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Abstract

Aging is a multifactorial process that involves numerous genetic changes, so identifying

anti-aging agents is quite challenging. Age-associated genetic factors must be better under-

stood to search appropriately for anti-aging agents. We utilized an aging-related gene

expression pattern-trained machine learning system that can implement reversible changes

in aging by linking combinatory drugs. In silico gene expression pattern-based drug reposi-

tioning strategies, such as connectivity map, have been developed as a method for unique

drug discovery. However, these strategies have limitations such as lists that differ for input

and drug-inducing genes or constraints to compare experimental cell lines to target dis-

eases. To address this issue and improve the prediction success rate, we modified the origi-

nal version of expression profiles with a stepwise-filtered method. We utilized a machine

learning system called deep-neural network (DNN). Here we report that combinational drug

pairs using differential expressed genes (DEG) had a more enhanced anti-aging effect com-

pared with single independent treatments on leukemia cells. This study shows potential

drug combinations to retard the effects of aging with higher efficacy using innovative

machine learning techniques.

Introduction

Aging is recognized as a direct or indirect cause of many diseases [1]. The suppression and

reversion of aging is a considered methodology to prevent and cure its related diseases [2].

Aging is a complex genetic phenomenon, and the accepted strategy to delay aging is to regulate

gene expression [3] rather than focusing on developmental mutations [4, 5].

However, due to the complex networks that link aging-related factors, computation and

machine learning using previously accumulated data may be a promising approach to under-

stand hidden causative gene expression patterns and identify new anti-aging drugs [6].
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Using computational and bioinformatics strategies, researchers can now generate and ana-

lyze different kinds of data and drug repositioning (repurposing); in particular, finding new

uses for existing drugs has become a popular method for unique drug discovery [7, 8]. These

advances in drug screening are primarily due to the increasing number of gene expression-

profiling analyses that have exhibited desired drug effects.

Recent collaborative efforts have combined many different fields of study, and the com-

puter-aided drug discovery/design [9] method is adopted to facilitate the time-consuming pro-

cess and to increase the effectiveness of drug discovery [8]. Recently, many databases for in
silico drug development have been established; for example, Drugbank (2006) is a drug data-

base with comprehensive drug target data [10], and PDTD (2008) is a web-accessible protein

database for drug target identification [11]. Furthermore, large public databases are available

that contain information regarding relationships between drugs and genes, which have made

drug repositioning or repurposing more accessible.

CMap (Connectivity Map), which can reveal unexpected connections among drugs, genes,

and diseases [12], is a representative example of the use of drug repositioning. CMap shows

relationships between different biological states through drug treatment using gene expression

profiles and signatures [13]. Thus previously developed compounds can be predicted and

applied for non-targeted diseases. CMap has been applied to various drug development pro-

cesses. It is used as a logical reference because each chemical induces different gene expres-

sions, and all illnesses are caused or accompanied by changes in their gene expression.

Nevertheless, CMap has limitations, such as the use of a database with different cell lines for

gene expression profiles [14] that does reflect the real impact of a drug on a particular cell line

[15]. CMap is limited to only five cell lines such as: MCF7 (Breast cancer), PC3 (Prostate can-

cer), HL60 (Leukemia), ssMCF7 (Breast cancer-charcoal-stripped serum), SKMEL5 (Skin can-

cer). Therefore, if there are some diseases that we want to target that are not in these five cell

lines, it is difficult to derive an accurate drug lists. Also, Cmap can be used to select drugs that

can down-regulate the up-regulated genes and vice versa. However, the drug’s gene expression

pattern (derived from Cmap) and the inserted gene expression pattern used in the initial anal-

ysis do not always match. In other words, the drug derived from CMap does not cover all of

the gene expressions for that particular disease.

These above shortcomings may reduce the success rate of identifying potent drug reposi-

tioning. Additionally, it is difficult to alter the total gene expression pattern in the expected

direction using a single drug. Thus, similar to drug combination therapy, wherein multiple

chemicals are combined to treat disease [16], by combining two to three compounds with dif-

ferent mechanisms of action, researchers can overcome shortcomings in the drug reposition-

ing process. Drug combinations can also reduce the required concentration of individual

drugs [17].

This paper discusses how drug combinations can broadly manage a disease mechanism that

can be used to find unique drug targets. Also, it shows how machine learning can assist in

combining previous drugs that may have been missed by prior mathematical algorithms. In

the current study, gene expression profiles for acute myeloid leukemia patients were down-

loaded from Gene Expression Omnibus (GEO), a database repository of high throughput gene

expression data and hybridization arrays, chips, microarrays. The purpose of our model was to

determine what kind of gene, especially in PBMC (peripheral blood mononuclear cell), was

differentially expressed between two groups the young and the old. But as any normal PBMC

cohort didn’t meet the enough number of population, we used GSE6891 which was collected

for leukemia research including the ‘age’ information.

After that, differentially expressed genes (DEGs) in the aged group were determined with

an artificial neural network [18] and matched with drug-induced gene expression profiles
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from CMap to predict drug candidates that can reverse the DEG pattern of the aged group.

Using a deep neural network (DNN), an artificial neural network (ANN) with multiple layers

between the input and output layers was used to find the correct mathematical manipulation

to turn the input into the output, whether it be a linear relationship or a non-linear relation-

ship. An artificial neural network is an interconnected group of nodes, inspired by a simplifica-

tion of neurons in a brain. A two-stage search strategy was adopted to find drug combinations

to reverse the aging-related target DEGs more effectively than the one-drug approach.

The purpose of our DNN model was to determine if a specific gene was differentially

expressed between two samples. In many studies, fold-change approach and statistical meth-

ods including t-test and non-parametric test has been used as criterion to select differentially

expressed genes (DEGs). But these approaches are sensitive to outliers or sample size. In this

study, our goal was to develop a DEGs selection method which is robust to the sample size.

The training dataset consists of the DEGs of the results of LIMMA from multiple GSEs with

various sample size to this end.

Materials and methods

Deep neural network model

In this study, we built a deep neural network (DNN) model using the Tensorflow framework

[19] to predict whether a specific gene was differentially expressed between two samples. The

model is composed of an input layer of two nodes, three hidden layers with ten nodes each,

and an output layer with two nodes that represent “up-regulation” and “down-regulation.”

Rectified linear unit (ReLu) and Softmax was used as an activation function of hidden layers

and output layer, respectively. Gene expression data were downloaded from the Gene Expres-

sion Omnibus (GEO) site (https://www.ncbi.nlm.nih.gov/geo). We selected 13 datasets of leu-

kemia samples to train our DNN model. The training dataset consists of 730 samples, with 108

and 622 samples in the control and disease groups, respectively. We used the limma package in

GEO2R [20] (https://www.ncbi.nlm.nih.gov/geo/geo2r/) to compute p value for each probe

with a moderated t-test. The null hypothesis was that the gene was expressed the same in the

disease group and the control group. We cut off those probes with p value > 0.1. We labeled

the probes as “up” or “down” according to the expression values. Then we trained the DNN to

predict whether a specific gene is differentially expressed between two samples. According to

the experimental design of each dataset, we trained the model with expression value pairs of

each gene between samples, one from the control group and the other from the disease group

within individual datasets.

Gene expression data of aged group

Microarray data were downloaded from NCBI GEO with accession number GSE6891, which

were derived from 461 acute myeloid leukemia patients [21, 22]. GSE6891 is the clinical data

that represents the gene expression profiles of AML samples of two independent cohorts

(n = 247 and n = 214). Data analyses were carried out to discover and predict prognostically

relevant subtypes in AML (<60 years) based on their gene expression signatures. We catego-

rized these data into two groups based on the patients’ age. Samples from patients older than

50 were included in the aged group, and those younger than 30 were included in the normal

(young) group. The number of samples in the normal and aged groups were 84 and 159,

respectively. Differentially expressed genes were identified with GEO2R in the same way as

described in the ‘Deep neural network model’ section above. Lastly, we mapped the probe IDs

to Entrez-gene IDs.
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Drug-induced gene expression data

CMap is a resource that uses transcriptional expression data to probe relationships between

diseases, cell physiology, and therapeutics [23]. The gene expression data is downloaded from

CMap, which shows transcriptomic changes following drug treatment. In this study, we ana-

lyzed gene expression data from 1,072 drug experiments with HL-60 cells.

Cell culture

HL-60 cells were cultured at 1 × 105 cells/mL in Roswell Park Memorial Institute (RPMI) 1640

medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin at

37 ˚C in a 5% CO2 humidified atmosphere.

Cell viability analysis

Trypan blue staining was performed to assess cell viability. HL-60 cells were incubated in

48-well plates at 3.0 × 104 cells per well. After chemical treatment with or without pre-treat-

ment with 10μM hydrogen peroxide, cells were diluted by trypan blue working solution and

counted with a cell counter to allow for growth curve construction [24].

Reactive oxygen species (ROS) assay

HL-60 cells were seeded in 96-well plates at a density of 3.0 × 104 cells per well and then

incubated with 10μM hydrogen peroxide to achieve ROS-induced senescence. After 4hr,

each reagent was treated for 36hr in serum-free conditions. For cells, ROS production was

measured with the ROS Detection Assay Kit (Biovision, Inc., Milpitas, CA, USA) according

to the manufacturer’s protocol [25]. The plate was finally scanned with the CLARIOstar1

Plus microplate reader (BMG Labtech, Ortenberg, Germany). The drugs were administered

at the following concentrations: 30nM trichostatin A, 1μM vorinostat, 5μM anisomycin,

2mM metformin, 20μM danazol, 10μM glibenclamide, 20μM ampyrone, and 20μM

chlorzoxazone.

Nuclear morphology assay

For fluorescence microscope detection of nuclear morphology changes, chemically treated

HL-60 cells were washed twice with phosphate-buffered saline (PBS) and fixed with 4% para-

formaldehyde in PBS for 15 min. For nuclear staining, cells were incubated with 1.0μg/mL

4´,6-diamidino-2-phenylindole (DAPI). Fluorescent microscopy images were obtained using a

fluorescence microscope system [26].

Senescence-associated beta-galactosidase staining

HL-60 cells were seeded in 24-well plates at a density of 3.0 × 104 cells per well and then incu-

bated with 10μM hydrogen peroxide to achieve senescence. After 4hr, each reagent was treated

for 36hr in serum-free conditions. For cells, β-galactosidase assays were performed using a

Biovison Beta-Galactosidase Staining Kit (Biovision, Inc., Milpitas, CA, USA). The protocol

was conducted according to the manufacturer’s instructions [27]. After fluorescent micros-

copy images were obtained using a fluorescence microscope system, beta-galactosidase posi-

tive cells were counted with a cell counter.
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Results

Production of the gene expression pattern of the aged group and drug

response patterns

The GEO2R program [20] (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to calculate

differentially expressed genes between the aged and normal groups of leukemia patients cohort

(GSE6891), which 1,415 genes had a p<0.1. The samples from patients older than 50 were

included in the aged group, and those younger than 30 were included in the normal (young)

group, as shown in S1 Fig. Using our deep neural network (DNN), we computed the predictive

value of each probe and ruled out the probes with their predictive value less than 0.95 (Fig 1A).

The model architecture and other parameters are shown in S1 Table. We selected 13 datasets

of leukemia samples to train our DNN model (S2 Table). The performance measured by the

loss, accuracy, and area under the curve [28] is shown in S3 Table. Then we classified the

probes as “up-regulated” or “down-regulated” according to its predictive value (S2 Fig). After

that, we substituted the probe IDs with Entrez IDs to match them with the drug-induced gene

expression data. Our approach resulted in the DEGs list consisting of 1,293 probes (Fig 1B), in

which blue represents up-regulated genes, and red represents down-regulated genes in the

aged group compared to the normal group. In this study, which represents the original DEGs

(o-DEG) consisted of 676 up-regulated genes and 617 down-regulated genes. Drug-induced

DEG (d-DEG) pattern was created similarly. In the drug-induced expression data, DEGs were

selected with limma (p value� 0.1) and filtered with our DNN (predictive value� 0.95)

(Table 1, and S4 Table).

Initial and second matching

To identify a DEG pattern related to therapeutic direction, initial matching was conducted,

which reversed the o-DEG pattern, so that up-regulated genes were down-regulated and vice

versa. We called this reversed DEG pattern “i-DEG,” which means the “ideal” state to reverse

the current o-DEG of the aging state. We screened common genes between the i-DEG pattern

and each d-DEG pattern accordingly and built a common DEG (c-DEG) pattern called initial

matching (Fig 2A and 2B). The gene number in the c-DEG of each drug was scored, and chem-

icals were ranked based on score (S5 Table). Vorinostat [29], trichostatin A [30], lycorine, and

anisomycin were designated as results of the initial matching, but lycorine was ruled out due

to its expected toxicity (Table 2).

Since the drugs found in initial matching cannot reverse all the gene expressions in the o-

DEG pattern, a second matching phase was performed to discover other combinatorial drugs

to maximize the number of reversed genes with drugs found in initial matching. In the second

phase, the genes covered by the chemicals found in initial matching were excluded when scor-

ing the common genes between the i-DEG list and d-DEG patterns. The suggested drugs, in

combination with the drugs identified in initial matching, are shown in Table 3 and S6 Table.

The o-DEG and d-DEG patterns of vorinostat were compared, and the reversed match pixels

were removed and expressed as white color. Thus, white color represents higher simulated effi-

cacy of the drug. Combinatory treatment with anisomycin was predicted by broader white

areas and was expected to reverse more o-DEGs in combination with vorinostat (Fig 3). We

performed analysis and found genes that were both up-regulated in the first drug and down-

regulated in the second drug screening, and vice versa. A total of 14 drug combinations, genes

that overlap with Vorinostat and Anisomycin were only valid. Genes down-regulated in Vori-

nostat were up-regulated with effective values in Anisomycin (logFC>1, p<0.1). However, out

of a total of 18,476 genes (down-regulated in Vorinostat and up-regulated in Anisomycin),
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Fig 1. Original differentially expressed genes (o-DEGs) between normal and aged groups. (A) A schematic of training deep neural network (DNN) model with

gene expression data from 13 datasets from GEO. DEGs pattern of an aged group (o-DEG) was built and transformed into i-DEG for matching with d-DEG. d-DEG

was created with drug-induced gene expression data from the Connectivity Map. i-DEG and d-DEG are matched and scored to rank drugs. (B) A heatmap of up-

regulated genes (marked in blue) and down-regulated genes (marked in red) in the aged group compared to the normal group. The total gene number in this pattern

is 1,293.

https://doi.org/10.1371/journal.pone.0246106.g001
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only two genes IL6 and CYP1A1 were reversely regulated effectively, so it is shown that Aniso-

mycin does not neutralize the effect of Vorinostat (S7 Table).

Validation of the anti-aging effect via ROS staining

We evaluated drug cytotoxicity with trypan blue assay, and the no observed adverse effects

level (NOAEL) was selected as an experimental dose with sub-lethal conditions (S3A–S3H

Fig). To rapidly induce cellular senescence, we tried to generate reactive oxygen species (ROS),

chemically reactive chemical species containing oxygen, in HL-60 cells with hydrogen perox-

ide, and then directly measured the ROS concentration. In the first round of drug matching,

intracellular ROS levels in trichostatin A-, vorinostat-, and anisomycin-treated cells decreased

by 9% on average compared with their levels in the experimental control. (�p<.05) Interest-

ingly, their combinatorial treatment slightly and significantly lowered the ROS concentration

about 15% more than that with a treat by each chemical alone. (�p<.05) The predicted first

and second combinatory treatments showed an average efficacy of 27% (Fig 4A and 4B, and

S4A Fig). (��p<.01) Still, the randomly combined treatment did not decrease the ROS concen-

tration significantly (average 14.5%, S4B Fig). Taken together, the combination of drugs

seemed to protect against ROS-induced aging.

Analysis of anti-aging effect based on nuclear shape alteration

Commonly, significant changes in nuclear shape were seen in senescent cells. Untreated cells

were all relatively small in size and with adequately regular round morphology. Nevertheless,

Table 1. Differential gene expression patterns using DNNs.

Symbol Score Down Up Symbol Score Down Up

CD34 99.9991 0 1 PPBP 0 1 0

TRH 99.9976 0 1 CA2 0 1 0

HPGDS 99.9962 0 1 HOXA5 0 1 0

LOC100505501 99.9947 0 1 HOXA9 0 1 0

C1QTNF4 99.9941 0 1 HOXA10 0 1 0

CYTL1 99.9903 0 1 HBD 0 1 0

MSLN 99.9884 0 1 COL4A5 0 1 0

ITM2A 99.9883 0 1 BEX3 0 1 0

JUP 99.988 0 1 PF4 0 1 0

POU4F1 99.9846 0 1 EREG 0 1 0

CD200 99.9808 0 1 HOXB2 0 1 0

MN1 99.9803 0 1 HBM 0 1 0

TSPAN7 99.979 0 1 EPB42 0 1 0

UMODL1 99.979 0 1 XK 0 1 0

EGFL7 99.9787 0 1 HOXB3 0 1 0

KIF4CP 99.9749 0 1 RTL8C 0 1 0

TPSB2 99.9734 0 1 PROK2 0 1 0

BAALC 99.9709 0 1 NKX2-3 0 1 0

PLTP 99.969 0 1 SLC40A1 0 1 0

DNTT 99.968 0 1 TMEM176A 0 1 0

UHRF1 99.9659 0 1 PRKAR2B 0 1 0

ITGA6 99.9647 0 1 DMTN 0 1 0

PRAME 99.9627 0 1 ALAS2 0 1 0

TPSAB1 99.957 0 1 MEIS1 0 1 0

ZBTB8A 99.9552 0 1 GYPA 0 1 0

https://doi.org/10.1371/journal.pone.0246106.t001
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senescent cells were mainly large and characterized by an irregular distribution of fluorescence

[31, 32]. To investigate the morphological alterations that occur in aging nuclei, hydrogen per-

oxide was used to induce ROS-based senescence in HL-60 cells. The morphology of DAPI-

stained nuclei was analyzed (S5 Fig), and the ratio of distorted: altered nuclear shapes were

counted. Following treatment with 10μM H2O2, the first CMap drug treatment restored the

Fig 2. Flow of initial and second matching. (A) To identify a differentially expressed gene (DEG) pattern that is expected to

have anti-aging effects, we reversed the original DEGs (o-DEGs) of the aged group. The i-DEGs comprised 617 up-regulated

genes and 676 down-regulated genes. We performed matching with each drug-induced DEG (d-DEG) to select common

DEGs (c-DEGs). In the case of vorinostat, 91 up-regulated genes and 68 down-regulated genes were shared with the i-DEG

pattern. (B) To maximize the number of reversed genes, second matching was performed. Excluding the drugs chosen in

initial matching, drug-induced DEGs (d-DEGs) of each drug were matched with genes not covered by the first drug. In the

case of vorinostat and anisomycin, c-DEGs of vorinostat covered 159 genes, and anisomycin, 132 genes.

https://doi.org/10.1371/journal.pone.0246106.g002
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nuclear morphology to a more spherical shape by 32% in comparison with the experimental

control. (�p<.05) Furthermore, combinatorial drug treatment produced nuclei that were

about 25% more circular compared with those treated independently with the first or second

round drugs (Fig 5A and 5B, and S6A Fig). (�p<.05) The treatments of glibenclamide in com-

bination with trichostatin A or vorinostat decreased the nuclear shape alteration rate most

markedly. Still, the randomly combined treatment did not reduce the nuclear shape alteration

significantly. However, an unexpected combinatory treatment of vorinostat with trichostatin

A showed an average efficiency of 41% (S6B Fig). (�p<.05) Combination drug treatment

restored the nuclear morphology to a spherical shape compared to first drug only treatment.

Identify of anti-aging effect by senescence-associated beta-galactosidase

staining

Senescence-associated beta-galactosidase (SA-β-gal or SABG) is a hypothetical hydrolase

enzyme that catalyzes the hydrolysis of beta-galactosidase into monosaccharides only in senes-

cent cells. Senescence associated beta-galactosidase is regarded to be a biomarker of cellular

senescence. The alteration of senescent cell numbers was validated with beta-galactosidase

staining (S7 Fig). HL-60 cells were co-treated with trichostatin A, vorinostat, anisomycin with

combinatorial drug pairs for 36 h after incubation with 10μM H2O2. The percentage of beta-

galactosidase positive cells treated with the first-round CMap drugs (trichostatin A, vorinostat,

anisomycin) is slightly decreased compared with their levels in the experimental control

(10μM H2O2 only). The percentage of trichostatin A and danazol or trichostatin A and ampyr-

one combination-treated cells were decreased 48–51% compared with their levels in the first-

round drug-treated cells (Fig 6A and 6B, and S8A Fig). (��p<.01) However, the percentage of

Table 2. Drugs matched to i-DEG pattern in initial matching.

drug rank up down total

lycorine 1 70 103 173

vorinostat 2 91 68 159

trichostatin A 3 123 32 155

anisomycin 4 50 101 151

emetine 5 64 50 114

https://doi.org/10.1371/journal.pone.0246106.t002

Table 3. Drug combinations suggested in 2nd phase.

1st drug 2nd Drug up down total

vorinostat Metformin 73 81 154

Anisomycin 46 86 132

Danazol 42 9 51

Glibenclamide 37 14 51

Ampyrone 26 15 41

Chlorzoxazone 25 12 37

trichostatin A Metformin 39 12 51

Danazol 36 10 46

Glibenclamide 30 15 45

Ampyrone 20 15 35

anisomycin Metformin 107 45 152

Trichostatin A 117 26 143

https://doi.org/10.1371/journal.pone.0246106.t003
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β-galactosidase positive cells treated with randomly combined drug pairs did not decrease sig-

nificantly (S8B Fig). Taken together, combinational drug treat had a higher percentage of beta-

galactosidase compared to single drug.

Discussion

In this study, we used the public database CMap and focused on devising a new machine learn-

ing-combined analytical method to increase the efficiency of target discovery. As expected, the

combination of potential drugs displayed better effects than those of single treatment. Here,

we suggest how the two-step CMap strategy can be used to improve the success rate of target

discovery. We used a modified drug repositioning method that involved the combination of

the remaining non-overlapping DEG profile. These DEGs were reinserted into CMap for a

second time, and the drugs obtained through the first and second CMap utilization were com-

bined with the expectation of broadening the coverage of existing drugs. Finally, the machine

learning strategy was applied to accelerate the process and efficiently solve the input for the

third drug.

The three drugs retrieved from the database were trichostatin A, vorinostat, and anisomy-

cin. These were used only as components to evaluate whether 2-step filtered CMap works.

Here, we do not insist that these are effective drugs for anti-aging trials; instead, they served as

Fig 3. Simulation of drugs applied to aged samples. Original DEG pattern of the aged group. The drug-induced DEGs (d-DEGs) of vorinostat and

simulated effects when applied to o-DEGs. The d-DEGs of anisomycin and simulated combination effects with vorinostat.

https://doi.org/10.1371/journal.pone.0246106.g003
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Fig 4. Removal activity of cellular ROS concentration was detected as an anti-aging effect. ROS detection

measured by fluorescence intensity using a microplate reader. Hydrogen peroxide (H2O2) was administered to induce

ROS-based senescence, then single drugs or combinatorial drug pairs were administered to HL-60 cells to protect

against ROS-induced aging. (A) HL-60 cells were exposed to H2O2 (10 μM) for 24 h and then treated with trichostatin

A, metformin, danazol, glibenclamide, ampyrone, and each prior drug was co-treated with trichostatin A. or (B) with

vorinostat, metformin, anisomycin, danazol, glibenclamide and each prior drug with vorinostat for 36 h. The

intracellular ROS levels were detected with a microplate reader capable of measuring Ex/Em 495/529 nm spectra and

recorded. �p<.05, ��p<.01 vs H2O2 group.

https://doi.org/10.1371/journal.pone.0246106.g004
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Fig 5. Investigation of morphologic alterations by nuclear morphology assay. Nuclear morphology changes in

4´,6-diamidino-2-phenylindole (DAPI)-stained HL-60 cells assessed by fluorescence microscopy. (A) HL-60 cells were

exposed to H2O2 (10 μM) for 24 h and then treated with trichostatin A, metformin, danazol, glibenclamide, ampyrone,

and each prior drug was co-treated with trichostatin A or (B) with vorinostat, metformin, anisomycin, danazol,

glibenclamide and each prior drug with vorinostat for 36 h. Nuclear altered shape nuclei were counted and graphed. �p

<.05, ��p<.01 vs H2O2 group.

https://doi.org/10.1371/journal.pone.0246106.g005
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Fig 6. Combinatorial drug pairs decrease cell senescence in HL-60 cells. (A) HL-60 cells were exposed to H2O2

(10 μM) for 24 h and then treated with trichostatin A, metformin, danazol, glibenclamide, ampyrone, and each prior

drug was co-treated with trichostatin A. or (B) with vorinostat, metformin, anisomycin, danazol, glibenclamide and

each prior drug with vorinostat for 36 h. Then the cells were incubated with β-galactosidase and stained cells were

counted and plotted. �p<.05, ��p<.01 vs H2O2 group.

https://doi.org/10.1371/journal.pone.0246106.g006
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models to demonstrate the usefulness of our platform. Although some of these drugs have a

potential risk of side effects, they were utilized only as experimental examples in our process.

Trichostatin A serves as an antifungal antibiotic and selectively inhibits the class I and II

mammalian histone deacetylase (HDAC) families of enzymes [33]. Vorinostat is also a mem-

ber of a larger class of compounds that inhibit histone deacetylases (HDAC) [34]. Anisomycin

is an antibiotic produced by Streptomyces that inhibits eukaryotic protein synthesis [35].

Thus, these three chemicals are expected to pose nontoxic effects. One of the selected second-

ary drugs, metformin, is the first-line medication for the treatment of type 2 diabetes [36], par-

ticularly in people who are overweight [37]. Metformin is also used in the treatment of

polycystic ovary syndrome. Danazol is used in the treatment of endometriosis, fibrocystic

breast disease, hereditary angioedema, and other conditions [38, 39]. Glibenclamide is a medi-

cation used to treat diabetes mellitus type 2 [40]. Ampyrone is a metabolite of aminopyrine

with analgesic, anti-inflammatory, and antipyretic properties [41]. Chlorzoxazone (INN) is a

centrally acting muscle relaxant used to treat muscle spasms and the resulting pain or discom-

fort [42]. Based on their broad indications or combinatory effects (especially for glibencla-

mide), these drugs may be appropriate as secondary treatments, but not as main compounds

for anti-aging treatments.

Interestingly, some of the above agents have been suggested to have anti-aging effects.

Danazol may stimulate the recovery of shortened telomeres [43]. Although the exact mecha-

nism has not been revealed, metformin is known to have an anti-aging effect [44]. Glibencla-

mide induces neurogenesis [45]. Two HDAC inhibitors were suggested as anti-aging agents,

which were initially developed as anti-cancer therapeutics. HDAC inhibitors could be a regula-

tor of the aging process due to its epigenetic control ability [46].

Here, we focused on the anti-aging phenotype rather than cell death in leukemia HL-60

cells or cytotoxicity for cancer treatment. Because anti-cancer drugs generally induce cell

death and gene expression patterns for cell death can be easily shared [47], they are not suitable

for research on gene expression patterns. Thus, we speculated that anti-aging effects could be

used as a proper model to study gene expression-based drug repositioning. Leukemia and can-

cer cells are usually senescence-defective and fail to undergo apoptosis; however; these cells

may undergo premature senescence, otherwise called interim cell proliferative arrest, and it

has been show that treatments, such as LEE0011, to leukemia cells can induce cell senescence

[48–50].

We verified the anti-aging effects of these drugs through different experiments and found

that when drugs were mixed, low doses of individual drugs did not influence the overall out-

comes. Therefore, our method of identifying combination drug pairs may be sufficient to

cover a broad range of disease statuses. This paper showed that CMap-based machine learning

for drug repositioning could be used to develop unique targets for drug development through

well-designed strategies [51]. In the past, the identification of drugs with drug repositioning

has been serendipitous [52, 53]. However, as shown in this paper, rationalized off-target drug

repositioning using CMap can take many forms, and modified repositioning involving two-

step CMap analyses assisted drug discovery more effectively. It is expected that further bioin-

formatics analysis, systems biology approaches, or network-based approaches will be applied

for new drug discovery as technology develops.

Our computational method to identify combinational drug pairs is useful to cover a broad

range of diseases. These results show the potential of our strategy to discover new drug combi-

nations using a large scale input data set that results in a more fine-tuned screening to propose

the best anti-aging drug combinations.
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