
Fitschen-Oestern et al. BMC Musculoskeletal Disorders           (2019) 20:72 
https://doi.org/10.1186/s12891-018-2330-1
CORRECTION Open Access
Correction to: A new multiple trauma
model of the mouse

Stefanie Fitschen-Oestern1*, Sebastian Lippross1, Tim Klueter1, Matthias Weuster1, Deike Varoga1,
Mersedeh Tohidnezhad2, Thomas Pufe2, Stefan Rose-John3, Hagen Andruszkow4, Frank Hildebrand4,
Nadine Steubesand1, Andreas Seekamp1 and Claudia Neunaber5
Correction

After publication of the original article [1], it was noticed
that the following corrections needed to be implemented:

1. Claudia Neunaber belongs to the Trauma
Department of the Hannover Medical School,
Hannover, Germany and is in charge of the
research department.

2. Some important publications describing animal
models combining chest trauma and fractures of
the long bones have not been cited in the original
article and have been included. Sections of the
background part that highlight the uniqueness of
the presented combination of thorax trauma and
femur fracture stabilized by intramedullary fixation
are capable of being misunderstood. Therefore, the
appropriate sections have been corrected in this
Correction article below.
Abstract
Background
Blunt trauma is the most frequent mechanism of injury in
multiple trauma, commonly resulting from road traffic col-
lisions or falls. Two of the most frequent injuries in patients
with multiple trauma are chest trauma and extremity frac-
ture. Several trauma mouse models combine chest trauma
and head injury, but only a few trauma models include the
combination of chest trauma and long bone fracture.
Outcome is essentially determined by the combination

of these injuries. In this study, we attempted to estab-
lish a reproducible novel multiple trauma model in
mice that combines blunt trauma, major injuries and
simple practicability.
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Methods
Ninety-six male C57BL/6 N mice (n = 8/group) were
subjected to trauma for isolated femur fracture and a
combination of femur fracture and chest injury. Serum
samples of mice were obtained by heart puncture at de-
fined time points of 0 h (hour), 6 h, 12 h, 24 h, 3 d
(days), and 7 d.

Results
A tendency toward reduced weight and temperature was
observed at 24 h after chest trauma and femur fracture.
Blood analyses revealed a decrease in hemoglobin during
the first 24 h after trauma. Some animals were killed by
heart puncture immediately after chest contusion; these
animals showed the most severe lung contusion and
hemorrhage. The extent of structural lung injury varied
in different mice but was evident in all animals. Repre-
sentative H&E-stained (Haematoxylin and Eosin-stained)
paraffin lung sections of mice with multiple trauma re-
vealed hemorrhage and an inflammatory immune re-
sponse. Plasma samples of mice with chest trauma and
femur fracture showed an up-regulation of IL-1β (Inter-
leukin-1β), IL-6, IL-10, IL-12p70 and TNF-α (Tumor ne-
crosis factor- α) compared with the control group. Mice
with femur fracture and chest trauma showed a significant
up-regulation of IL-6 compared to group with isolated
femur fracture.

Conclusions
The multiple trauma mouse model comprising chest
trauma and femur fracture enables many analogies to
clinical cases of multiple trauma in humans and dem-
onstrates associated characteristic clinical and patho-
physiological changes. This model is easy to perform,
is economical and can be used for further research
examining specific immunological questions.
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Background
Multiple trauma accounts for a significant proportion of
deaths worldwide [2]. The most frequent injuries in
trauma patients are chest trauma, extremity fractures
and head injuries [3].
Blunt chest trauma can result in significant morbidity

in injured patients, and both chest wall and intrathoracic
visceral injuries can lead to life-threatening complica-
tions if not anticipated and treated [4]. Extremity frac-
tures such as a femur fracture must be stabilized.
The time point of operative treatment is still contro-

versially discussed, although most of the literature rec-
ommends early surgical stabilization of these fractures.
Respiratory deterioration can be exacerbated by the
presence of unstable long bone fractures.
Several trauma mouse models focus on blunt chest

trauma and head injury, but the combination of chest
trauma and long bone fracture is less presented in ani-
mal models [5, 6].
Trauma causes tissue damage, blood loss and activation

of the immune system. The extent of the inflammatory im-
mune response correlates with the degree of tissue damage
[7], whereas extremity fractures in particular are generally
accompanied by extensive soft tissue damage in multiple
trauma patients [8]. In addition, extremity fractures are
associated with an increased risk of complications [9],
which might explain why damage control surgery is
currently a point of interest [10]. Cytokines are important
components of the immune response, and their release cor-
relates with the degree of trauma depending on the extent
of the associated injury [11]. Cytokines such as IL-6 serve
as markers for the severity of trauma and early identifica-
tion of high-risk patients for the development of posttrau-
matic MODS (multi organ dysfunction syndrome) [12].
Chest trauma is associated with a serious risk of post-

traumatic complications, including hypoxia caused by
lung contusion, blood loss, heart contusion, pericardial
tamponade or sepsis due to esophageal or tracheal per-
forations. Pulmonary contusion is the most frequently
diagnosed intrathoracic injury related to blunt chest
trauma, affecting 17–25% of adult blunt chest trauma
patients [13]. It is also an independent risk factor for the
development of pneumonia, severe clinical acute lung
injury (ALI) and acute respiratory distress syndrome
(ARDS) [14]. Lung contusion affects approximately 17–
25% of adult patients with blunt trauma and is the lead-
ing cause of death from blunt thoracic injury [14].
Patients with concurrent blunt chest trauma and long
bone fractures have an especially higher incidence of
pulmonary damage [15].
The molecular mechanisms of the immune response

after multiple trauma are highly complex and not yet
completely understood. Only a few murine chest trauma
models have been established to date and there are even
less models that combine in general a chest trauma with
an isolated femur fracture [5, 6, 16–18].
We aimed to develop a standardized, reproducible,

and clinically relevant multiple trauma mouse model of
chest trauma [19] and femur fracture [20] to investigate
the pathophysiologic changes, especially cytokine ex-
pression, after multiple trauma. Both methods have been
evaluated in isolation in several studies and described as
reproducible [21–25].
In addition to clinical parameters, we focused on post-

traumatic cytokine release based on knowledge of the
tight correlation between immunological changes and
the degree of tissue damage as well as the severity of is-
chemia [7].

Materials and methods
Animal care
Experiments were carried out in accordance with the
German Animal Welfare Legislation and were approved
by the local institutional animal care and research advis-
ory committee and permitted by the local government of
Lower Saxony, Germany (AZ 10AO29). The study was
performed at the experimental trauma surgery labora-
tory of Hannover Medical School (MHH).
Experiments were conducted in an operating room at

the animal research facility. One hundred twelve male
C57BL/6 N mice (Charles River, Germany) weighing
22 ± 3 g (gram) were used for the study. Twenty male
mice were used in preliminary experiments to deter-
mine the weight needed for induction of chest trauma.
All mice were handled at room temperature for 14 days
before treatment, and all mice were age-matched
(12 weeks old). We used only male C57BL/6 N mice
for this primary study because gender of mice affects
hormones and cell-mediated immune response [26, 27].
Cytokine expression also differs between male and fe-
male mice [28]. Further studies with female mice will
be necessary.
Animals were maintained under standardized condi-

tions in a controlled environment at 21 ± 2 °C (Celsius),
with a relative humidity of 50% and artificial light (14 h
light, 10 h dark). They received a commercial pellet diet
(altromin 1320, Altromin, Lage, Germany) and water ad
libitum. Analgesic treatment was administered to all ani-
mals in the form of metamizol-sodium (200 mg/kg
(milligram/kilogram) body weight; Novalgin® Hoechst,
Unterschleiβheim, Germany) throughout the study. Mice
were injected subcutaneously under deep anesthesia
prior to induction of the thorax trauma and after induc-
tion of the femur fracture. For postoperative analgesia,
0.8 mg/mL (milligram/milliliter) Novaminsulfon Lich-
tenstein 500 mg (Zentiva Pharma GmbH, Frankfurt am
Main, Germany) was added to the drinking water for the
first 3 days after trauma.
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All surgical procedures were performed under deep
anesthesia with isoflurane ((Minrad, Bethlehem, PA))
and local application of xylazine (16 mg/kg) (Rompun®,
Bayer, Leverkusen, Germany). The mice were warmed to
36 °C using infrared heat lamps after the surgical proce-
dures were complete. Wound closure was performed be-
fore recovery from the anesthesia.
For quantification of activity as a measure of clinical

status after trauma, a scoring system was used [18].
Group distribution and experimental procedures
Animals were randomly assigned to one of three groups.
In the first group, mice received an isolated femur shaft
fracture after stabilization with a pin (Fx). In the second
group, mice received a combined intramedullary femoral
fracture stabilization and blunt thoracic trauma (group
TTFx). In the third group, mice underwent a control op-
eration with intramedullary pin implantation in an intact
femur without fracture (control).
Group Fx and TTFx were divided into six subgroups

(n = 8) depending on the time point of sacrifice: 0 h, 6 h,
12 h, 24 h, 3 d and 7 d. The control group was sacrificed
at 0 h (n = 8).
One hundred twelve multiple trauma, femur fracture

and control mice were tested (48 multiple trauma and
48 isolated femur fracture). The control group consisted
of 16 mice (16,6% (percent)) that underwent an oper-
ation (femur stabilization) in the absence of fracture or
chest trauma (Figure 1c). Experiments were undertaken
by three different surgeons. There were no significant
differences with regard to moribund animals (surgeon 1:
6 moribund mice, surgeon 2: 4 moribund mice, surgeon
3: 6 moribund mice).
Blunt thoracic trauma
After induction of the femur fracture, a blunt thoracic
trauma was induced by a modified version of a previ-
ously described model for rats of bilateral lung contu-
sion in the TTFx group [19, 29]. The method has been
previously described as reproducible.
Blunt thoracic trauma was induced in anesthetized

mice by dropping a hollow aluminum cylindrical weight
(300 g) from a height of 55 cm (centimeter) through a
vertical stainless steel tube onto a Lexon platform rest-
ing on the chest (Figure 1a, b). The impact energy E
(1.617 J (Joule)) of the falling weight was calculated
using the eq. E =m x g x h, where m =mass of
aluminum weight (in kilograms), g = gravitational accel-
eration (9.8 ms− 2 (milliseconds− 2)) and h = height of
weight above the Lexon platform (in meters). The calcu-
lations assumed that all the potential energy of the
weight was transferred to the animal, neglecting fric-
tional dissipation. The platform was suspended on
Teflon guides to minimize friction and facilitate energy
transfer to the anesthetized animal. The shield was re-
producibly placed entirely over the chest without intru-
sion onto the abdomen.
The experiments were performed by three different

autonomous surgeons. All data were examined by a stat-
istician. The cause of death was determined during
organ removal immediately after death.

Femur fracture
The experimental design of the multiple trauma model
is based on a two-hit model. The first hit consists of a
closed femur fracture on the right side as described by
Bonnarens [19]. In brief, under deep anesthesia with
isoflurane, a 20 gauge needle was first inserted into the
canal of the mouse femur as an intramedullary pin
(Figure 1c). After primary wound closure, a standardized
femur fracture was induced in both groups using a blunt
guillotine device weighing 500 g (0.784 J) after primary
stabilization. This procedure resulted in an A-type fem-
oral fracture combined with a moderate soft-tissue in-
jury. The type of fracture (A fracture, AO classification)
was controlled after sacrifice.

Body weight, activity and body temperature
The body weight, body temperature and activity of mice
were measured in all groups before trauma and after
trauma before sacrifice.

Assessment of blood parameters
Samples for the control group were collected using the
retrobulbar technique during the preliminary test.
Posttraumatic control was performed by heart punc-
ture. By using 2-mL (milliliter) syringes (Pico50, Radi-
ometer Medical, Brønshøj, Denmark) containing 80 IU
electrolyte-balanced heparin, blood samples (0.7 ml) for
blood gas analysis and assessment of marker enzyme
activities were collected from heart. The animals were
sacrificed by heart puncture under deep anesthesia. The
hemoglobin concentration, hematocrit and metabolic
parameters (lactate, glucose), and osmolality were
assessed using a blood gas analyzer (ABL 715, Radiometer,
Copenhagen, Denmark).

Specimens
Animals were sacrificed immediately after trauma, after
6 h, 12 h, 24 h, 3 d and 7 d to obtain samples for histo-
logic examination. Tissue samples from lung were col-
lected and stored at − 20 °C until processed.

Histology
Tissue samples were embedded in paraffin. Sections
(5 μm (micrometer)) were obtained from the central
portion of the lung with a sliding microtome (HM 430;
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Microm International), placed on Superfrost Plus micro-
scope slides (Thermo Scientific) and incubated overnight
at 60 °C. The sections were routinely stained with
hematoxylin and eosin (H&E). Safranin O staining was
carried out for 6 min using a 0.1% aqueous solution at
pH 3.0.

Micro computed tomography
Chest trauma of multiple trauma mice was assessed by
micro computed tomography (μCT).
The CT scan was performed at the Molecular Imaging

North Competence Center (Am Botanischen Garten 14,
24118 Kiel). Micro computed tomography in Kiel has
been applied previously to mice in several studies [30, 31].
Two radiologists planed every scan.
The total scan time was approximately 14 min. Scan-

ning of mice lungs has been described previously [32].
The lungs of mice, which were killed immediately after
trauma, were scanned using a Novotec MicroScope
(Novotec Medical GmbH, Pforzheim) at an isotropic
nominal spatial resolution (voxel size) of 15–20 μm.
Samples were transported on ice before the scanned
lungs were positioned on a special platform to prevent
artifacts. Image analysis was performed using ImageJ
software.
Harvesting procedure
Animals were sacrificed under deep anesthesia with iso-
flurane at 0 h, 6 h, 12 h, 24 h and 3 d after trauma in-
duction. Heparinized blood was obtained via cardiac
puncture. Blood was centrifuged at 2500×g for 5 min
(minutes) at room temperature (Eppendorf 3200, Ham-
burg, Germany). After centrifugation, the plasma was
transferred into a fresh tube, snap-frozen and stored at
− 80 °C.

Protein analysis of cytokines
To analyze concentrations of different cytokines, blood
samples obtained by heart puncture of the mice were
centrifuged for five minutes. The supernatant was re-
moved and stored at 20 °C until processing. The concen-
trations of IL-1β, IL-6, IL-10, IL-12p70 and TNFα in
plasma samples were analyzed using a Luminex assay
according to standard protocols with LiquiChip200
(Qiagen). A Milliplex cytokine multiplex immunoassay kit
(MPXHCYTO-60 K-01; Millipore) was used for protein
detection.

Statistics
Statistical analysis was performed using a standard soft-
ware application (SPSS Inc., Chicago, IL, USA). Differ-
ences between the sham group and the other groups
were evaluated using the Wilcoxon signed-rank test. For
compromise of mice with an isolated fracture and mice
with chest trauma and a femur fracture we used further
the Mann-Whitney U test. Probability values less than
0.05 were considered statistically significant. The data
are shown as box-and-whisker plot with median and
interquartile range.

Results
Survival
Regarding the reproducibility of the model in the group
of multiple trauma mice, 16 mice (33%) died after chest
trauma because of hemorrhage and 32 mice (66%)
survived.

Weight and temperature
All mice that underwent chest trauma and femur frac-
ture showed a tendency of reduced weight after 6 h.
Representative the weight loss was shown for 5 mice
with an initial weight of 25,62 g, 25,58 g, 26,54 g,
24,40 g and 24,83 g. After 6 h the weight was reduced to
24,06 g, 24,95 g, 25,39 g, 24,16 g and 23,17 g (Figure 2).
After 3 days the weight had returned completely to base-
line values. Temperature declined until 24 h after
trauma (Figure 3). Representative temperature was
shown for 5 mice before (38,7 °C, 37,6 °C, 37,8 °C, 37,2 °
C, 38,7 °C) and 24 h after the trauma (37,2 °C, 36,8 °C,
37,6 °C, 37 °C, 37,5 °C). After 24 h weight and
temperature returned to baseline values. There was no
significant decrease in either temperature or weight after
trauma.

Hemoglobin
In a previous examination 5 mice of the same age and
weight were punctured retrobulbar before trauma induc-
tion as a control to measure the baseline hemoglobin
values. Compared to the control group (14,8 g/dl (gram/
deciliter), 15,3 g/dl, 14,4 g/dl, 14 g/dl, 15,3 g/dl, 14,9 g/dl),
hemoglobin declined after 6 h (13,7 g/dl, 13 g/dl,
13,5 g/dl, 11,7 g/dl, 13,7 g/dl, 12,2 g/dl) and 12 h
(13,7 g/dl, 11,7 g/dl, 13,2 g/ dl, 14,7 g/dl, 12,5 g/dl,
14,1 g/dl) until 24 h after induction of chest trauma
(14,4 g/dl, 13,4 g/dl, 13,2 g/dl, 12 g/dl, 12,3 g/dl, 13,7 g/dl)
(Figure 4). Hemoglobin values had returned to baseline
values 3 days after trauma. All tested mice showed com-
parable results.

CT
Macroscopic and microscopic analyses showed that im-
mediate death was caused by intrathoracic bleeding or
heart contusion. CT scans were performed on mice that
were killed immediately after chest trauma (Figure 5).
Hemothorax and lung contusion could be observed on
the thoracic CT. The injured mice had no rib fractures.
All mice showed comparable results on CT scan.



Fitschen-Oestern et al. BMC Musculoskeletal Disorders           (2019) 20:72 Page 5 of 10
Histology
Histological sections were examined to assess the severity
of pulmonary tissue injury in mice (Figure 6). HE staining
was performed for lung samples of mice with chest
trauma and an unoperated control group. At 24 h post-
contusion, HE staining of lung samples showed thickening
of the alveolar lining with ongoing leukocytic infiltration.
All of the stained lungs showed comparable results.
Inflammatory markers
Different cytokines were analyzed by multiplex immuno-
assay in plasma samples of mice with an isolated femur
fracture and in mice with a chest trauma and femur
fracture (Figure 7a, b, c, d, e). Mice with an isolated
femur fracture showed a down-regulation of IL1β from
0 h (808,84 ± 190,93 pg/ml (picogram/milliliter)) to 12 h
(492,81 ± 190,93 pg/ml) and an up-regulation of IL-6
from 0 h (39,32 ± 18,58) to 6 h (76,67 ± 16,40). IL1β and
IL-6 were up-regulated from 0 h (IL1β 209,12 ±
166,51 pg/ml; IL-6 22,98 ± 9,59 pg/ml) to 6 h after mul-
tiple trauma (IL1β 829,40 ± 163,87 pg/ml; IL-6 99,88 ±
65,18 pg/ml). IL-10 expression was down-regulated from
0 h (2464,06 ± 894,49) to 12 h (1773,15 ± 742,4) in mice
with an isolated fracture. In contrast, the maximum of
IL-10 expression was reached at 12 h after multiple
trauma (2519,12 ± 1782,87 pg/ml), whereas IL-10 ex-
pression was reduced directly after trauma (0 h 1085,22
± 702,85 pg/ml) compared with the control group
(1644,08 ± 1001,46 pg/ml).
After an isolated femur fracture, an up-regulation of

IL-12p70 could be detected from 0 h (679,24 ± 578,52)
to 6 h (1523,32 ± 480,26). Similar to mice with an iso-
lated fracture, IL-12p70 was up-regulated and could be
detected from 0 h (321,64 ± 294,74 pg/ml) to 6 h after
multiple trauma (1671,78 ± 350,74 pg/ml).
A slight regulation of TNFα expression was observed

after an isolated fracture, whereas TNFα expression de-
clined immediately after multiple trauma (0 h 578,93 ±
232,48 pg/ml) compared with the control group (1241,5
± 266,22 pg/ml). The baseline level of TNFα expression
was recovered at 6 h after trauma (1288,76 ± 693,74
pg/ml). After multiple trauma all cytokines (IL1β, IL-6,
IL-12p70, IL-10 and TNFα) were up-regulated (Figure
7a, b, c, d, e). Mice with multiple trauma showed a sig-
nificant up-regulation for IL-6 compared to mice with
an isolated fracture.
Discussion
Blunt chest trauma represents one of the most common
injuries in multiple trauma patients [33], while lung con-
tusion is one of the most important factors contributing
to the increased morbidity and mortality of multiple
trauma patients [34]. Femoral fractures represent one of
the most prevalent associated injuries in multiple trauma
patients with blunt thoracic trauma [35]. The presence
of long bone fractures causing respiratory deterioration
and respiratory dysfunction may preclude orthopedic
surgical intervention for several days.
In our study, we investigated a reproducible new mul-

tiple trauma mouse model using the combination of
these two major injuries. The main questions of the
present study may be summarized as follows:

Why were mice chosen as our experimental animal?
Why did we choose the combination of chest trauma
and femur fracture?
What are the influences of chest trauma and femur
fractures?
How is the immune response altered in terms of
cytokine expression?

Mice are currently the experimental tool of choice for
the majority of immunologists, and the study of their
immune responses has offered tremendous insight into
the functions of the human immune system [36].
Humans and mice share approximately 80% of their
genes [37], and unlike large animal models, mice are
technically easier to implement, have lower acquisition
and housing costs and superior ethical acceptance and
are available as knockout animals.
Traumatic brain injury, thoracic trauma, hemorrhagic

shock and long bone fracture are the focus of most
mural trauma models. All these models have advantages
and disadvantages.
Some trauma models focus on an isolated organ or tis-

sue injury, and some models focus on the combination
of several severe injuries. To concentrate on a particular
injury might be an advantage in some ways, but it does
not replicate multiple trauma in humans [38].
Several trauma studies focus on traumatic brain injur-

ies [39–41]. The knowledge about outcome rates after
concomitant traumatic brain injuries may help prioritize
the research in this regard. However traumatic brain in-
jury models have the limitation of not reflecting exactly
the clinical setting and posttraumatic intensive monitor-
ing in humans [42].
Hemorrhagic shock ist the leading cause of morbidity

and mortality in trauma patients [43]. In mouse models
hemorrhagic shock can be induced volume controlled,
pressure controlled or uncontrolled [44]. While volume-
controlled hemorrhagic shock shows compensatory physio-
logical mechanisms and is easy and less invasive to perform,
it provides the disadvantage of an uncertain severity of
hemorrhage [45]. Pressure-controlled hemorrhagic shock
models are standardized and reproducible models that
allow the analysis of severe shock states and the monitoring
of physiological parameters; however, they show
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suppression of compensatory mechanisms. Uncontrolled
hemorrhagic shock models represent the clinical situation
but are less standardized [45]. The manipulation of a single
variable such as volume, blood pressure and time may
cause unpredictable, irreproducible results so that
hemorrhagic shock models are difficult to compare [45].
Chest trauma in small animals can be induced by, for

instance, a blast wave generator [46] or weight-induced
bilateral lung contusion [19], which we used in our
model. Blast injury is an important cause of trauma in
military conflicts or terrorism, whereas weight-induced
trauma imitates the trauma that occurs in traffic acci-
dents [47].
A blast generator created laser induced stress waves

and the intensity of the shock wave is flexible by varying
the laser energy [47]. The trauma model of bilateral lung
contusion induced by a focused external blunt chest
trauma (Figure 1a, b) has the advantages of being spe-
cific in terms of lung contusion (Figures 5 and 6) and
uses a method of impact induction, which is reprodu-
cible and highly relevant to the chest trauma that occurs
in motor vehicle accidents [19].
Despite the high incidence of chest trauma, it seems

that immunologic alterations following pulmonary con-
tusion are insufficiently elucidated. Apart from thoracic
injuries, long bone fractures are particularly critical and
represent one of the most prevalent associated injuries
in multiple trauma patients with blunt thoracic injuries
[35, 48]. Tibia fracture models have the advantage of
easier intramedullary access compared to the femur [49].
The diameter of the femur is relatively consistent and
large compared with that of the tibia, which facilitates
the use of larger implants and the bone is more thickly
covered by muscle [49].
In an open femur fracture model the bone is exposed

and fractured via osteotomy or by weakening the bone
with several drill holes [50]. Open fracture models are
stabilized by extramedullary fixation techniques like a
locking plate or an external fixator [44]. Induction of an
open fracture and extramedullary stabilization generates
considerable soft tissue injury. External fixation has the
disadvantage of high implant weight and the large vari-
ation in implant stiffness [51]. An external plate fixation
may damage the periosteum and perfusion and nutrition
[51]. In contrast to most of the intramedullary
stabilization techniques the external stabilization pro-
vides rotation stability after fracture [52].
In a closed femur fracture model the fracture usually

followed by placement of intramedullary screws, pins or
locking nails [20, 51, 52]. Closed fracture models have
the advantage of reduced risk of wound infection com-
pared to an open osteotomy [20]. Several intramedullary
stabilization systems are not stable against longitudinal
and rotational deformations [49]. A locking nail offers
higher stability compared to pin fixation but is not a
rigid fixation technique and the operation time is longer
which might be a relevant disadvantage in a multiple
trauma model [49]. Rotation stability can be achieved by
flattening the tip and the distal end of a needle or a pin
[51]. In our trauma mouse model, femur fracture was
stabilized by minimal invasive surgery before the fracture
was induced. Prior to fracturing the femur a 20 gauge
needle was inserted in the medullary cavity of the femur
to maintain axial alignment during the fracture and
avoid large displacements. We chose this method de-
scribed by Bonnarens [20] because it offers accurate re-
duction, a reduced operation time, less costs and less
blood loss than external fixation [50]. While stabilization
is performed immediately before the induction of frac-
ture, the second hit inflammatory reaction can also be
prohibited similar to damage control. Nevertheless, a
higher incidence of complications and higher mortality
after fracture stabilization is always observed in the pres-
ence of severe thoracic injuries [53].
Although early fracture stabilization can minimize

several pulmonary complications such as fat embolism
[54], damage control surgery and the timing of opti-
mal treatment in multiple trauma patients are still
points of interest [55]. Damage control during femur
fracture stabilization has been shown to be beneficial for
preventing the second hit inflammatory reaction and is
associated with decreased blood loss and decreased
mortality and morbidity in trauma patients [56]. There is
evidence that early fracture fixation reduces the incidence
of fracture-related complications and improves fracture
outcome.
The mortality rates of multiple trauma patients range

from 7 to 45%, depending on the injury severity [57]. In
multiple trauma patients, 20–25% of deaths are attrib-
uted to chest injury [58]. In our study, 16 mice (33%)
died within the first 30 min after chest trauma, and 64
mice (66%) survived. The mortality rate in our trauma
model was high compared to other studies [46, 47, 59]
but most of the thoracic trauma models focus on an iso-
lated thoracic injury [47, 48, 59]. Examining isolated
organ injury may be of benefit; however, this does not
accurately replicate human trauma, which often involves
multiple organ systems [38].
Additionally, in some models only one side or a special

part of the chest is affected [47, 59] whereas our model
is a bilateral contusion model [18]. In preliminary test
we determined a high impact energy to generate a severe
chest trauma. The thoracic trauma was first described
for rats (body weight 250–300 g) with an impact energy
of 2,45 J [19]. The falling weight in our study had an im-
pact energy of 1,617 J, and the mice had a body weight
of 22 ± 3 g. The impact energy we choose might be high
in relation to the small mural chest.
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The animals that did not survive died immediately
after the chest trauma due to intrathoracic hemorrhage,
which was confirmed by CT scan and removal of the or-
gans. Interestingly, no rib fractures were found in our
study or mentioned in previous evaluations [60, 61]. The
murine chest exhibits high flexibility because of the cos-
tal dorso-ventral joints, which are not present in the hu-
man thorax [62, 63].
In humans, the metabolic response to severe injury

results in hypothermia and weight loss. Similar to
clinical conditions, the mice displayed a decrease in
body temperature, weight loss and blood loss after
multiple trauma during the first 24 h after trauma
(Figures 2, 3 and 4).
Accidental hypothermia is a serious problem in mul-

tiple trauma patients because of the negative patho-
physiological effects [64]. Early rewarming appears to be
essential for the treatment of hypothermic trauma pa-
tients. In our study, the mice were placed under an incu-
bator lamp for the first 12 h after induction of trauma, but
body temperature did not recover until 24 h post-trauma
potentially because only external warming was applied
without the donation of warm infusions or a blood supply,
which is normally administered to trauma patients.
The posttraumatic inflammatory reaction in humans

and mice is essentially regulated by cytokine expression
[65, 66]. The magnitude of cytokine expression is regu-
lated by the trauma severity in humans [67]. TNFα, IL-6,
IL-1β and IL-10 correlate with the systemic inflamma-
tory response and injury severity [68, 69], and therefore
we focused on these mediators in mice. Multiple trauma
patients with severe damage or limited lung function ex-
hibit significantly higher cytokine patterns in the early
post-injury phase, with elevations of TNFα, IL-6, IL-10
and IL-1β compared with other trauma patients [70].
We detected an increase in TNFα, IL-6 and IL-1β in the
plasma samples from multiple trauma mice.
We focused on IL-12, which is produced at high levels

by monocytes and macrophages. Blunt chest trauma in-
duces mediator-dependent monocyte migration to the
lung [71], and high expression of IL-12 can be detected in
the monocytes of trauma patients [72]. An increase of
IL-12p70 could also be detected in multiple trauma mice.
In comparison to humans, a correlation between cyto-

kine expression and the severity of trauma could also be
detected in our trauma model. Mice with a single frac-
ture generally showed reduced cytokine expression com-
pared with multiple trauma mice.
TNFα, IL-6 and IL-1β are rapidly acting cytokines in

humans, and peak levels can be detected within 24 h
after trauma [73] since elevated levels can be detected
after few minutes in humans [53]. Similar results were
obtained for mice after trauma, with an increase ob-
served at 24 h. Our results using the murine trauma
model were also consistent with the results of an iso-
lated blast wave trauma model or burn injury model
[46]. In summary, mice seems to show comparable cyto-
kine expression patterns to human trauma patients.
Conclusion
We have established a new multiple trauma mouse
model that better recapitulates the immunological re-
sponse of severely injured patients. Despite clear differ-
ences between humans and animals, animal studies are
necessary to gain further insight into the physiological
mechanisms underlying multiple trauma.
This trauma model will be extremely helpful to answer

outstanding questions concerning whether cytokine
blockade, which is available in the clinic, is helpful for
the treatment of trauma patients. Such studies can be
further complemented by the evaluation of genetically
modified mice that lack particular cytokines, in terms of
the course of multiple traumatic situations. These stud-
ies will eventually lead to better therapeutic approaches
to this life-threatening condition. Specifically, it is even
more important to develop new animal models with the
most frequently encountered injuries for further medical
improvement, necessitating further studies.
Figure Legends
Figure 1 a, b Apparatus used for the multiple trauma
mouse model. A cylindrical weight of 500 g was dropped
through a tube onto a plunger in contact with the chest
of an anesthetized mouse. Mice were placed on a cross
on a platform of acrylic glass immediately below the
plunger. The plunger allowed induction of a bilateral
pulmonary contusion. c Induction of femur fracture. Be-
fore a closed femur fracture was induced, the femur was
stabilized using a cannula (Sterican 0.55 × 25 LILA lI)
from the knee joint to the femoral neck. The method
used to induce femur fracture was first described by
Bonnarens. After primary wound closure, a standardized
femur fracture was induced using a blunt guillotine de-
vice with a weight of 500 g (0.784 J)
Figure 2 Weight of the mice after multiple trauma.

The mouse numbers are equal to the order of the data.
The weight of mice was determined before multiple
trauma and before each mouse was sacrificed. A de-
crease in weight was observed during the first 24 h fol-
lowing trauma (shown for 6 h after trauma)
Figure 3 Body temperature of the mice after multiple

trauma. The mouse mice are equal to the order of the
data. The body temperature (°C) of mice was measured
before multiple trauma was induced and before each
mouse was sacrificed. A drop in temperature was ob-
served during the first 24 h after trauma (shown for 6 h
after trauma)
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Figure 4 Hemoglobin measurements in mice after
multiple trauma. The hemoglobin level in mice without
trauma was compared to hemoglobin level in mice after
multiple trauma. Five mice without trauma underwent
retrobulbar puncture to measure hemoglobin as a con-
trol. Mice that underwent trauma were sacrificed by
heart puncture at 6 h, 12 h, 24 h, 3 d, 7 d, 14 d, and 28
d after trauma. Data are shown for 5 mice each at 6, 12,
and 24 h after trauma. Blood samples were analyzed im-
mediately after puncture using a Radiometer ABL 700.
Hemoglobin levels decreased up to 24 h
Figure 5 CT scan of chest trauma. Computerized tom-

ography was performed for 5 mice that died immediately
after chest trauma. The CT scans revealed intrathoracic
bleeding and hemopneumothorax. Scans were per-
formed in the Molecular Imaging North Competence
Center, CAU Kiel
Figure 6 Microscopic evaluation of histological

changes in the lung of mice after pulmonary contusion.
Mice subjected to chest injury showed extensive intra-al-
veolar and intrabronchial hemorrhaging with consecu-
tive atelectasis, while sham mice did not show such
pulmonary changes
FIgure 7 a, b, c, d, e Cytokine analysis assessed by the

Luminex assay. Serum samples of mice with an isolated
femur fracture (Fx) and mice with chest trauma and
femur fracture (TTFx) were analysed by multiplex im-
munoassay. All Data are shown as box-and-whisker plot
with median and interquartile range. Concentration of
different cytokines (IL-1β, IL-6, IL-10, IL-12p70 and
TNFα) was measured in different groups of mice 0 h,
6 h, 12 h, 3 d and 7 d (n = 8) after trauma. Figures show
regulation of IL-1α, IL-6, IL-10, IL-12p70 and TNFα
after an isolated femur fracture from 0 h to 7 d after
trauma and cytokine regulation after induction of chest
trauma and femur fracture from 0 h to 7 d after trauma.
Cytokine expression was compared respectively to Sham
group
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