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Glioma is one of the most typical intracranial tumors, comprising about 80% of all brain

malignancies. Several key molecular signatures have emerged as prognostic biomarkers,

which indicate room for improvement in the current approach to glioma classification.

In order to construct a more veracious prediction model and identify the potential

prognosis-biomarker, we explore the differential expressed m6A RNA methylation

regulators in 665 gliomas from TCGA-GBM and TCGA-LGG. Consensus clustering

was applied to the m6A RNA methylation regulators, and two glioma subgroups were

identified with a poorer prognosis and a higher grade of WHO classification in cluster

1. The further chi-squared test indicated that the immune infiltration was significantly

enriched in cluster 1, indicating a close relation between m6A regulators and immune

infiltration. In order to explore the potential biomarkers, the weighted gene co-expression

network analysis (WGCNA), along with Least absolute shrinkage and selection operator

(LASSO), between high/low immune infiltration and m6A cluster 1/2 groups were utilized

for the hub genes, and four genes (TAGLN2, PDPN, TIMP1, EMP3) were identified

as prognostic biomarkers. Besides, a prognostic model was constructed based on

the four genes with a good prediction and applicability for the overall survival (OS) of

glioma patients (the area under the curve of ROC achieved 0.80 (0.76–0.83) and 0.72

(0.68–0.76) in TCGA andChinese GliomaGenome Atlas (CGGA), respectively). Moreover,

we also found PDPN and TIMP1 were highly expressed in high-grade glioma from The

Human Protein Atlas database and both of them were correlated with m6A and immune

cell marker in glioma tissue samples. In conclusion, we construct a novel prognostic

model which provides new insights into glioma prognosis. The PDPN and TIMP1 may

serve as potential biomarkers for prognosis of glioma.
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INTRODUCTION

Glioma is a common primary tumor in the central nervous
system (CNS), accounting for about 80% of brain malignancies
(1, 2). The lower-grade gliomas (LGGs) has a relatively
favorable prognosis, consisting of the diffuse low-grade and
intermediate-grade gliomas (World Health Organization
[WHO] grades II and III), whereas glioblastoma (GBM)
are generally high-grade gliomas (grade IV) (3, 4). Despite
recent medical advances, patients with high-grade GBM
are still associated with poor prognosis. Thus, identifying
the difference in various gliomas may assist oncologists in
finding the prognostic biomarkers and potential targets for
glioma patients.

N6-Methyladenosine (m6A) is the most popular internal
mRNA modification in diverse cell types and consists of
the m6A methyltransferases, reverted by the demethylases
and identified by m6A binding proteins (5–10). Generally,
m6A modification has various regulatory functions in
tumorigenesis, progression and immunity modulation
(11–15). Meanwhile, tumor immune microenvironment
also participates in tumor initiation and progression and
influences the clinical outcomes of patients (16–18). Immune
classification of cancers is crucial in therapeutic strategy
establishing and prognosis assessment of patients with tumors
(19, 20).

Several studies have revealed the correlation between
tumor microenvironment (TME) infiltrating immune cells and
m6A modification. In the gastric tumors, m6A modification
patterns could predict the stages of tumor inflammation,
TME stromal activity, genetic variation and patient prognosis.
Lower m6A score indicated an inflamed TME phenotype
and enhanced response to anti-PD-1/L1 immunotherapy (21).
The high expression of WTAP, a m6A methyltransferase,
was also associated with RNA methylation and its low
expression was related to a high T cell-related immune
response in gastric cancer (22). Additionally, m6A was reduced
in the high immunity subtype of lung adenocarcinoma,
indicating that m6A may mediate immune signatures and help
to provide potential strategies (23). However, the potential
roles of m6A modification in immune infiltration remain
obscure, especially in glioma. Therefore, identification of
immune infiltration characterizations mediated by multiple m6A
regulators might be helpful for the survival prognosis of patients
with glioma.

In this study, in order to investigate the novel prediction
model and potential biomarkers for glioma, WGCNA and
LASSO were applied to identify candidate genes that might
take part in both m6A and immune infiltration in glioma
based on TCGA database. Differentially expressed genes (DEGs)
were identified, along with their prognostic values, and further
validated by external datasets and tissue microarray. Besides,
the constructed prediction model revealed a high efficacy for
prognosis prediction. The potential predictive biomarkers were
also identified to assist oncologists in clinic treatment.

METHODS AND MATERIALS

Datasets Acquisition From TCGA Datasets
The Cancer Genome Altas (TCGA) GBMLGG datasets (n
= 665) were downloaded from the University of California
Santa Cruz (UCSC) Xena browser (https://xenabrowser.
net/datapages/). The gene expression data were presented
as FPKM values derived from TCGA level 3 data. Batch
effects were removed before analyzing (24). Clinical data
of TCGA datasets were downloaded from the UCSC Xena
browser, including clinical information (age, gender), tumor
information (subtypes) and survival information (overall
survival) for patients with gliomas (Table 1). The RNA-seq
transcriptome data and corresponding clinicopathological
information of 420 LGG patients and 237 GBM patients
were obtained from CGGA (www.cgga.org.cn) as a validation
set. The RNA-seq transcriptome data were transformed as
FPKM values. GSE16011 (25) expression data was downloaded
from GEO database. Robust multi-array average (RMA)
normalized files were used in this study. The probe was
converted into gene symbol by median gene expression. The
microarray data were estimated as log2(x+1) normalized
expression value.

Selection of m6A RNA Methylation
Regulators
We used 12 m6A RNA methylation regulators from published
literature. Then, the expression of these m6A RNA methylation
regulators in gliomas were systematically compared with
different clinical outcomes using Gliovis (http://gliovis.bioinfo.
cnio.es/) (26).

Unsupervised Analysis With
ConsensusClusterPlus
In order to investigate the function of m6A RNA methylation
regulators in glioma, we divided patients with glioma into
different groups with “ConsensusClusterPlus” (50 iterations,
resample rate of 80%). The principal component analysis was
then performed with the R package “PCA” for R v3.5.1 to
study the gene expression patterns in different glioma clusters.
In order to determine the optimal K, Average Silhouette
method and Gap Statistic method were applied, the results
showed that the two groups were the best grouping number
(Supplementary Figure 1). Wilcoxon signed rank test was used
to compare the tumor mutation burden of cluster 1 and
cluster 2.

Function Analysis of m6A Cluster
Subgroups and Immune Infiltration
Analysis Based on Single-Sample Gene Set
Enrichment Analysis (ssGSEA)
Gene Set Variation Analysis (GSVA) was performed with the
R package “gsva” to evaluate pathway enrichment for different
clusters. To investigate the immune infiltration landscape of
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TABLE 1 | Summary table of the TCGA clinical information.

Level Cluster1 Cluster2 p

N 190 475

Study (%) GBM 87 (46.8) 63 (13.4) <0.001

LGG 99 (53.2) 407 (86.6)

Grade (%) II 42 (23.9) 182 (41.8) <0.001

III 48 (27.3) 191 (43.9)

IV 87 (49.1) 63 (14.4)

Histology (%) Astrocytoma 42 (22.6) 149 (31.7) <0.001

GBM 87 (46.8) 63 (13.4)

Oligoastrocytoma 28 (15.1) 100 (21.3)

Oligodendroglioma 29 (15.6) 158 (33.6)

Recurrence (%) Primary 176 (92.6) 432 (90.9) NA

Subtype (%) Classic-like 33 (20.0) 34 (7.5) <0.001

Codel 26 (15.8) 143 (31.6)

G-CIMP-high 54 (32.7) 178 (39.4)

G-CIMP-low 8 (4.8) 7 (1.5)

LGm6-GBM 4 (2.4) 6 (1.3)

Mesenchymal-like 36 (21.8) 62 (13.7)

PA-like 4 (2.4) 22 (4.9)

survival [mean (SD)] 25.96 (31.55) 27.31 (28.24) 0.596

status [mean (SD)] 0.50 (0.50) 0.31 (0.46) <0.001

Transcriptome.Subtype (%) CL 36 (23.4) 48 (13.1) <0.001

ME 38 (24.7) 57 (15.5)

NE 13 (8.4) 96 (26.2)

PN 67 (43.5) 166 (45.2)

Pan_Glioma.RNA.Expression.Cluster

(%)

LGr1 36 (19.5) 102 (21.8) <0.001

LGr2 11 (5.9) 77 (16.5)

LGr3 59 (31.9) 174 (37.2)

LGr4 79 (42.7) 115 (24.6)

IDH_specific.RNA.Expression.Cluster (%) IDHmut-R1 15 (8.2) 89 (19.2) <0.001

IDHmut-R2 14 (7.7) 82 (17.7)

IDHmut-R3 59 (32.2) 157 (33.9)

IDHwt-R1 22 (12.0) 24 (5.2)

IDHwt-R2 34 (18.6) 44 (9.5)

IDHwt-R3 30 (16.4) 38 (8.2)

IDHwt-R4 9 (4.9) 29 (6.3)

Pan_Glioma.DNA.Methylation.Cluster (%) LGm1 19 (11.4) 30 (6.6) <0.001

LGm2 51 (30.5) 199 (43.4)

LGm3 19 (11.4) 102 (22.3)

LGm4 32 (19.2) 32 (7.0)

LGm5 37 (22.2) 67 (14.6)

LGm6 9 (5.4) 28 (6.1)

IDH_specific.DNA.Methylation.Cluster (%) IDHmut-K1 16 (9.7) 24 (5.3) <0.001

IDHmut-K2 46 (27.9) 162 (35.8)

IDHmut-K3 26 (15.8) 143 (31.6)

IDHwt-K1 33 (20.0) 34 (7.5)

IDHwt-K2 36 (21.8) 62 (13.7)

IDHwt-K3 8 (4.8) 28 (6.2)

Subtype.original (%) Classical 25 (13.5) 13 (2.8) <0.001

G-CIMP 6 (3.2) 2 (0.4)

(Continued)
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TABLE 1 | Continued

Level Cluster1 Cluster2 p

IDHmut-codel 25 (13.5) 140 (30.0)

IDHmut-non-codel 57 (30.8) 186 (39.8)

IDHwt 16 (8.6) 79 (16.9)

Mesenchymal 26 (14.1) 22 (4.7)

Neural 11 (5.9) 15 (3.2)

Proneural 19 (10.3) 10 (2.1)

Random.Forest.Sturm.Cluster (%) G34 0 (0.0) 1 (0.2) 0.175

IDH 81 (65.3) 318 (74.5)

K27 0 (0.0) 1 (0.2)

Mesenchymal 22 (17.7) 67 (15.7)

RTK I ‘PDGFRA’ 3 (2.4) 9 (2.1)

RTK II ‘Classic’ 18 (14.5) 31 (7.3)

IDH.status (%) Mutant 89 (48.4) 330 (71.0) <0.001

WT 95 (51.6) 135 (29.0)

Chr.1p_19q.codeletion (%) Codel 25 (13.7) 140 (29.9) <0.001

non-codel 158 (86.3) 328 (70.1)

IDH_codel.subtype (%) IDHmut-codel 25 (13.8) 140 (30.2) <0.001

IDHmut-non-codel 64 (35.4) 188 (40.6)

IDHwt 92 (50.8) 135 (29.2)

MGMT.promoter.status (%) Methylated 117 (70.1) 353 (77.1) 0.091

Unmethylated 50 (29.9) 105 (22.9)

Chr.7.gain_Chr.10.loss (%) Gain chr 7 & loss

chr 10

69 (37.9) 81 (17.4) <0.001

No combined can 113 (62.1) 385 (82.6)

Chr.19_20.co_gain (%) Gain chr 19/20 12 (6.6) 18 (3.9) 0.201

No chr 19/20 gain 170 (93.4) 448 (96.1)

TERT.promoter.status (%) Mutant 39 (47.0) 113 (49.1) 0.836

WT 44 (53.0) 117 (50.9)

TERT.expression.status (%) Expressed 118 (63.8) 227 (48.5) 0.001

Not expressed 67 (36.2) 241 (51.5)

ATRX.status (%) Mutant 46 (25.1) 146 (31.5) 0.132

WT 137 (74.9) 317 (68.5)

DAXX.status (%) Mutant 2 (1.1) 0 (0.0) 0.142

WT 181 (98.9) 463 (100.0)

Telomere.Maintenance (%) -/- 15 (18.1) 35 (15.5) 0.86

ATRX 29 (34.9) 82 (36.3)

TERT 39 (47.0) 109 (48.2)

BRAF.V600E.status (%) Mutant 1 (0.5) 2 (0.4) 1

WT 182 (99.5) 461 (99.6)

BRAF_KIAA1549.fusion (%) Fusion 0 (0.0) 1 (0.2) 1

WT 185 (100.0) 467 (99.8)

RPPA.cluster (%) K1 47 (49.5) 46 (20.5) <0.001

K2 48 (50.5) 178 (79.5)

glioma, ssGSEA was performed to assess the level of immune
infiltration (recorded as ssGSEA score) in a sample according
to the expression levels of immune cell-specific marker genes
with R package “gsva.” Most immune cell types related marker
genes were obtained from the article published by Bindea
et al. (27).

Cox Regression Analysis
We assessed the impact of immune cell types on clinical survival
data and survival time by Cox proportional hazards regression
analysis based on the R package “survival” and “forestplot.” Cell
types with a high hazard ratio were considered to be risk factors
to OS.
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Hub Genes Correlated With m6A RNA
Methylation Clusters and Immune
Infiltration Based on Weighted Correlation
Network Analysis (WGCNA)
We extracted all the DEGs (according to adj. p-value < 0.01,
|logFC| ≥ 2, total = 729) from limma analysis with expression
data retrieved from TCGA GBM/LGG datasets to perform
Weighted correlation network analysis (WGCNA) using R
package “limma.” We applied R package “WGCNA” to find
clinical traits-related modules and hub genes among them (28).
The adjacency matrix was then transformed into topological
overlap matrix (TOM). Genes were divided into different gene
modules according to the TOM-based dissimilarity measure. We
set soft-thresholding power as 9 (scale free R2= 0.85), cut height
as 0.2, and minimal module size as 30 to identify key modules.
Those with gene significance (GS)> 0.5 andmodulemembership
(MM) > 0.9 were defined as hub genes.

Validation of Prognostic Values of Hub
Genes
To predict the clinical outcomes of glioma patients with the hub
genes, we applied LASSO Cox regression algorithm to the 5 hub
genes in the TCGA datasets. We selected four genes to build the
risk signature based on theminimum criteria, and the coefficients
obtained from the LASSO algorithm were used to calculate the
risk score for each patient as follows:

Riskscore =

n∑

i=1

∗βi

where n was the number of prognostic genes, expi the expression
value of gene i, and βi the regression coefficient of gene i
in the LASSO algorithm. Using the median risk score as a
cutoff value, glioma patients were divided into high- and low-
risk score groups. Moreover, the relation between the prognosis
signature and OS was investigated based on the external cohort
CGGA datasets.

The Kaplan-Meier method was used to assess the differences
of overall survival (OS) between low- and high-risk score glioma
patients with R package “survival”.

The time-dependent receiver operating characteristic (ROC)
curve was used to measure the prognostic performance by
comparing the areas under the ROC curves (AUC) using R
package “pROC.” 10-fold cross method was applied for ROC
validation and AUC value calculation.

All the scripts were uploaded at Github website (https://
github.com/mvpsc30/FIO-m6A-immune).

Assessment of Immunohistochemistry
Data
The PDPN and TIMP1 immunohistochemistry results were
acquired from the Human Protein Atlas (HPA, https://www.
proteinatlas.org/) database (29). The EMP3 and TAGLN2 protein
levels of selected genes were evaluated through commercially
glioma tissue-microarrays and H-scores between Low-grade
gliomas and High-grade gliomas.

Real-Time RT-PCR
Total RNA was extracted from tissue samples and cells using
TRIzol reagent (Invitrogen) after washing with PBS. cDNA was
synthesized from purified RNA using a SuperScript III First-
Strand cDNA synthesis system (18080051, Life Technologies)
according to the manufacturer’s instruction. SYBR Green PCR
Master Mix (Applied Biosystems, CA, USA) was used for PCR
amplification and a real-time PCR machine (iQ5, Bio-Rad
Laboratories) was used to quantify the expression of mRNAs.
β-actin was used as endogenous control and the expression levels
were quantified using the methods of 2–11Ct.

Primers:
Forward Reverse

CD68 GGAAATGCCACGGTTCAT
CCA

TGGGGTTCAGTA
CAGAGATGC

YTHDC1 AACTGGTTTCTAAGCCA
CTGAGC

GGAGGCACTACT
TGATAGACGA

WTAP CATTTTGTGGCAGCGA
GACC

AATCCTCTCCAG
GCAGAAGC

TIMP1 CTTCTGCAATTCGAC
CTCGT

ACGCTGGTATAA
GGTGGTCTG

PDPN GTGTAACAGGCATTCG
CATCG

TGTGGCGCTTGG
ACTTTGT

Cell Culture and Transfection
Human glioma cell line U87 and A172 were acquired from
the American Type Culture Collection (ATCC) and cultured in
DMEM medium (Gibco, Life Technologies, Grand Island, NY)
supplementedwith 10% fetal bovine serum (Gibco) and 100U/ml
penicillin/streptomycin (Gibco). According to themanufacturer’s
instructions, the Lipo 2000 transfection reagent was applied for
the transfection. The siRNAs against TIMP1 (siRNA ID: s14143,
ThermoFiher), PDPN (EHU119431, Sigma) and negative control
(SIC001, Sigma) were purchased.

Western Blotting
Western blot (WB) assays was performed as previously described
(30). Briefly, we prepared cell extracts for Western blotting in
RIPA buffer. Then, lysates were separated by SDS-PAGE and
were transferred to PVDF membranes (Millipore, Billerica, MA).
Primary antibodies PDPN (Abcam, ab236529,1:1000), TIMP1
(Abcam, ab109125,1:1000), EMP3 (Santa cruz, sc-81797, 1:100),
TAGLN2 (Proteintech, 10234-2-AP, 1:200), andGAPDH (Abcam,
ab181602, 1:10000) were used along with HRP-labeled secondary
antibody (1:10000, Sigma) in Western blot. The immune
complex was detected by chemiluminescence (GE Healthcare,
Wauwatosa, WI).

Cell Viability and Cell Death Measurement
Cell viability was measured using the CellTiter-Glo R©luminescent
cell viability assay (Promega) based on the manufacturer’s
instructions. For phosphatidylserine exposure, cells were stained
with annexin V-PE as instructed by the manufacturer (BD
Biosciences, San Jose, CA), and assayed by flow cytometry (CyAn
ADP, Beckman Coulter, Brea, CA, USA).
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Statistical Analysis
Experimental results were analyzed with a Student’s t-test and
graphed using Graphpad Prism application (GraphPad Software,
Inc., La Jolla, CA). Data are expressed as mean ± SD. A p <

0.05 was considered with statistical significance. The correlation
between the expression profiles of TIMP1 and PDPN with
immune and macrophage marker was analyzed using Spearman’s
rank test.

RESULTS

Consensus Clustering of m6A RNA
Methylation Regulators Identified Two
Clusters of Gliomas With Distinct Immune
Infiltration
A flowchart of this study is shown in Supplementary Figure 1.
Based on biological functions of each m6A RNA methylation
regulator in clinical prognosis, we performed consensus
clustering based on gene expression of 12 key m6A RNA

regulators in TCGA datasets. Due to the expression analogy
of m6A regulators, the clustering analysis would classify the
samples into different clusters. After evaluating the relative
change in the area under the cumulative distribution function
(CDF) curve and consensus heatmap, we selected a three-
cluster solution (K = 2), which has no obvious increase in the
area under the CDF curve (Supplementary Figures 2A–D).
To further determine the optimal K, two methods (Average
Silhouette method and Gap Statistic method) were applied.
Based on these methods, two subgroups clustered by k =

2, namely, cluster 1 and cluster 2 subgroups were found
(Supplementary Figures 2E,F). Most parts of m6A RNA
methylation regulators’ expressions showed clear distinction and
significant difference in two cluster subgroups (Figures 1A,B).
In order to better understand the interaction among the 12 m6A
regulators, we assessed the interaction and correlation among
these regulators (Supplementary Figure 3).

The Kaplan-Meier survival analysis revealed a significant
shorter OS in cluster 1 subgroup than the cluster 2 subgroup
(Figure 1C). Moreover, we analyzed the DEGs between cluster1

FIGURE 1 | Identification of consensus clusters by m6A RNA methylation regulators overall survival of gliomas in the cluster 1/2 subgroups. (A) Violin plot of the two

clusters (cluster1/2) defined by the m6A RNA methylation regulators consensus expression. (B) Principal component analysis of the total RNA expression profiles in

the TCGA-GBM/LGG datasets. Gliomas in the cluster1 subgroup are marked with red. (C) Kaplan–Meier overall survival (OS) curves for 665 TCGA glioma patients of

different cluster. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0. 0001.
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TABLE 2 | Differences in pathway activities scored per sample by GSVA between

cluster 1 and cluster 2, cluster 2 vs. cluster 1.

logFC adj.P.Val

HALLMARK_MYC_TARGETS_V1 −0.53 4.08E-69

HALLMARK_DNA_REPAIR −0.35 8.65E-59

HALLMARK_E2F_TARGETS −0.48 1.84E-49

HALLMARK_UNFOLDED_PROTEIN_RESPONSE −0.29 1.01E-37

HALLMARK_MTORC1_SIGNALING −0.28 1.84E-33

HALLMARK_GLYCOLYSIS −0.19 4.81E-27

* HALLMARK_TNFA_SIGNALING_VIA_NFKB −0.28 2.16E-24

HALLMARK_G2M_CHECKPOINT −0.29 8.59E-23

HALLMARK_MYC_TARGETS_V2 −0.30 1.45E-21

HALLMARK_P53_PATHWAY −0.15 1.18E-20

HALLMARK_ALLOGRAFT_REJECTION −0.25 1.18E-16

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION −0.18 1.17E-13

HALLMARK_OXIDATIVE_PHOSPHORYLATION −0.21 3.01E-13

* HALLMARK_INTERFERON_ALPHA_RESPONSE −0.29 2.45E-12

* HALLMARK_IL6_JAK_STAT3_SIGNALING −0.20 1.26E-11

* HALLMARK_TGF_BETA_SIGNALING −0.16 9.81E-11

HALLMARK_ANDROGEN_RESPONSE −0.12 7.44E-10

HALLMARK_PEROXISOME −0.11 2.67E-09

* HALLMARK_INTERFERON_GAMMA_RESPONSE −0.19 3.11E-09

HALLMARK_IL2_STAT5_SIGNALING −0.13 2.72E-08

*Pathways related to immune response are marked with asterisk.

and cluster2, and annotated their function Gene Set Variation
Analysis (GSVA) for biological processes. The results indicated
that DEGs are enriched in immune-related biological processes,
including IL2/STAT5, IL6/JAK/STAT3, and Interferon-γ
response signaling (Table 2) and the two categories identified
by consensus clustering are correlated with immune infiltration
of glioma.

Immune Landscape Was Significantly
Associated With m6A RNA Methylation
Regulators
To explore the roles of immune cells in themalignant progression
of gliomas, the RNA-seq data of 665 patients with gliomas
from TCGA-GBM/LGG datasets were analyzed to evaluate the
immune landscape. The high and low immune infiltration
were defined by Euclidean distance and the ssGSEA scores
of immune cells. The results indicated that B cells, Tcm
cells, and T helper cells were enriched in high immune
infiltration glioma. Relatively, gliomas with low infiltration were
characterized for macrophages, eosinophils, neutrophils, and
aDC cells (Figure 2A).

In order to analyze the relationship between m6A cluster
group and immune infiltration, Chi-squared test was carried
out (p < 2.2 × 10−16, Figure 2A). Moreover, we compared
the immune infiltration score between cluster 1 and cluster
2, indicating that the proportion of most immune cells
types was significantly different between clusters 1 and 2
(Supplementary Figure 4). Then Kaplan-Meier survival curve
analysis was performed to explore the roles of immune cell

infiltration on the prognosis of patients with glioma. The results
revealed that patients with low immune infiltration had worse
OS compared with patients with high immune infiltration
(Figure 2B). We also applied a univariate Cox regression analysis
on the immune cells of TCGA datasets, and found that 23/24
cell types were significantly correlated with OS (P < 0.05).
Among these 23 immune cells, aDC, DC, iDC, cytotoxic cells,
Eosinophils, Macrophages, Neutrophils, NK.CD56dim cells, NK
cells, T cells, Th17 cells, and Th2 cells are risky immune cells with
HR > 1, while CD8T cells, B cells, Mast cells, NK.CD56bright
cells, pDC, Tem, Tcm, T helper cells, TFH, Tgd, and Th1 cells
were protective immune cells with HR < 1 (Figure 2C).

To further determine the relationship between m6A
RNA methylation regulators and immune cell infiltration,
we assessed the relationships between the expressions
of m6A RNA methylation regulators and immune cells
infiltration subgroups. The results indicated that high immune
infiltration was strongly related to higher expressions of FTO,
MELLT14, METTL3, YTHDC1, YTHDC2, and ZC3H13.
Correspondingly, low immune infiltration with higher
expressions of ALKBH5, HNRNPC, WTAP, YTHDF1, and
YTHDF2 (Supplementary Figure 5). Then we calculated the
relationships between each m6A RNA methylation regulators
and immune cells, revealing that FTO, ZC3H13, and YTHDC1
had a significant positive correlation with Tcm cells. Meanwhile,
macrophages had a negative relationship with FTO and ZC3H13
(Figure 2D). These data indicated that m6A clusters were highly
associated with immune infiltration.

WGCNA and Identification of the Key
Module
In order to explore the key genes that were mostly associated
with m6A and immune cell infiltration subtypes in glioma,
we performed WGCNA on the TCGA-GBM/LGG datasets.
Glioma sample information such as age, m6A cluster subgroups,
immune infiltration subgroups, OS and OS status were
retrieved from TCGA-GBM/LGG (Supplementary Figure 6A).
Eventually identified 6 modules by setting soft-thresholding
power as 9 (scale-free R2 = 0.85) and cut height as 0.2
(Supplementary Figures 6B,C). From the heatmap of module-
trait correlations, we evaluated that the black module was the
most highly related to clinical traits (Supplementary Figure 6D),
especially the immune infiltration and outcomes (correlation
coefficient = −0.86 and 0.5, P = 4E-206 and 1E-39; respectively,
Supplementary Figures 6E–G). Lastly, we selected 5 hub genes
(TAGLN2, PDPN, TIMP1, EMP3, CHI3L1) from the black
module by setting module membership (MM) >0.9 and gene
significance (GS) >0.5. These genes were closely related to each
other Supplementary Figure 6H).

Association of Hub Genes With m6A RNA
Methylation Regulators and Immune
Infiltration
We explored the relationship between the expression levels of
five hub genes and m6A RNAmethylation regulators to elucidate
the underlyingmechanisms of abnormal up-regulation in glioma.
The correlation analysis showed that the expression of many hub
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FIGURE 2 | Immune landscape of glioma. (A) Heatmap of ssGSEA scores of TCGA-GBM/LGG and Table of cluster and immune infiltration subgroups (Chi-square

test: X-squared = 116.63, p < 2.2e−16). (B) Kaplan–Meier overall survival (OS) curves for 665 TCGA glioma patients of different immune infiltration subgroups. (C)

Forest plot for immune cells. The hazard ratios (HR), 95% confidence intervals (CI) calculated by univariate Cox regression are shown. (D) Mine plot of relationships

between 12 m6A methylation regulators and 24 immune cells (*P < 0.05, **P < 0.01).
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FIGURE 3 | Validation of hub genes highly correlated with clinical traits. In each dataset, the risk score distribution, gene expression profiles, and patients’ survival

status are displayed (A, TCGA; B, CGGA). The black-dotted line represents the median cut-off, dividing patients into high- and low-risk groups. Kaplan-Meier and

ROC curves with 95% confidence interval for the 4-gene signature in the four datasets. Patients with high risk scores had poor outcome in terms of overall survival (C,

TCGA; D, CGGA). ROC curves comparing prognostic accuracy of risk score with clinical histology, grade, IDH status, and age in internal validation, and external

validation cohorts (E, TCGA; F, CGGA).

genes was significantly correlated with m6A RNA methylation
regulators (Supplementary Figure 7). Additionally, we found
that TAGLN2, PDPN, EMP3, and CHI3L1 were positively
associated with WTAP (Supplementary Figure 7), while TIMP1
was negatively correlated with YTHDC1.

Then we utilized the Spearman method to study the
potential relationship between the expression of glioma
hub genes and infiltration of immune cells. Interestingly,
hub genes were all positively associated with Macrophages

(Supplementary Figure 8). Conversely, negative relationship
was observed between these five genes and the infiltration of
B cells, Tcm cells and Tem cells (Supplementary Figure 8).
These data indicated that the selected five hub genes were highly
correlated with m6A RNA regulators and immune infiltration.

Validation of Hub Genes in Datasets
To predict the clinical outcomes of glioma with the hub genes,
we applied the LASSO Cox regression algorithm to the five hub
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FIGURE 4 | TIMP1 and PDPN reveal its higher expression in GBM and malignant biological phenotype in vitro. (A) The translation expression level of the TIMP1 and

PDPN were positively correlated with disease status as they were upregulated in gliomas samples. (B) The relationship of TIMP1 and PDPN with macrophage marker

CD68. (C) The relationship of TIMP1 and PDPN with indicated m6A gene.

genes in the TCGA datasets (Supplementary Figures 9A,B).
Four genes were highly associated with clinical features,
such as grades, transcriptome subtype and IDH status
(Supplementary Figures 10A–C). Moreover, these four
genes were used to set up the risk signature based on the
minimum criteria. Next, to assess the differences of survival
time between low- and high-risk glioma patients, the Kaplan-
Meier method was performed. Meanwhile, the log-rank test
was also used to determine the statistical significance between
groups. The time-dependent ROC curve was employed to
measure the prognostic performance by comparing the AUC.
Compared with those in the low-risk group, we illustrated
that the glioma patients in the high-risk group had shorter
OS, (Figures 3A,B, TCGA: HR = 1.07, 95% CI = 1.06–1.08,
P < 0.01; CGGA: HR = 1.19, 95% CI = 1.16–2.23, P <

0.01). The time-dependent ROC curves revealed that the
AUC for the 4-gene signature achieved 0.80 (0.76–0.83) and
0.72 (0.68–0.76) for the OS in TCGA and CGGA datasets,
respectively (Figures 3C,D). Furthermore, the risk score
exhibited a higher prognostic accuracy for OS than clinical
histology, grade, IDH status and age (Figures 3E,F). These

findings suggested an effective performance for predicting OS
for glioma patients.

Validation the Expression and Function of
TIMP1 and PDPN
To further validate the expression of four genes in gliomas,
we next detected their expressions in The Human Protein
Atlas database, and the results revealed the PDPN and TIMP1
were higher expression in high-grade gliomas (Figure 4A). In
addition, TAGLN2 and EMP3 were performed in commercially
glioma tissue-microarrays. The H-score of both proteins was
not statistically significant between low and high-grade gliomas
(Supplementary Figure 11). Moreover, in the correlation
analysis, we uncovered that TIMP1 and PDPN were positively
correlated with marker genes of macrophage (Figure 4B, Table 3
and Supplementary Figure 8). TIMP1 was negatively related
with YHDC1, while PDPN was positively related with WTAP
(Figure 4C and Supplementary Figure 7). By knockdown
the expression of PDPN or TIMP1, the cell proliferation was
decreased, and the apoptosis and necrosis were increased in U87
and A172 (Supplementary Figure 12).
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TABLE 3 | Clinical data of patients.

Case Sex Age Tumor volume (cm3) Grade Application

1 F 56 12.1 1 PCR

2 M 46 8.42 1 PCR

3 F 44 21.1 1 PCR

4 F 64 25.2 1 PCR

5 M 41 23.1 1 PCR

6 F 67 31.8 1 PCR

7 F 45 33.4 1 PCR

8 F 66 31.6 1 PCR

9 M 70 26.1 1 PCR

10 M 54 12.9 1 PCR

11 M 70 21.1 1 PCR

12 M 33 35.4 1 PCR

13 F 55 33.1 4 PCR

14 F 76 46.1 4 PCR

15 M 33 32.7 4 PCR

16 F 71 27.8 4 PCR

17 M 62 36.0 4 PCR

18 F 59 33.5 4 PCR

19 M 59 42.1 4 PCR

20 F 60 26.9 4 PCR

DISCUSSION

As themost aggressive primary brain tumor, glioma is considered
as an enigma in neurosurgery (31, 32). Advanced knowledge of
its genomic changes has promoted the discovery of prognostic
signatures to facilitate the personalized treatment decisions
(33–35). However, no previous studies have investigated the
efficacy of the combination of m6A and immune infiltration.
Here, we developed and validated a novel 4-gene prognostic
model based on the combination of m6A RNA methylation
and landscape of immune microenvironment. The developed
4-gene signature was able to identify the glioma patients with
different risk levels for prognosis, which may compensate
the already known prognostic indicators, such as age, tumor
grade or histology. Additionally, we confirmed that PDPN and
TIMP1 were higher expressed in high-grade glioma, and the
Pearson correlation validated that PDPN and TIMP1 were
correlated with marker gene of macrophage and indicated
m6A gene.

m6A, the most prevalent intra-mRNA modification, is
required for post-transcriptional regulation of mRNA in various
cell types (11, 12, 36). Previous studies have shown that m6A
could be a signature for predicting the prognosis in different
type of cancers, such as renal cell carcinoma, hepatocellular
carcinoma, bladder cancer and head and neck squamous cell
carcinoma (37–40). We found that WTAP and HNRNPC were
significantly increased in cluster 1 than cluster 2 (Figure 2). In
the GBM, WTAP was found to be overexpressed and regulate
migration and invasion in vitro (41). Its high expression was
associated with poor postoperative survival (42). In addition,
HNRNPC could also control the aggressiveness of GBM cells

and be regarded as the potential prognostic biomarker and
therapeutic targets of GBM (43).

With the high-speed development of omics, high-throughput
tumor databases have been established, including TCGA and
CGGA, which provided a solid foundation for analyzing the RNA
modification and microenvironments of glioma (3, 44–46). One
of the emerging strategies of management is based on the roles
of immune cells in the growth and maintenance of tumors (47).
According to the recent studies, myeloid-derived suppressor cells
(MDSC) and tumor-associated macrophages (TAMs) have been
identified as promising targets for anti-cancer treatment (48,
49). Neoantigen-targeting vaccines have also increased tumor-
infiltrating T cells and altered the immune milieu of glioblastoma
(50). According to the TCGA database, Jia et al. has drawn a
list of 44 tumor microenvironment related genes and proved
them in an independent GBM cohort as potential biomarkers for
GBM (51). However, the outcomes may lead to the discordance
generally based on only one factor (51, 52). In our current study,
we integrated m6A and immune infiltration in TCGA to build a
model to improve the overall prediction of outcome for patients
with glioma. Four survival-related genes (TAGLN2, PDPN,
TIMP1, and EMP3) were identified and verified by four external
datasets. These combination of these four genes provided a more
reliable signature, relative to that extracted from a single dataset.
Furthermore, PDPN and TIMP1 were confirmed that they were
higher expression in high-grade glioma and knockdown their
expression decreased the glioma cell proliferation in vitro.

TAGLN2 is considered as a smooth muscle cytoskeletal
protein (53). It has been proposed to be associated with
growth and migration in bladder cancer (54, 55), esophageal
squamous cell carcinoma (56), and gliomas (57). Moreover,
it’s up-regulation is associated with tumorigenesis and tumor
progression (54, 58). Silence of TAGLN2 in gliomas cell lines
significantly inhibited invasion and tumor growth (57). Increased
expression of TAGLN2 was correlated with deteriorative tumor
grade, and the function and regulation made it as a candidate
prognostic biomarker (57). Jin et al. has also shown TAGLN2 as
a potential biomarker of tumor-derived lung-cancer endothelial
cells (59). Another study demonstrated that TAGLN2 could be
a prospective tumor tissue marker for diagnosis and evaluating
lymph node metastasis in bladder cancer patients (60).

EMP3 belongs to the PMP-22/EMP/MP20 family, which is
thought to be involved in cell proliferation, cell-cell interactions
and function as a tumor suppressor. Alaminos et al. have
suggested that EMP3 was associated with poor survival (61).
EMP3 overexpression in breast cancer was related to stronger
HER-2 expression that may indicate a novel therapeutic target
(62). Ma et al. have demonstrated that EMP3-mediated miR-663a
inhibits the gallbladder cancer progression via the MAPK/ERK
pathway (63). Recently, the bioinformatics analysis also found
that EMP3 was one of the validated gene panel independently
and was correlated with the GBM survival (64, 65). Another
bioinformatics analysis though significant analysis of microarray
(SAM) identified that EMP3 could be used to estimate glioma
patient prognosis (66).

TIMP metallopeptidase inhibitor 1 (TIMP1) is a glycoprotein
which antagonized mostly known MMPs. The encoded protein
can promote cell proliferation in many cell types and may also
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have an anti-apoptotic function. A high serum level was found
as a poor prognostic indicator in GBMs (67). TIMP1 has been
suggested to interact with P75NTR in metastatic carcinoma
and glioma cells (68), and silence of TIMP1 or inhibition of
NF-kappa B activity led to slower tumor growth in vivo (69).
Several studies have shown that TIMP1 was an important part
of prognosis model and could be a biomarker for diagnosis
(70–72). Furthermore, Jackson et al. have reviewed that TIMP1
overexpression is consistently correlated with cancer progression
or poor prognosis (73).

Podoplanin (PDPN) is a transmembrane receptor that
participates in various physiological and pathological processes,
such as cell motility, tumor metastasis and angiogenesis (74–76).
It regulated mammary stem cell function that reduced mammary
tumor formation in breast cancer and could be a new regulator
of Wnt/β-catenin signaling (77). PDPN receptor are upregulated
in cancer cells, immune cells, synoviocytes, and fibroblasts
that increase tissue inflammation and invasion to promote
both arthritis and cancer (78). PDPN-expressing macrophages
(PoEMs) stimulated local matrix remodeling, and macrophage-
specific PDPN knockout restrained lymphangiogenesis and
reduced lymphatic cancer spread (79). PDPN-positive cancer-
associated fibroblasts (CAFs) contributed to an essential role
in primary resistance to epidermal growth factor receptor
tyrosine kinase inhibitors (EGFR-TKI) (80). Moreover, PDPN
has been considered as a novel biomarker, chemotherapeutic
target and a target for CAR T-cell therapy that may be
a potential adoptive immunotherapy to treat GBM (81,
82).

Our finding provides a novel insight into the relationship
between m6A and immune infiltration, and we laid a solid
foundation for four genes that could be a new prognosis indicator
for gliomas patients. In addition, we also developed a user-
friendly R shiny web app (http://www.houshixu.cn:3838/sample-
apps/fio/) for easier usage. Remarkably, several limitations
should be noted. In this study, prognostic factors were found
by combining m6A and immune microenvironment. However,
we do not have large quantities of samples to verify them
and the clustering of glioma by m6A regulators is probably
skewed by the grade of glioma. Whether TAGLN2 and EMP3
modulate cell proliferation were unclear. Moreover, the signature
requires further validation in prospective studies and multicenter
clinical trials.

CONCLUSIONS

We construct a novel prognostic model that provides new
insights into glioma prognosis. The PDPN and TIMP1may serve
as potential biomarkers for prognosis of glioma.
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Supplementary Figure 1 | An overall flowchart of this work.

Supplementary Figure 2 | Identification of consensus clusters by m6A RNA

methylation regulators. Consensus clustering matrix for k = 2 to K = 5 (A–D). (E)

Consensus clustering cumulative distribution function (CDF) for k = 2–9. (F)

Relative change in area under CDF curve for k = 2–5. Silhouette analysis (G) and

Gap analysis (H) showed that 2 clusters were appropriate classification for the

data.

Supplementary Figure 3 | Spearman correlation analysis of the 12 m6A

modification regulators.

Supplementary Figure 4 | The immune infiltration score between cluster 1 and

cluster 2.

Supplementary Figure 5 | Relationship between m6A RNA methylation

regulators and immune infiltration (A–J) violin plot for 12 m6A regulators and

immune infiltration subgroups.

Supplementary Figure 6 | Identification of key modules correlated with clinical

traits in the TCGA-GBM/LGG datasets through WGCNA. (A) Clustering

dendrograms of genes. Color intensity varies positively with age, m6A cluster

subgroups, immune infiltration subgroups, overall survival and overall survival

status. Analysis of the scale-free fit index (B) and the mean connectivity (C) for

various soft-thresholding powers. (D) Heatmap of the correlation between module

eigengenes and clinical traits of diffuse gliomas. Each cell contains the correlation

coefficient and P-value. (E) Dendrogram of all DEGs clustered based on a

dissimilarity measure (1- TOM). (F) Clustering of module eigengenes. The red line

indicates cut height (0.2). (G) Scatter plot of module eigengenes in the black

module. (H) Hub genes show strong associations with each other. Red and blue

colors indicate positive and negative coefficients and labels from−1 to 1 indicate

correlation strength.
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Supplementary Figure 7 | Association of hub genes’ expression with 12 m6A

RNA methylation regulators in gliomas. (A) TAGLN2 (B) PDPN (C) TIMP1 (D)

EMP3 (E) CHI3L1.

Supplementary Figure 8 | Association of hub genes’ expression with immune

infiltration cells in gliomas. (A) TAGLN2 (B) PDPN (C) TIMP1 (D) EMP3 (E)

CHI3L1.

Supplementary Figure 9 | (A,B) The process of building the risk scores

containing 4 hub genes and the coefficients calculated by least absolute shrinkage

and selection operator (LASSO) Cox regression algorithm are shown.

Supplementary Figure 10 | Expression of 4 hub genes in gliomas with different

clinicopathological features, from right to left, TIMP1, TAGLN2, PDPN, and EMP3,

respectively. (A) The expression levels of 4 hub genes in gliomas with different

WHO grades. (B) The expression levels of 4 hub genes in gliomas with different

transcriptome subtypes. (C) The expression levels of 4 hub genes in gliomas with

different IDH status.

Supplementary Figure 11 | H-score of EMP3 (A) and TAGLN2 (B) of glioma

tissue-microarrays.

Supplementary Figure 12 | (A,D) Western blot analysis validated the knockdown

of TIPM1 or PDPN in U87 and A172 cells. (B,E) Cell proliferation was determined

by ATP assay. (C,F) Flow cytometric analysis of Annexin V/PI staining in U87 and

A172 cells after transfection with 50 nmol/L siTIMP1 or siPDPN and siCtrl

for 72 h.
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