary cross entropy loss.

The receiver operating characteristic (ROC) curve, the area
under curve (AUC), and the area under the precision-recall
curve (AUC-PR) were utilized for comparison and evaluation.
The ROC curve is created by plotting the true positive rate
(i.e., probability that an actual positive case will test positive)
against the false positive rate (i.e., when the truth is negative,
but the model predicts a positive) at various threshold settings.
The precision-recall curve summarizes the trade-off between
optimizing for precision (i.e., positive predictive value) against
recall (i.e., sensitivity). As it is difficult for a model to perform
well under both metrics, the precision and recall values are often
inversely proportionate.

The AUC-PR metric summarizes this tradeoff into a singular
value for easy model comparison. Of note, the AUC-PR metric
is a different measurement than the AUC, has been found
to be more informative in the context of imbalanced binary
classification tasks (43, 44), and will typically have smaller values
ranging from about 0.2 to 0.5 (45, 46).

The utilization of ROC, AUC, and AUC-PR is important
to validate models with class imbalance limitations—when the
dataset has an unequal distribution of classes in the training
dataset. Class imbalance is common in healthcare given that often

TABLE 1 | Summary of patient demographics and prevalence of preexisting

conditions (n = 35,451).

n %

Gender Male 29,736 83.9

Female 5,715 16.1

Age 17–24 16,890 47.6

25–34 12,816 36.2

35–44 4,665 13.2

45+ 1,080 3.0

Service branch Army 19,778 55.8

Air force 6,204 17.5

Marine corps 4,396 12.4

Navy 4,491 12.7

Other 582 1.6

Rank Cadet 1,148 3.2

Enlisted, Junior 17,988 50.7

Enlisted, Senior 12,401 35

Officer, Junior 2,131 6.0

Officer, Senior 1,021 2.9

Officer, Warrant 322 0.9

Unknown 440 1.2

Preexisting conditions Anxiety 2,551 7.2

Appetite 3,005 8.5

Audiology 1,745 4.9

Balance/Dizziness 1,289 3.6

Cognitive 1,972 5.6

Depression 2,401 6.8

Fatigue 828 2.3

Headaches 7,871 22.2

Musculoskeletal 21,531 60.7

Neurology 3,338 9.4

Psychology, Other 7,201 20.3

PTSD 1,955 5.5

Sleep 3,718 10.5

Substance abuse 2,008 5.6

Suicide ideation/Attempt 324 0.9

Vision 1,160 3.3

there will be a majority of cases that are negative and a minority
group that are positive for a particular condition.

For the development of feature vectors and the construction
of models, Python 3.6.6 was used (47). Accompanying packages
including Pandas 0.24.4, Numpy 1.15, and Imbalanced-learn
0.4.3 were used for the manipulation, cleaning, and resampling
of data (48–50). Scikit-learn 0.20.1, Keras 2.2.4, SciPy 1.1.0, and
Matplotlib 3.4.1 were utilized to create models and evaluate
performance (51–54).

5. RESULTS

5.1. Demographics
For this analysis, a total of 35,451 SMs met the
inclusion/exclusion criteria (Table 1). This resulted in a sample
population of 29,736 men (83.9%), with the majority between the
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TABLE 2 | Proportion of service members with mental health conditions.

Remitting New onset Persistent Not diagnosed

Anxiety 1,105 (3.1%) 2,141 (6%) 1,446 (4.1%) 30,759 (86.8%)

Depression 1,117 (3.2%) 1,959 (5.5%) 1,284 (3.6%) 31,091 (87.7%)

Psychology, Other 3,256 (9.2%) 4,786 (13.5%) 3,945 (11.1%) 23,464 (66.2%)

PTSD 548 (1.5%) 1,536 (4.3%) 1,407 (4%) 31,960 (90.2%)

Substance abuse 1,037 (2.9%) 1,660 (4.7%) 971 (2.7%) 31,783 (89.7%)

Suicide ideation/Attempt 286 (0.8%) 401 (1.1%) 38 (0.1%) 34,726 (98.0%)

Remitting, conditions present only prior to mTBI; New Onset, newly diagnosed conditions; Persistent, conditions present before and after mTBI.

TABLE 3 | Feature importance derived from model performance with iterative addition of features where D are demographics, R are risk factors, and S are symptoms.

Logistic regression SVM Neural network

Feature ACC AUC AUC-PR ACC AUC AUC-PR ACC AUC AUC-PR

D 68.0 0.51 0.33 67.7 0.5 0.32 68.0 0.61 0.40

D + R 69.6 0.53 0.36 69.8 0.54 0.36 69.8 0.65 0.49

D + R + S 74.9 0.62 0.46 76.8 0.68 0.50 77.0 0.75 0.65

ACC, Accuracy; AUC, Area Under Curve; AUC-PR, Area Under Curve Precision Recall.

ages of 17 and 24 (47.6%). Examining military characteristics,
over half of the sample population was from the United States
Army (55.4%), while 50.7% were classified as Junior Enlisted.
Chi-square was performed to validate that sample population is
representative of the active duty TBI population.

In the evaluation of preexisting conditions, musculoskeletal
were most prominent among this population, (60.7%), followed
by headaches (22.2%). Examining the MH-related conditions,
6.8% of the population were diagnosed with depression
with 20.3% diagnosed with a Psychological, Other condition.
Regarding the outcome variable, 32.1% of the sample population
were diagnosed with at least one MH condition within the year
following the index mTBI (Table 2).

5.2. Feature Importance Ranking
In machine learning, feature importance ranking is the process
that measures the contribution of individual features into the
model. As part of the initial model development stages, we first
evaluated the impact of embedding different feature vectors.
We trained models to predict the year post-mTBI [14 : 365] and
incrementally added features (e.g., demographics, symptoms,
and risk factors). Table 3 contains the results for models (SVM,
neural network), with the addition of the logistic regression as
a baseline comparison. Assessing the logistic regression model,
for example, utilizing only patient demographics resulted in
an accuracy of 68.0%, an AUC of 0.51, and an AUC-PR
of 0.33. By adding risk factors as input features, we notice
an improvement in model performance; as noted by small
increase in accuracy, AUC, and AUC-PR. However, when
adding the patient symptomatology to the models, performance
significantly improved to 74.9%. Through the iterative addition
of features, the incremental predictive power of each could be

seen through the boosts in performance metrics across these
model types.

5.3. Model Types and Variations
With the inclusion of all feature vectors, we evaluated the
performance of the different model types and variations
previously outlined. The model types varied and we found
the best performing for comparison to be logistic regression,
SVM, and neural network models. Table 3 details the original
results utilizing the full feature vectors (demographics, risk
factors, symptoms) against these models. With these models,
we attempted to employ SMOTE to assist with the class
imbalance. However, improvement in model performances were
not observed.

First, we can see that after using all the features logistic
regression performs with a 74.9% accuracy and 0.46 AUC-PR.
By leveraging more advanced techniques such as SVMs, we can
see an improvement to 76.8% accuracy and the 0.50 AUC-PR.
Finally, when we apply state-of-the-art techniques like neural
networks we can see an improvement to 77% accuracy and 0.65
AUC-PR.

With regards to computational costs, the logistic regression
and SVM were consistently trained within 13–14 s, irrespective
of the number of observation windows. AdaBoost and the
random forest trained within 1 s while the neural network
took approximately 23 s to train a single observational window
(window configuration A).When training themaximum number
of windows, the neural network took 27.4 s.

5.4. Observation Window Configurations
To evaluate the effectiveness of window configurations and
its impact on performance, we ran each configuration from
Figure 2 against the various model types. The results from the
logistic regression, SVM, and neural network are provided within
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TABLE 4 | Model performance on different window configurations for the observation period.

Logistic regression SVM Neural network

Configuration ACC AUC AUC-PR ACC AUC AUC-PR ACC AUC AUC-PR

A 74.9 0.62 0.46 76.8 0.68 0.50 76.7 0.75 0.65

B 73.8 0.60 0.44 75.7 0.66 0.48 75.3 0.73 0.62

C 77.4 0.67 0.52 78.5 0.71 0.54 78.2 0.78 0.70

D 76.8 0.65 0.50 77.4 0.68 0.51 77.4 0.76 0.67

E 77.0 0.66 0.50 77.2 0.68 0.50 77.4 0.76 0.67

F 74.8 0.62 0.46 75.7 0.65 0.48 76.1 0.74 0.64

G 75.0 0.62 0.46 75.6 0.65 0.47 75.9 0.74 0.64

ACC, Accuracy; AUC, Area Under Curve; AUC-PR, Area Under Curve Precision Recall.

Table 4. When comparing configuration A [−365 : 14] and B
[−365 : 0], we see the importance of including the acute phase, 14
days post-mTBI, within our models; as noted by the differences
in accuracies, AUC, and AUC-PR values. This underscores the
impact of the acute phase on the trajectory of a patient as well as
on the ability to accurately predict long-term patient outcomes.
Evaluating Table 4, configuration C [−360 :−30,−30 : 0, 0 : 14],
provided the best performance. The accuracy, AUC, and AUC-
PR substantially increased compared to configurations A and B.
It appears that isolating those 30 days prior to mTBI seemed to
provide the models with more significant information.

Dividing the observation period further, configurations D and
E, the results of the models began to degrade. We can see that as
the number of windows increases, configurations F and G, the
performance of our models continues to drop. The sparseness
of the data might have had an impact on reductions in model
performance. Therefore, configuration C was chosen as the
optimal window configuration among our model types. Figure 4
includes the AUC and AUC-PR curves for this configuration
against all the different model types. It becomes apparent
that many of these model types performed similarly, with the
exception of the neural network which outperformed the other
model types substantially.

5.5. Prediction Timeframes
While we were able to develop models that predict the
likelihood of mental health symptoms within the year post-
mTBI, we recognize the utility of more finite prediction windows;
predicting the likelihood of symptoms within smaller time
frames. As such, our prediction period was divided into a set
of smaller windows, including the first 3 months post-mTBI
[14 : 90], the following 6 months [90 : 180], and the last 6 months
[180 : 365] (Figure 5). Utilizing the various model types, along
with the observation window configuration C, we predicted the
likelihood of MH conditions within each interval.

Table 5 provides the results from these models. We can see
that those intervals closest to the mTBI date, [14 : 90], obtained
the best performances. The further frommTBI date, the lower the
model accuracies. Figure 6 details the AUC and AUC-PR curves
for predicting the onset of MH conditions within the [14 : 90]
prediction window. Again, whilemany of themodel types seemed
to perform similarly, the neural network models performance

stood out, with an accuracy of 88.2, an AUC of 0.82, and an
AUC-PR of 0.66.

6. DISCUSSION

Through the development of feature vectors and the
configuration of observation windows, this study assessed
the capability of using EHR data to predict those at risk
for negative mTBI outcomes. Due to the nature of the data,
considerations were needed when devising our feature vectors.
We first evaluated the impact of incrementally adding various
variables. The inclusion of patient demographics, risk factors,
and premorbid conditions increased model performance. In
an attempt to provide temporal significance, we examined the
benefit of dividing our observation period into distinct windows.
After iterating through multiple configurations, dividing the
observation period into three distinct windows provided the
best performance.

With our best performing model, leveraging a neural network,
we further attempted to predict the diagnosis of any mental
health condition within distinct outcome windows. Encoding
the observation windows into intervals allowed the models to
assess and weigh the significance of each vector. Oftentimes those
intervals closest to the mTBI date held greatest significance. This
was particularly true when assessing those prediction intervals
closest to the mTBI date, which exhibited the greatest accuracies.

Through these practices, we can better understand how EHR
data can be leveraged to predict clinical outcomes. Though
careful consideration is needed, the development of these tools
and their deployment within clinical settings can provide great
benefit to patients and clinicians alike. By understanding ones’
risk of developing certain conditions or adverse outcomes,
clinicians can provide prompt and timely interventions. This
can aid in the mitigation of potential negative outcomes and the
alteration of outcome trajectories. Furthermore, understanding
which factors contribute to certain outcomes can help better
understand the development and progression of disease.

With the utilization of EHR data, we can look forward to
deploying and verifying our models within clinical settings. As
this study leveraged a relatively clean dataset, further inclusion
of feature vectors should be explored. Additional EHR data,
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FIGURE 4 | Different model types and their performance using window configuration C on predicting 14–365 days. (A) ROC Curves. (B) Precision-Recall Curves.

FIGURE 5 | Prediction period split into different patients’ clinical trajectories, split into observation and prediction periods. Then the observation period is further split

into smaller window configurations.

TABLE 5 | Effect of splitting the prediction period into windows based on clinical insight.

Logistic regression SVM Neural network

Window ACC AUC AUC-PR ACC AUC AUC-PR ACC AUC AUC-PR

14 to 365 85.32 0.59 0.28 85.6 0.62 0.31 86.1 0.78 0.53

14 to 90 87.5 0.68 0.44 87.7 0.72 0.46 88.2 0.82 0.66

90 to 180 89.0 0.56 0.19 89.1 0.58 0.21 89.3 0.78 0.44

180 to 270 83.8 0.56 0.24 84.2 0.60 0.28 84.6 0.75 0.46

270 to 365 80.9 0.54 0.25 81.5 0.58 0.28 80.8 0.72 0.46

ACC, Accuracy; AUC, Area Under Curve; AUC-PR, Area Under Curve Precision Recall.

including laboratory and radiology records could be considered.
Furthermore, the inclusion of SMs with complex clinical histories
is needed.Within themilitary population, it is not uncommon for
SMs to experience repeated concussions, subsequent injuries, or
other comorbidities. In order for these models to have clinical
merit, they must be able to cater and adapt to various scopes
and populations.

Furthermore, this paper detailed the retrospective application
of these models. Future clinical application should be
explored through prospective means. With the inclusion of
additional features, applying our models prospectively will
assist in further improving and validating our techniques.
Clinicians could then verify such tools while enhancing clinical
decision making.
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FIGURE 6 | Performance of the predictive models using [14 :90]. (A) ROC Curves. (B) Precision-Recall Curves.

7. CONCLUSION

Predictive analytics, specifically the use of neural networks,
show promise in adopting data science models to identify the
likelihood of developing mental health conditions following
mTBI. These models can enable clinicians to not only identify at
risk individuals, but to better anticipate patient needs and provide
interventions to mitigate negative outcomes.

Translation of these models from retrospective constructs
into real-world application is imperative. While this paper
has demonstrated the technical feasibility of leveraging neural
networks for TBI clinical application, on-going multi-site efforts
are focusing on (i) optimizing the models to incorporate
additional variables, (ii) implement interpretability to be able
to incorporate the forecasting models into clinical ancillary
applications, and (iii) use these retrospective data models into
real-world prospective clinical environments.
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