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This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are
investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set.
Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed
by a series of crisp 𝛼-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal 𝛼-cut set
approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are
given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own
advantages in computing Steiner point of fuzzy set.

1. Introduction

Associated with every closed bounded convex set in R𝑛 is
a point known as Steiner point or curvature centroid [1].
Though the Steiner point of smooth convex curves was
defined and investigated by Seiner already in 1840, some
properties, like additivity, were discovered almost in 1960s
by Shephard [2]. From then on, Steiner point was known as
one of the important geometry points and was studied more
andmore. Nowadays, the Steiner point is regarded as the only
point-valued function defined for all convex bodies, which
is additive and uniformly continuous and commutes with
similarity transformations [1].

The utility of the Steiner point extends beyond its defi-
nition as a robust center of a set of static points. Locating
the Steiner point of an object is helpful for many tasks,
because Steiner point is an invariant point of an object, while
a transform is used on it in certain ways, such as growing
uniformly in all directions, moving in a line, and rotating
around an axis [3]. By finding the Steiner point of an object,
one can analyze some properties of an image [4]. To detect
or recognize an object in an image, Steiner point can help
us in some cases [5]. If two objects are similar but have
different Steiner points, one can distinguish them in this
way [6]. Tracking moving objects is now a popular approach
for research workers [7–10]; if Steiner points of objects are
referenced, they could save a large amount of computation.

In the early years, much work has been done on some
algebraic and analytic structure and behavior of Steiner
points, such as linear translation, continuity, and even affine
translation of an object. Three important properties were
studied and known as basic properties of Steiner points,
which are shortly denoted by commutation, addition, and
continuity [2, 11, 12]. Furthermore, the definition of Steiner
point was generalized from a polytope to a nonempty
compact subset 𝐾 of R𝑛 [13]. Furthermore, the stability and
eccentricity of Steiner point were researched and applied to
mobile facility location [14]. To implement calculation of
Steiner point, there are several alternatives [4]; one of the
efficient ways refers to [1], which is based on the exterior angle
of convex points in a polytope. In recent years, Steiner point
has been extended to fuzzy set and provides an alternative
strategy of defuzzication, which is regarded as the center of
the fuzzy set [3, 15].

This approach focuses on implementing Steiner point of
fuzzy set.Themotivation is trying to find an efficient method
to calculate the Steiner point of a fuzzy set. This paper is
arranged as follows. In the second part, some definitions
and properties of Steiner point of fuzzy set are investigated
referring to the literatures. The third part discusses strategies
to compute the Steiner point of a fuzzy set. Two main
methods are proposed for calculating the Steiner point of a
fuzzy set. In the fourth part, stability analysis of Steiner point
of fuzzy set is proposed. In the fifth part, some experiments
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on image processing are presented. The last part of the paper
contains the conclusions.

2. Definitions of Steiner Point and Properties

In the following let us suppose that 𝑛 ⩾ 0 is an integer. We
denote by K𝑛 the set of nonempty compact convex subsets
of R𝑛. The set K𝑛 is endowed with a linear structure in
which the addition of two subsets and the multiplication of
a subset by a positive real number are defined pointwise. We
furthermore endow K𝑛 with the Hausdorff metric 𝑑

𝐸
. Let

𝑆
𝑛−1 denote the unit sphere in R𝑛, and let 𝐶(𝑆𝑛−1) denote the
space of continuous functions from 𝑆

𝑛−1 to R, endowed with
the supremumnorm.Now, for𝐴 ∈ K𝑛, we define the support
function of 𝐴; see, for example, [16], by

ℎ
𝐴
: 𝑆
𝑛−1

→ R,

𝑒 → max {⟨𝑎, 𝑒⟩ : 𝑎 ∈ 𝐴} ,
(1)

where ⟨⋅, ⋅⟩ denotes the usual inner product of R𝑛. The
following definition is due to [3, 11].

Definition 1. The Steiner point of 𝐴 in 𝐾𝑛 is defined as

𝑆 (𝐴) =

1

𝑉 (𝐵
𝑛
)

∫

𝑆
𝑛−1

ℎ
𝐴
(𝑒) 𝑒 𝑑𝜆 (𝑒) , (2)

where 𝑒 ∈ 𝑆
𝑛−1 varies over the unit vectors of R𝑛, 𝜆 is the

Lebesgue measure on 𝑆
𝑛−1, and 𝑉(𝐵

𝑛

) is the volume of the
unit ball 𝐵𝑛 of R𝑛. Notice that 𝑠(𝐴) ∈ 𝐴.

We denote byF𝑛 the set of all functions from [0, 1] toK𝑛
which are (i) decreasing and (ii) left continuous on (0, 1] and
continuous at 0. For a fuzzy set 𝑢 ∈ F𝑛 and a rigid motion 𝜏
we set 𝜏𝑢 : [0, 1] → 𝐾

𝑛, 𝛼 → 𝜏(𝑢(𝛼)).

Definition 2. Let 𝜇 : [0, 1] → [0, 1] be a measure function.
For 𝑢 ∈ F𝑛, let

𝑆
𝜇
(𝑢) = ∫

[0,1]

𝑠 (𝑢 (𝛼)) 𝑑𝜇 (𝛼) , (3)

where 𝑠 is the Steiner point of crisp sets. Then 𝑆
𝜇
is a Steiner

point of fuzzy set 𝑢.

Based onDefinition 1, the following properties refer to [2,
12].

Theorem 3. Let 𝑠 : 𝑆𝑛−1 → R𝑛 have the following properties:

(S1) for any 𝐴, 𝐵 ∈ 𝐾
𝑛, 𝑠(𝐴 + 𝐵) = 𝑠



(𝐴) + 𝑠


(𝐵);
(S2) for 𝐴 ∈ 𝐾

𝑛 and any rigid motion 𝜏, one has 𝑠(𝜏𝐴) =
𝜏𝑠


(𝐴);
(S3) 𝑠 is continuous.

Then 𝑠 = 𝑠 is the Steiner point. These three properties are
described in [11] as addition, commutation, and continuity of
Steiner point.

The following theorem is due to [3], which is an extension
of Theorem 3 to the case of fuzzy set.

Theorem4. A function 𝑆 : F𝑛 → K𝑛 is called a Steiner point
if it has the following properties:

(SF0) for any 𝑢 ∈ F𝑛, 𝑆(𝑢) ∈ 𝑢(0);
(SF1) for any 𝑢, V ∈ F𝑛, 𝑆(𝑢 + V) = 𝑆(𝑢) + 𝑆(V);
(SF2) for 𝑢 ∈ K𝑛 and any rigid motion 𝜏, one has 𝑆(𝜏𝑢) =

𝜏𝑆(𝑢);
(SF3) 𝑆 is continuous.

As mentioned in [17, 18], a Steiner point of fuzzy set is
not defined unambiguously by the properties (SF0)–(SF3). It
is amazingly difficult to impose further properties on 𝑆 to
obtain uniqueness; it is an open question if this is possible in
some reasonable way. For the purpose of calculating Steiner
point of fuzzy set, we introduce the following definitions and
lemmas [3].

Definition 5. Let 𝐷 = (𝛼
0
, . . . , 𝛼

𝑘
) be a division of [0, 1],

which is 0 = 𝛼
0
< 𝛼
1
< ⋅ ⋅ ⋅ < 𝛼

𝑘
= 1. Then one calls

a fuzzy set 𝑢 ∈ F𝑛 a 𝐷-step fuzzy set if it is constant on
[𝛼
0
, 𝛼
1
], (𝛼
1
, 𝛼
2
], . . . , (𝛼

𝑘−1
, 𝛼
𝑘
], respectively. One denotes by

F𝑛
𝐷
the set of all𝐷-step fuzzy sets.

Definition 6. Let 𝐷 = (𝛼
0
, . . . , 𝛼

𝑘
) be a division of [0, 1].

Let 𝑠 : F𝑛
𝐷

→ R𝑛 be a function fulfilling the properties
(SF0)–(SF3) of Theorem 4. Then one calls a Steiner point
𝑠(𝑢) ∈ R𝑛 a 𝐷-step Steiner point if it is constant on
[𝛼
0
, 𝛼
1
], (𝛼
1
, 𝛼
2
], . . . , (𝛼

𝑘−1
, 𝛼
𝑘
], respectively. One denotes by

S𝑛
𝐷
the set of all𝐷-step Steiner points.

Lemma 7. Let 𝐷 = (𝛼
0
, . . . , 𝛼

𝑘
) be a division of [0, 1]. Let 𝑆 :

F𝑛
𝐷
→ R𝑛 be a function fulfilling the properties (SF0)–(SF3)

of Theorem 4. Then there are unique real numbers 𝑡
1
, . . . , 𝑡

𝑘

such that 𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑘
= 1 and, for all 𝑢 ∈ F𝑛

𝐷
,

𝑆 (𝑢) = 𝑡
1
𝑠 (𝑢 (𝛼

1
)) + ⋅ ⋅ ⋅ + 𝑡

𝑘
𝑠 (𝑢 (𝛼

𝑘
)) . (4)

Lemma 8. Let 𝐷 = (𝛼
0
, . . . , 𝛼

𝑘
) be a division of [0, 1]. Let 𝑆 :

F𝑛
𝐷
→ R𝑛 be a function fulfilling the properties (SF0)–(SF3)

ofTheorem 4. Let 𝑡
1
, . . . , 𝑡

𝑘
be the unique real numbers fulfilling

(4). Then 𝑡
1
, . . . , 𝑡

𝑘
⩾ 0.

For the general case, the Steiner point of a fuzzy set can
be calculated as follows.

Lemma 9. Let 𝑆 : F𝑛
𝐷

→ R𝑛 be a Steiner point. Then there
is a measure function 𝜇 : [0, 1] → [0, 1] such that, for all
𝑢 ∈ F𝑛,

𝑆 (𝑢) = ∫

[0,1]

𝑠 (𝑢 (𝛼)) 𝑑𝜇 (𝛼) . (5)

3. Calculation of Steiner Point of Fuzzy Set

From Lemma 9, we know that computing Steiner point of a
fuzzy set can be transformed to computing Steiner point of 𝛼-
cut sets of a fuzzy set, whichmeans that defuzzification is nec-
essary in fuzzy set Steiner point computing. Defuzzification
methods may be divided into two classes, considering either
the horizontal or the vertical representation of the fuzzy set.
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In the former, one assigns to each possibility value a set of
elements of the universe in agreement with that possibility
value, that is, 𝛼-cut representation, while in the latter one
assigns to each element of the universe a possibility value. In
this paper we focus on the former and discuss a little about
the later.

Definition 10. Let 𝛼 ∈ [0, 1] be a scale. Let 𝑢 ∈ F𝑛 be a fuzzy
set. Then one calls an 𝛼-cut 𝑢(𝛼) and 𝑢(𝛼) = {𝑥 ∈ R𝑛 |

𝑚
𝑢
(𝑥) > 𝛼}, which is a crisp set.

Now there are two strategies to compute Steiner point of
a fuzzy set. One is to find a series of 𝛼-cut sets of the fuzzy set,
compute Steiner point for each 𝛼-cut set, and combine them
in linear form as in (4). The other strategy is to try to find a
crisp set in the 𝛼-cut sets, which has the same Steiner point
with the fuzzy set.Wewill discuss these twomethods in detail
in the following.

In the case of step fuzzy set, we have fixed the number of
𝛼-cut sets, so it is easy to transform a fuzzy set into a series
of crisp sets. But there may be a large number of 𝛼-cut sets,
which are not necessary in calculating Seiner point of a fuzzy
set. So, in this case, we prefer the step Steiner point, which is
as defined in Definition 6.

From Lemma 7, it is known that once 𝑘 𝛼-cut sets
of fuzzy set 𝑢 are confirmed, which can be denoted by
𝑢(𝛼
1
), . . . , 𝑢(𝛼

𝑘
), computing Steiner point of fuzzy set 𝑢 is

equivalent to computing Steiner points of the series of 𝑘 𝛼-
cut sets, namely, 𝑠(𝑢(𝛼

1
)), . . . , 𝑠(𝑢(𝛼

𝑘
)), and combining them

by a series of weights 𝑡
1
, . . . , 𝑡

𝑘
which satisfy

𝑡
1
+ ⋅ ⋅ ⋅ + 𝑡

𝑘
= 1 (6)

and 𝑡
1
⩾ 0, . . . , 𝑡

𝑘
⩾ 0. One of the choices is simply taking

𝑡
𝑖
= 𝛼
𝑖
− 𝛼
𝑖−1
, for 𝑖 = 1, . . . , 𝑘, (7)

where 𝛼
0

= 0. In the view of numerical computing,
calculating Steiner point of a fuzzy set in thisway can bemuch
more complex, while a lot of level sets are taken for the fuzzy
set.

For the sake of convenience in computing Steiner point
of a fuzzy set, we introduce the second strategy (which
is similarly approximate). Firstly, consider the following
definition.

Definition 11. Let 𝑢(𝛼
𝑜
) be a 𝛼-cut of fuzzy set 𝑢 ∈ F𝑛. Then

one calls 𝑢(𝛼
𝑜
) the optimal approximate crisp set to 𝑢 if

𝑑 (𝑢 (𝛼
𝑜
) , 𝑢) = min

𝛼∈[0,1]

𝑑 (𝑢 (𝛼) , 𝑢) , (8)

where 𝑑(𝑢(𝛼), 𝑢) is the distance between crisp set 𝑢(𝛼) and
fuzzy set 𝑢.

Theorem 12. Let 𝑢(𝛼
𝑜
), one of 𝛼-cut sets of fuzzy set 𝑢, be the

optimal approximate crisp set to fuzzy set 𝑢. Then 𝑆(𝑢(𝛼
𝑜
)), as

defined in Definition 1, namely,

𝑆 (𝑢) = 𝑆 (𝑢 (𝛼
𝑜
)) (9)

is a Steiner point of fuzzy set 𝑢.

Proof. We prove that 𝑆 satisfies (S1)–(S3) in Theorem 3.
Denote by 𝜏 a real number and denote by 𝑢(𝛼) and V(𝛼) the
𝛼-cut sets of fuzzy sets 𝑢, V ∈ F𝑛, respectively. According to
[17], (𝑢 + V)(𝛼) = 𝑢(𝛼) + V(𝛼) and (𝜏𝑢)(𝛼) = 𝜏𝑢(𝛼); then

𝑆 ((𝑢 + V) (𝛼)) = 𝑆 (𝑢 (𝛼) + V (𝛼)) = 𝑆 (𝑢 (𝛼)) + 𝑆 (V (𝛼)) ,

𝑆 (𝜏𝑢 (𝛼)) = 𝜏𝑆 (𝑢 (𝛼)) .

(10)

So (S1) and (S2) are satisfied. Rather,more 𝑆 is continuous,
which is (S3). This completes the proof.

Another motivation is from [15, 17] and Lemma 9. If we
rewrite (5) as

𝑆 (𝑢) =

∫
[0,1]

𝑠 (𝑢 (𝛼)) 𝑑𝜇 (𝛼)

∫
[0,1]

𝑑𝜇 (𝛼)

, (11)

it is clear that Steiner point of a fuzzy set is the average of the
Steiner points of all the level sets 𝑢(𝛼). Note that 𝑠(𝑢(𝛼)) is
continuous with respect to 𝛼; by the Mean Value Theorem,
there exists an �̄� such that

𝑆
𝜇
(𝑢) = ∫

1

0

𝑠 (𝑢 (𝛼)) 𝜇 (𝛼) 𝑑𝛼 = 𝑠 (𝑢 (�̄�)) . (12)

Theorem 13. If 𝑢 is a convex fuzzy set and 𝑠(𝑢(𝛼)) is
continuous with respect to 𝛼, then 𝑢(�̄�) in (12) satisfies

𝑑 (𝑢 (�̄�) , 𝑢) = min
𝛼∈[0,1]

𝑑 (𝑢 (𝛼) , 𝑢) . (13)

It follows from [15] that the Steiner point is a characteris-
tic point of a fuzzy set in the sense of

inf
𝑥∈R𝑛

𝑑 (𝑥, 𝑢) = 𝑑 (𝑠 (𝑢) , 𝑢) , (14)

where 𝑑 is the 𝐿
2
-metric on fuzzy spaceF𝑛. This implies the

following.

Theorem 14. For any Steiner point of fuzzy set 𝑢 ∈ F𝑛 there
is 𝑠(𝑢) ∈ 𝑢(�̄�), where 𝑢(�̄�) = 𝑢(𝛼

𝑜
) is an 𝛼-cut set of fuzzy set

𝑢 and satisfies (8).

Theorem 15. A Steiner point of 𝑢(�̄�), which is an 𝛼-cut set of
fuzzy set 𝑢 and satisfies (8), is also a Steiner point of fuzzy set
𝑢; namely,

inf
𝑥∈𝑢(�̄�)

𝑑 (𝑥, 𝑢 (�̄�)) = 𝑑 (𝑠 (𝑢 (�̄�)) , 𝑢 (�̄�)) = 𝑑 (𝑠 (𝑢) , 𝑢) . (15)

If it is reasonable, we can introduce the following defini-
tions.

Definition 16. For 𝐴 ∈ F2, one defines the support function
of 𝐴 by

ℎ̃
𝐴
: F
𝑛−1

→ R,

𝑒 → max {⟨ ̄𝑎, 𝑒⟩ : ̄𝑎 = 𝑚̃
𝐴
(𝑎) 𝑎, 𝑎 ∈ 𝐴} ,

(16)
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where𝑚̃
𝐴
(𝑎) is amembership function of the fuzzy set𝐴, and

𝐴 = 𝐴 (𝛼
𝑜
) = {𝑥 ∈ 𝐴 (𝛼

𝑜
) | 𝑑 (𝐴 (𝛼

𝑜
) , 𝐴)

= min
𝛼∈[0,1]

𝑑 (𝐴 (𝛼) , 𝐴)} .

(17)

Definition 17. For 𝐴 ∈ F𝑛, the Steiner point of fuzzy set 𝐴 is
given by

𝑆 (𝐴) =

1

𝑉 (𝐵
𝑛
)

∫

𝑆
𝑛−1

ℎ̃
𝐴
(𝑒) 𝑒 𝑑𝜆 (𝑒) , (18)

where 𝑒 ∈ 𝑆
𝑛−1 varies over the unit vectors of R𝑛, 𝜆 is the

Lebesgue measure on 𝑆
𝑛−1, and 𝑉(𝐵

𝑛

) is the volume of the
unit ball 𝐵𝑛 of R𝑛.

Now what we need is computing Steiner point based
on crisp set, for a 2-dimensional case, based on polygon or
convex polygon. For a 2D set, there are two steps to compute
its Steiner point in numerical sense.The first step is to find all
the convex points of the set and to form a convex polygon 𝐴,
which is proved to be linear computational complex in [19].
The second step is referring to [2, 20]. Consider

𝑆 (𝐴) =

𝑀

∑

𝑖=1

𝜓 (𝑝
𝑖
, 𝐴) 𝑝
𝑖
, (19)

where 𝜓(𝑝
𝑖
, 𝐴), for 𝑖 = 1, . . . ,𝑀, is the proportion to 2𝜋 of

the external angle of convex polygon 𝐴 at 𝑝
𝑖
.

4. Stability Analysis of Steiner Point

From [15], we know the following fact. For 𝛼 ∈ (0, 1] any 𝛼-
cut of a 𝑢 ∈ F𝑛 is a convex compact subset of R𝑛 and can
be uniquely characterized by its so-called support function.
Therefore, the fuzzy set itself is uniquely characterized by the
function

𝑠
𝑢
(𝑒, 𝛼)

= sup {⟨𝑒, 𝑎⟩ : 𝑎 ∈ 𝑢 (𝛼) , 𝑒 ∈ 𝑆𝑛−1, 𝛼 ∈ (0, 1]} .

(20)

Now, the Steiner point 𝑆(𝑢) of a fuzzy set 𝑢 ∈ F𝑛 with ‖𝑢‖
1
<

∞ is given by

𝑆 (𝑢) = 𝑛∫

1

0

∫

𝑆
𝑛−1

𝑠
𝑢
(𝑒, 𝛼) 𝑒𝜆 (𝑑𝑒) 𝑑𝛼, (21)

where 𝜆 is the Lebesgue measure on 𝑆𝑛−1 with 𝜆(𝑆𝑛−1) = 1. So
if we denote

𝑠 (𝑢 (𝛼)) = 𝑛∫

𝑆
𝑛−1

𝑠
𝑢
(𝑒, 𝛼) 𝑒𝜆 (𝑑𝑒) , (22)

the Steiner point 𝑆(𝑢) of a fuzzy set𝑢 ∈ F𝑛 takes the following
form:

𝑆 (𝑢) = ∫

1

0

𝑠 (𝑢 (𝛼)) 𝑑𝛼. (23)

Supposing 𝛼
1
, 𝛼
2

∈ (0, 1] are any two values, the
corresponding 𝛼-cut sets are 𝑢(𝛼

1
) and 𝑢(𝛼

2
). Now let us

discuss their differences in computing the Steiner points:





𝑆 (𝑢 (𝛼

1
)) − 𝑆 (𝑢 (𝛼

2
))




=










𝑛 ∫

𝑆
𝑛−1

𝑠
𝑢
(𝑒, 𝛼
1
) 𝑒𝜆 (𝑑𝑒)

− 𝑛∫

𝑆
𝑛−1

𝑠
𝑢
(𝑒, 𝛼
2
) 𝑒𝜆 (𝑑𝑒)










⩽ 𝑛∫

𝑆
𝑛−1





𝑠
𝑢
(𝑒, 𝛼
1
)

−𝑠
𝑢
(𝑒, 𝛼
2
)




𝑒𝜆 (𝑑𝑒) .

(24)

Considering that 𝑠
𝑢
(𝑒, 𝛼) is bounded, namely, there exists an

upper boundary𝐾(𝑒) for each 𝑒 ∈ 𝑅𝑛−1 such that




𝑠
𝑢
(𝑒, 𝛼
1
) − 𝑠
𝑢
(𝑒, 𝛼
2
)




⩽ 𝐾 (𝑒)





𝛼
1
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Therefore




𝑆 (𝑢 (𝛼

1
)) − 𝑆 (𝑢 (𝛼

2
))




⩽ 𝐾





𝛼
1
− 𝛼
2





, (26)

where

𝐾 = 𝑛∫

𝑆
𝑛−1

𝐾 (𝑒) 𝑒𝜆 (𝑑𝑒) (27)

is a Lipschitz constant.
Let us consider an example in the following. Suppose that

𝐴 ∈ R𝑛 is a crisp set and 𝐴 ∈ F𝑛 is the corresponding fuzzy
set with the following membership:

𝑚̃
𝐴
(𝑥) =

1

√2𝜋𝜎

𝑒
−(𝑥−𝜇)

2

/2𝜎
2

. (28)

That is,𝐴 = {(𝑥,𝑚̃
𝐴
(𝑥))}. The 𝛼-cut of fuzzy set𝐴 is given by

𝐴
𝛼
= {𝑥 | 𝑚̃

𝐴
(𝑥) > 𝛼} = {𝑥 |

1

√2𝜋𝜎

𝑒
−(𝑥−𝜇)

2

/2𝜎
2

> 𝛼} .

(29)

Notice the following fact:

𝑠̃
𝐴
(𝑒, 0) = sup {⟨𝑒, 𝑥⟩ , 𝑥 ∈ 𝐴

0
= 𝐴} = ℎ

𝐴
(𝑒) (30)

and (25); then
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⩽ 𝐾 (𝑒) 𝛼. (31)

This leads to





𝑆 (𝐴
𝛼
) − 𝑆 (𝐴)






⩽ 𝐾𝛼. (32)

5. Experimental Examples

In this section, we investigate four fuzzy images as an exam-
ple, which were proposed in [21]; see Figure 1. Figure 1(A)
shows a synthetic fuzzy set, described by amembership func-
tion radially nonincreasing from the centroid. Figure 1(B)
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(A) (a) (B) (b)

(C) (c) (D) (d)

Figure 1: Test images used for evaluating two strategies of computing Steiner point of fuzzy set. The linear combination of Steiner point is
marked by “o” and the approximate Steiner point is marked by “+.” (A) Synthetic fuzzy image. (a) The Steiner point of image (A). (B) A slice
of a 3DMRA fuzzy segmented image of a human aorta. (b)The Steiner point of image (B). (C) Microscopy images of a born implant. (c)The
Steiner point of image (C). (D) Synthetic fuzzy image. (d) The Steiner point of image (D).

presents a fuzzy segmented slice of a three-dimensional
magnetic resonance angiography (MRA) image of a human
aorta at the position where it splits into the two iliac
arteries. Figure 1(C) shows a part of a histological light
microscope image of a bone implant (inserted in a leg
of a rabbit). The selected part of the fuzzy segmented
image contains a bone area, surrounded by a nonbone area.
Figure 1(D) shows a synthetic fuzzy set caused by motion,
as described in [22], with len = 45 and theta = 30.
We illustrate the implementation of the Steiner point of
the fuzzy object in Figure 1 with the method presented
in Section 3 and the comparison of the linear combina-
tion Steiner point with the proposed approximate Steiner
point.

There are some technical issues that should be interpreted
here. First, commonly not always all grays appear in an
image, so we can find the minimum gray (denoted by 𝑔min)
and the maximum one (denoted by 𝑔max) of the image by
computing histogram of the image. Then, we divide the
interval [𝑔min, 𝑔max] into several levels with equal metric; that
is, 𝑔min = 𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑘
= 𝑔max, and each gray corresponds to

an 𝛼-cut of the fuzzy image. Second, in order to define the
distance between the fuzzy image (the original image) and
certain level image, we unify the grays of the fuzzy image by
𝐽
0
= (𝐽 − 𝑔min)/(𝑔max − 𝑔min), where 𝐽 is the gray matrix

of the original fuzzy image, unify all the image grays of
level 𝑎

𝑖
, 𝑖 = 0, . . . , 𝑘, which is denoted by 𝐽

𝑎
, and compute

the distance by ‖𝐽
0
− 𝐽
𝑎
‖. Third, considering that the Steiner

point of an object in an image is controlled by the shape of
the object and the shape of the object depends greatly on
boundary detecting, in most cases, boundaries of an object
can be detected well in certain interval of gray, for example,
in the middle part of interval [𝑔min, 𝑔max]. So we can choose
part of the interval [𝑔min, 𝑔max] and divide it into several
levels to compute the Steiner points. Here, we choose half of
the interval [𝑔min, 𝑔max] as the considered domain; namely,
𝐺 = [𝑔min + (1/4)(𝑔max − 𝑔min), 𝑔max − (1/4)(𝑔max − 𝑔min)] or
𝐺 = (1/4)[3𝑔min + 𝑔max, 3𝑔max − 𝑔min].

In this paper, every degree of 𝛼-cut image is given
according to the gray level of the image. Steiner points of
the synthetic images, Figures 1(A) and 1(D), are shown in
Figures 1(a) and 1(d), and Steiner points of the two real fuzzy
segmented images, Figures 1(B) and 1(C), are given in Figures
1(b) and 1(c). In each image, the linear combination of Steiner
point with equal weight of 1/8 for all levels is given and
marked by “o.”Also, given in Figure 1, the approximate Steiner
point is marked by “+,” which has the minimum distance
between the fuzzy image and those gray images in all 𝛼-cut
sets.

In Figure 2, we plot the distance between the Steiner
point of each gray level and the linear combined Steiner
point in Figures 1(A), 1(B), 1(C), and 1(D). Also, we present
their corresponding 𝛼-cut sets in Figure 1.Theminimal value
of distance between the approximate Steiner point and the



6 The Scientific World Journal

0 0.2 0.60.4 0.8 1
0

0.2

0.4

0.6

0.8

1

St
ei

ne
r d

ist
an

ce

𝛼

(a) 𝛼 = 0.3253 (b) 𝛼 = 0.3373 (c) 𝛼 = 0.5000

(d)𝛼 = 0.5128 (e) 𝛼 = 0.4673 (f) 𝛼 = 0.5000

(g) 𝛼 = 0.5769 (h) 𝛼 = 0.5897 (i) 𝛼 = 0.5000

(j) 𝛼 = 0.4643 (k) 𝛼 = 0.6345 (l) 𝛼 = 0.5000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

St
ei

ne
r d

ist
an

ce

𝛼

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

St
ei

ne
r d

ist
an

ce

𝛼

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

St
ei

ne
r d

ist
an

ce

𝛼

Figure 2: The Steiner point calculated by 𝛼-cut, and comparison of the distance between Steiner point of each gray level and the linear
combined Steiner point. First column: plots of distances.Theminimum is indicatedwith a star (∗). Second column: the Steiner point calculated
by 𝛼-cut at the minimum distance. Third column: the Steiner point calculated by 𝛼-cut at the second smallest distance. Fourth column: the
Steiner point calculated by 𝛼-cut at 𝛼 = 0.5.

combination of Steiner point is indicated by “∗” in the
plot. The corresponding value of 𝛼 provides the optimal
approximate 𝛼-cut. The three Steiner points calculated by 𝛼-
cut set with the minimum distance, with the second smallest
distance, and at 𝛼 = 0.5, respectively, are shown the last
three columns in Figure 1. Table 1 presents the Steiner point
of the object obtained by different methods and the distance
between two Steiner points. var1 in Table 1 represents the
variance of distance between the Steiner point of each gray
level and the linear combination of Steiner point, while var2
presents the variance of distance between Steiner points
of two adjacent gray levels. Results, expressed in var1 and
var2, show that the distance between Steiner point of each

Table 1: Comparison of the Steiner points obtained by twomethods.

Figure Approximate S.P. D-step S.P. Distance var1 var2
Figure 1(A) (83.49, 86.67) (82.95, 86.42) 0.17 0.04 0.06
Figure 1(B) (136.84, 123.30) (136.27, 120.38) 0.03 0.08 0.05
Figure 1(C) (64.61, 120.46) (63.39, 120.06) 0.06 0.02 0.05
Figure 1(D) (243.19, 165.84) (242.26, 165.89) 0.01 0.04 0.04

gray level and the linear combination of Steiner point is
more stable than the distance between Steiner points of two
adjacent gray levels.
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if 𝐽 is a color image, convert it into the gray
𝑔min := min (histogram (𝐽))

𝑔max := max (histogram (𝐽))

𝐽
0
:= (𝐽 − 𝑔min)/(𝑔max − 𝑔min)

define 𝑒 as a large number to record the image difference, for example, 𝑒 := 10
6

define 𝑑 as the 𝛼-cut step with size in [0, 1], for example, 𝑑 = 0.05

for 𝛼 from 0 to 1 step 𝑑
𝐽
1
:= (𝐽
0
> 𝛼) // 𝛼-cut image

compute the convex hull of the object in image 𝐽
1
, that is,

𝐾:= convexhull(𝐽
1
)

calculate the Steiner point of the object:
(𝑠
𝑥
, 𝑠
𝑦
):= CalculateSteinerPoint(𝐾)

//Here, (𝑠
𝑥
, 𝑠
𝑦
) is the 2-dimension Steiner point

computing image distance between two neighbor gray:
𝑑 (𝐽
1
, 𝐽
0
) := |𝐽

1
− 𝐽
0
|

record the Steiner point corresponding to the minimum varying image gray:
if 𝑑(𝐽
1
, 𝐽
0
) < 𝑒 then

𝑒 := 𝑑(𝐽
1
, 𝐽
0
)

(𝑠
𝑥0
, 𝑠
𝑦0
) := (𝑠

𝑥
, 𝑠
𝑦
) //Record the approximate Steiner point

end if
end for
Function CalculateSteinerpoint(𝐾)
denote 𝑞

𝑖
∈ 𝐾 (𝑖 = 0, . . . , 𝑛)

for 𝑖 from 0 to 𝑛 step 1
compute the external angle 𝜃

𝑖
of convex polygon at 𝑞

𝑖

(𝑠
𝑥
, 𝑠
𝑦
) := (𝑠

𝑥
, 𝑠
𝑦
) + 𝑞
𝑖
𝜃
𝑖

end for

Algorithm 1: Implementations of algorithm.

Experiment Results Analysis. Both two strategies of imple-
menting Steiner point of fuzzy set have their own advantages
and shortcuts. With the growing of the distance of image
gray, the distance between the linear combined Steiner point
and the Steiner points of each gray level do not enlarge
rapidly. This means that the linear combined Steiner point
shows more stability than the approximate Steiner point.
Unfortunately, the former needs more computational time
than the later, especially when more levels of gray are chosen
to compute Steiner point. In our opinion, a suitable weight for
combining the Steiner points of all the levels of fuzzy image
is not reasonable to perform without having a particular
application in mind. Also, from Figure 2, we see that the 𝛼-
cut image is obtained by 𝛼-cut at optimal value of 𝛼 in second
column, which is chosen as the approximate Steiner point.

6. Conclusion

This approach focuses on implementing Steiner point of fuzzy
set and some properties of Steiner point on fuzzy set. We
try to find some efficient methods to compute Steiner point
of fuzzy set. Two strategies of computing Steiner point of
fuzzy set are proposed, namely, the linear combination of
Steiner point, which calculates the Steiner point based on the
approximate 𝛼-cut set.We also discuss some stable properties
of Steiner point of fuzzy set and give some experiments
on image processing. However, there are still some open

problemswhich needmore investigationwhile implementing
Steiner point of a fuzzy set, such as how to choose each level
of a fuzzy set, which is suitable for defuzzificating a fuzzy
set? Does there exist unique choice of levels for fuzzy set in
computing Steiner point? How to choose suitable weights for
combining Steiner point of different levels? Those problems
have high potential value in image processing.

Appendix

Implementations of Algorithm

See Algorithm 1.
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