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Abstract: The stochastic character of the cosmological constant arising from the non-linear
quantum-vacuum Bohm interaction in the framework of the manifestly-covariant theory of quantum
gravity (CQG theory) is pointed out. This feature is shown to be consistent with the axiomatic
formulation of quantum gravity based on the hydrodynamic representation of the same CQG theory
developed recently. The conclusion follows by investigating the indeterminacy properties of the
probability density function and its representation associated with the quantum gravity state, which
corresponds to a hydrodynamic continuity equation that satisfies the unitarity principle. As a
result, the corresponding form of stochastic quantum-modified Einstein field equations is obtained
and shown to admit a stochastic cosmological de Sitter solution for the space-time metric tensor.
The analytical calculation of the stochastic averages of relevant physical observables is obtained.
These include in particular the radius of the de Sitter sphere fixing the location of the event horizon
and the expression of the Hawking temperature associated with the related particle tunneling effect.
Theoretical implications for cosmology and field theories are pointed out.

Keywords: covariant quantum gravity; cosmological constant; de Sitter space-time; event horizon;
stochastic effects; Hawking temperature

1. Introduction

Cosmological solutions for the space-time metric tensor predicted by the Einstein field equations
(EFE) of classical general relativity (GR, [1,2]) provide mathematical solutions to a variety of
astrophysical and physical scenarios, which include for example cosmological theories of galaxy
evolution [3], compact object formation of primordial origin [4–7], particle physics phenomenology in
connection with inflationary models [8,9], the nature of dark matter and dark energy [10–13], and the
geometric structure of the universe and its dynamical history [14–17].

However, a distinctive property of classical and even quantum gravity solutions is related to
coordinate singularities in the line-element representation of the metric tensor. In particular, this implies
the occurrence of event horizons that exhibit typically a deterministic character and are effectively
considered as space-time frontiers, i.e., which separate “incommunicable” regions of space-time
having different metric signatures. The same feature, for example, is characteristic of cosmological
solutions, such as the Big Bang singularity in the case of the Friedman–Robertson–Walker field tensor,
and of event horizon surfaces separating domains of space-time, like the de Sitter vacuum solution.
This means that the radii of the corresponding event horizons are usually considered to be prescribed
as deterministic quantities. The basic consequence is that regions with different metric signatures are
regarded as impenetrable not only for classical matter and radiation, but also for quantum particles
and fields. In this regard, the so-called black hole no-hair theorems have an emblematic character [18].

Entropy 2020, 22, 696; doi:10.3390/e22060696 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-2879-6085
https://orcid.org/0000-0001-5276-8511
http://www.mdpi.com/1099-4300/22/6/696?type=check_update&version=1
http://dx.doi.org/10.3390/e22060696
http://www.mdpi.com/journal/entropy


Entropy 2020, 22, 696 2 of 22

Even if such theorems may be a very good approximation as far as the macroscopic behavior of a black
hole is concerned, at the quantum level, it may be a whole different story. In fact, in quantum gravity,
the very idea of a deterministic event horizon appears not only counter-intuitive, but even absurd.
Notice that here, we are not specifically referring to Planck-length, minimal-length theories or discrete
theories like loop quantum gravity, because the same issue may be naturally set also for continuum
and manifestly-covariant theories of quantum gravity.

In this reference, additional challenging questions include the role that event horizons
undertake in classical and quantum descriptions of general relativity, the nature of their existence as
space-time frontiers and their mathematical description, and the inspection of quantum physical and
thermodynamics phenomena that can occur in their surroundings as a consequence of interaction
with particles and fields, including the gravitational field itself [19–23]. In fact, event horizons may be
characterized by the occurrence of energetic particle phenomena and collective interactions, and for
this reason, they are also expected to provide the background for quantum field phenomena, which
may ultimately involve also the dynamics of the same gravitational field [24–26], the physics of event
horizons [27], as exemplified by particle emission and acceleration mechanisms [28], and phenomena
related to entropy creation/conservation [29–32].

In such a context, therefore, the conjecture arises whether stochastic, i.e., quantum effects, in the
prescription of an event-horizon surface belonging to the four-dimensional space-time, might actually
locally arise. In particular, if confirmed, this means that a new kind of quantum (or even in some sense
“classical”, i.e., occurring on finite space-time scale lengths) tunneling effect might occur, since in such
a case, a particle might have a finite probability density of being at the same time either “in” or “out”
with respect to a stochastic surface, which is no-longer prescribed as a deterministic barrier. The basic
issue is therefore whether, and eventually how, such a type of stochastic effect might be included in a
continuum theory of quantum gravity based on a manifestly-covariant theory and how they might
affect, in turn, cosmological solutions of the space-time metric tensor predicted by the Einstein field
equations, with particular reference to cosmological solutions, which are typically characterized by a
non-vanishing cosmological constant [33–35].

In this paper, the issues of the possible stochastic character of the cosmological constant and,
consequently, of the analogous stochastic property of the de Sitter event horizon are analyzed. There are
several different qualitative physical motivations behind such a conjecture:

• The first one is related to the physical origin of the cosmological constant and whether an intrinsic
stochastic, i.e., quantum, effect might also affect its nature.

• The second reason is that, as stated above, from the point of view of quantum gravity, the absolute
separation surfaces of space-time, such as the de Sitter event horizon, are meaningless or expected
to be affected by quantum effects of a stochastic nature.

• The third physical motivation is that in quantum gravity, “interior” and “exterior” parts of event
horizons, as in the case of the de Sitter space-time solution considered here, should not be treated
as absolutely incommunicable. In other words, suitable quantum tunneling effects might arise
for massive particles (such as gravitons), possibly permitting quantum transitions between these
domains.

• The fourth reason is that the realization of event horizons as physical phenomena cannot be
absolutely stable (this is unreasonable due to the obvious fact that any state of matter and
consequently of space-time is not eternal) and can exhibit a stochastic behavior.

The conclusion follows by investigating the indeterminacy properties of the probability density
function associated with the quantum gravity state of massive gravitons in the context of the axiomatic
formulation of quantum gravity based on the theory of manifestly-covariant quantum gravity (CQG
theory) developed recently [36–38]. This provides a novel route to the establishment of a self-consistent
theory of quantum gravity underlying the standard formulation of general relativity. The new
formalism satisfies simultaneously the fundamental principles of quantum mechanics and quantum
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field theory, like the probabilistic interpretation built into their conceptual structure [39], as well as
the principles of covariance and manifest covariance at the basis of the classical Einstein theory of
GR [40]. In GQC theory, this feature is realized by adopting a space-time representation in terms
of superabundant variables, whereby manifest covariance is defined with respect to a continuum
background metric tensor ĝ ≡

{
ĝµν

}
, which raises/lowers tensor indices and defines the geometric

properties of the space-time, while the quantum gravitational field g ≡
{

gµν

}
encoding its quantum

properties evolves dynamically over ĝ according to a defined quantum wave equation (CQG-wave
equation) [37,38]. The latter follows from the identification of the Hamiltonian structure associated
with the classical space-time, with the prescription of the corresponding manifestly covariant Hamilton
equations [36] and the related Hamilton–Jacobi theory [41] being obtained in the framework of a
synchronous variational principle [42]. The implementation of standard quantization methods to the
Hamiltonian structure of GR then leads to the realization in four-scalar form of the CQG-wave equation
for the corresponding CQG-state and wave function ψ. Remarkably, the CQG-wave equation realizes
a Schroedinger-like hyperbolic first-order partial differential equation with respect to an invariant
proper-time parameter s, which parametrizes the temporal evolution of the gravitational quantum state.
In agreement with the covariance principle, such a parameter is defined with respect to the background
metric tensor ĝ as the proper-time associated with suitable classical sub-luminal geodesic trajectories,
namely through the differential identity ds2 = ĝµνdrµdrν (see the discussion in [37]). It must be stressed
that, as a consequence of manifest covariance, both classical and quantum Hamiltonian representations
are cast in four-tensor frame-independent forms while the quantum probability density |ψ|2 acquires
the character of a physical observable and therefore necessarily coincides with a four-scalar. The CQG
theory implies, in particular, the validity of four-tensor quantum Hamilton equations, to be intended
as quantum hydrodynamic equations associated with the quantum wave function ψ and prescribed in
terms of a Hamiltonian hydrodynamic state x =

(
gµν, Πµν

)
, where gµν and Πµν denote independent

four-tensor canonical variables identified respectively with the generalized Lagrangian coordinates
and conjugate canonical momenta.

The characteristic formalism of the manifestly-covariant representation of CQG theory permits the
development of a hydrodynamic interpretation of quantum gravity, in analogy with the hydrodynamic
representation of quantum mechanics [43]. The starting point in this direction is the adoption of
the Madelung representation for the quantum wave function and the consequent realization of the
CQG-wave equation in terms of corresponding quantum hydrodynamic equations, which, as such, are
natively expressed in Eulerian form [44–46]. The notable feature is that a corresponding Lagrangian
representation can equivalently be reached for the same hydrodynamic equations based on a stochastic
trajectory-based representation of CQG theory. As shown in [47], this representation is based on a
covariant generalized Lagrangian path (GLP) approach relying on a suitable statistical representation
of Bohmian Lagrangian trajectories. The formalism is analogous to the one developed earlier for
non-relativistic quantum mechanics [48], whereby each Bohmian trajectory is replaced by a family
of stochastic trajectories carrying a given probability density function. An important advantage of
the GLP formalism in the present context is that it affords the analytical construction of generally
non-stationary solutions for the CQG-wave equation with a non-vanishing cosmological constant that
are non-dispersive in proper-time and exhibit Gaussian-like probability densities [47,49].

Based on these premises, in the present research, we intend to address the theoretical problem of
investigating stochastic phenomena induced by quantum gravity effects in the framework of CQG
theory, which can characterize, in particular, physical observables of the cosmological de Sitter solution.
Starting from the treatment initiated in [47,49–51], the issue pertains first to the determination of
the stochastic character of the cosmological constant arising from the non-linear quantum-vacuum
Bohm interaction as predicted by CQG theory. This feature follows by investigating the quantum
hydrodynamic equations characteristic of CQG theory. In fact, when cast in terms of the stochastic
trajectory-based representation referred to as the generalized Lagrangian path (GLP) [47], an explicit
stochastic realization of the quantum probability density function (PDF), in terms of an appropriate
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four-scalar Gaussian-like function, is made possible. In such a representation, the PDF depends
explicitly on a stochastic tensor ∆gµν representing the fluctuations of the quantum field tensor gµν.
However, as we intend to show here, the same analytical representation is actually non-unique. Thus,
generalizing the functional dependence considered in [47], besides the stochastic tensor ∆gµν, the same
PDF may depend also on an additional stochastic parameter α. In fact, in the context of CQG theory,
there is a precise technical reason for the occurrence of the new stochastic effect. This is due to the
arbitrariness in the prescription of the tensor displacement field, which enters in the theory (∆gµν),
which can be now replaced with the stochastic displacement field:

∆gµν(α) = ∆gµν + αĝµν, (1)

with α ∈ [α0, α1] ⊆ R being a real stochastic parameter and ĝµν a suitable background space-time field
tensor. Notice that here, the support of the stochastic parameter α should be ordinarily considered
bounded to warrant the strict positivity of the stochastically-modified cosmological constant to be
determined later. The result is based on the construction of the corresponding modified form of the
stochastic quantum-modified Einstein field equations, in which the new quantum stochastic term
can be shown to contribute to the same equations by means of a symmetric second-order tensor.
A realization of such a tensor based on a comparison with the stress-energy tensor of a perfect fluid
allows for the physical interpretation of the quantum corrections to EFE and, at the same time, permits
proving the existence of a modified cosmological de Sitter solution for the same metric and curvature
tensors, characterized by a stochastically-modified cosmological constant. The second task deals,
in fact, with investigating precisely how the new stochastic quantum PDF affects and modifies the
cosmological constant and thus possibly determines also new physical properties of the de Sitter event
horizon itself. The treatment of these new stochastic quantum gravity phenomena is investigated
by the calculation of stochastic averages of physical observables. These include in particular the
stochastically-averaged radius of the de Sitter sphere, which fixes the location of the de Sitter event
horizon, and the expression of the Hawking temperature associated with it. A main achievement of the
study is the proof that the stochastic behavior of quantum gravity can affect in a non-trivial way the
thermodynamic description of the continuum gravitational field and of the related particle tunneling
effect that can arise across the horizon boundary, with relevant implications both for cosmology and
field theories.

2. Theory of Manifestly-Covariant Quantum Gravity

In this section, we recall the theoretical framework of the theory of manifestly-covariant quantum
gravity (CQG theory) in its trajectory-based representation, in turn based on the generalized Lagrangian
path (GLP) formalism. More precisely, the emphasis here is its connection with the so-called
quantum-modified Einstein field equations (EFE), which determine the continuum background metric
tensor ĝ ≡

{
ĝµν

}
. As pointed out earlier in [49,50] in the framework of CQG theory, its construction is

based on suitable rigorous, but also physically-intuitive considerations. For convenience, especially in
view of the stochastic generalization of the CQG theory to be later discussed in Section 3, the content is
organized into the following subsections:

- Section 2.1: GLP representation of CQG theory.
- Section 2.2: Properties of GLP theory.
- Section 2.3: Construction method for the quantum-modified EFE.

2.1. GLP Representation of CQG Theory

For definiteness, we briefly present the theoretical setup of CQG theory in the context of the
trajectory-based GLP representation. The starting point is represented by the manifestly-covariant
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four-scalar quantum gravity wave equation (CQG-wave equation) obtained in [37,38]. In the validity
of the unitarity principle, this equation takes the form of the hyperbolic first-order Eulerian PDE:

i} d
ds

ψ(s) = H(q)
R ψ(s), (2)

with } being the reduced Planck constant, d
ds = d

ds

∣∣∣
s
+ ∂

∂s denoting the covariant s-derivative in
Eulerian form, where the first differential operator is the customary covariant derivative evaluated
at fixed s and the second one is a partial derivative acting on explicit proper-time dependences.
In addition, H(q)

R represents a suitable self-adjoint quantum Hamiltonian operator introduced in [37].

For brevity, we omit reporting the mathematical definition of the operator H(q)
R because it is not

necessary at this stage, while we prefer to focus below on the expression of the corresponding function
H(q) that enters the quantum hydrodynamic equations that follow from (2). Furthermore, ψ(s) stands
for ψ(s) ≡ ψ(g, ĝ, r, s) and denotes the four-scalar quantum wave function associated with a graviton
particle, which is defined in principle for arbitrary values of the proper time s belonging to the time
axis I ≡ R. Both explicit and implicit dependences on s are allowed, the latter entering through the
four-position vector r ≡ rµ(s) of the background space-time. In addition, a functional dependence
on both g =

{
gµν

}
and ĝ =

{
ĝµν

}
is included, where gµν is the quantum generalized-coordinate

field, which spans the 10-dimensional real vector space Ug ⊆ R10 of the same wave-function, i.e., the
set on which the associated quantum probability density function ρ (s) = |ψ(s)|2 (quantum PDF) is
prescribed, while ĝµν is the background metric tensor. In this regard, it is important to recall that a
crucial feature of CQG theory lies in the distinction between the quantum tensor gµν, which identifies
the continuum Lagrangian coordinates carrying the quantum physical properties of the gravitational
field, and the background metric tensor ĝµν, which instead describes the geometry of space-time.
By definition, the tensor gµν is such that gµνgµν 6= δ

µ
µ , while identically, the normalization condition

ĝµν ĝµν = 4 applies to the classical field. Accordingly, the quantum field gµν is allowed to exhibit a
quantum dynamical behavior, which deviates from ĝµν, and to acquire a non-vanishing quantum
momentum Πµν.

The CQG-wave Equation (2) has formal similarities with the Schroedinger equation of
non-relativistic quantum mechanics. This includes also its equivalence with a corresponding set of
quantum hydrodynamics equations, which can be similarly recovered upon introducing an exponential
representation for the complex field ψ(s), i.e., the so-called Madelung representation:

ψ(g, ĝ, r, s) =
√

ρ exp
{

i
}S

(q)
}

. (3)

Here, the quantum fluid fields
{

ρ,S (q)
}
≡
{

ρ(g, ĝ, r, s),S (q)(g, ĝ, r, s)
}

identify respectively the
four-scalar quantum PDF and quantum phase-function. As a result, the same quantum fluid fields
can be shown to satisfy the following set of PDEs, denoted as GR-quantum hydrodynamic equations
(CQG-QHE) and identified with the continuity and quantum Hamilton–Jacobi equations:

dρ

ds
+

∂

∂gµν

(
ρVµν

)
= 0, (4)

dS (q)
ds

+ H(q) = 0, (5)

where S (q) ≡ S (q)(g, ĝ, r, s) is the quantum phase-function. In addition,

Vµν ≡
1
κ

∂S (q)
∂gµν , (6)
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is the tensor “velocity” field, with κ being a dimensional constant, which is related to the graviton
mass estimate given in [37]. Furthermore, H(q) denotes the effective quantum Hamiltonian density:

H(q) =
1

2κ

∂S (q)
∂gµν

∂S (q)
∂gµν

+ VQM + Vo. (7)

Here, the case of vacuum conditions is considered, namely the absence of classical sources, so that
Vo and VQM identify respectively the vacuum effective potential and the quantum Bohm interaction
potential [52] given by:

Vo = κ

(
2− 1

4
gµνgµν

)
gαβR̂αβ, (8)

VQM ≡
}2

8κ

∂ ln ρ

∂gµν

∂ ln ρ

∂gµν
− }2

4κ

∂2ρ

ρ∂gµν∂gµν , (9)

where R̂αβ is the Ricci tensor evaluated in terms of the background metric tensor ĝαβ.
The fundamental principles and conceptual meaning at the basis of GLP theory, as a

trajectory-based formulation of CQG theory, can be found in [47,49]. This is achieved in terms
of a suitable generalized Lagrangian path (GLP) representation for the quantum Lagrangian field
gµν(s) of the form:

gµν(s) = ∆gµν + Gµν(s), (10)

where Gµν(s) (see the extended related discussion in [47]) denotes a suitably-prescribed reference
s-dependent quantum field, to be associated with a suitable Lagrangian path

{
Gµν(s), s ∈ I

}
(which

can be effectively treated as deterministic if its initial value Gµν(so) is considered deterministic).
Instead, the tensor displacement field ∆gµν is assumed as an arbitrary symmetric and s-independent
stochastic tensor field with a given probability density. The stochastic character of CQG theory in
this representation emerges therefore as a natural consequence of Equation (10). The meaning of
Equation (10) is that for each (deterministic) Lagrangian trajectory

{
Gµν(s), s ∈ I

}
, there are infinite

stochastic GLPs
{

gµν(s), s ∈ I
}

.
The GLP approach, despite the obvious non-uniqueness feature that is intrinsic in the concept

of GLP, has an important implication: it allows for the construction of an explicit analytical solution
for the quantum PDF ρ (s). As shown in [47], this solution is represented in terms of a distribution of
the type:

ρ (s) = ρG exp

−
s∫

so

ds′
∂Vµ

ν (s′)
∂gµ

ν (s′)

 , (11)

where Vµ
ν (s) ≡ ĝµαVαν(s) identifies the tensor velocity field (6). Furthermore, ρG = ρ(∆g− ĝ) is the

shifted Gaussian PDF:

ρG ≡
1

π5r10
th

exp

{
− (∆g− ĝ)2

r2
th

}
, (12)

with r2
th being the constant dimensionless invariant semi-amplitude width of the Gaussian quantum

PDF, while in short-notation, the exponent (∆g− ĝ)2 stands for the four-scalar defined as (∆g− ĝ)2 ≡(
∆gµν − ĝµν

)
(∆gµν − ĝµν). More precisely, ĝ = ĝµν is the background metric tensor, and ∆g ≡ ∆gµν

identifies the stochastic displacement symmetric tensor field associated with each stochastic quantum
trajectory and such that it has an identically vanishing covariant derivative, namely D

Ds ∆gµν = 0.
As proven in [47], the generalized Lagrangian path theory can be constructed in such a way that the
stochastic average over ∆g of quantum observables (denoted with the symbol <>) coincides with
their quantum expectation value, so that in particular, the emergent gravity relationship

〈
∆gµν

〉
= ĝµν

holds. This is obtained by noting that, under suitable assumptions, the four-scalar ∂Vµ
ν (s′)

∂gµ
ν (s′)

does not

depend explicitly on the displacement tensor ∆g.
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It has been proven that a quantum Hamiltonian structure analogous to that holding for the
classical GR-Hamilton equations can be established also for the quantum hydrodynamic state starting
from the quantum Hamilton–Jacobi Equation (5). This is represented by the set

{
x, H(q)

}
, where the

four-tensor canonical state x ≡ (gµν, Πµν) is the Hamiltonian hydrodynamic state, with Πµν = ∂S (q)
∂gµν

,

and H(q) is the effective quantum Hamiltonian density defined above in Equation (7). This permits
representing Equation (5) equivalently as a set of manifestly-covariant quantum Hamilton equations,
which take the form of evolution equations in terms of the proper-time invariant parameter s. In the
vacuum, these equations are written as:

d
ds

gµν =
Πµν

αL
, (13)

d
ds

Πµν = − ∂

∂gµν (Vo + VQM), (14)

which are subject to generic initial conditions of the type x (so) = xo ≡(
gµν

(o) ≡ gµν (so) , Π(o)µν ≡ Πµν (so)
)

.

2.2. Properties of GLP Theory

The GLP theory represents a convenient formalism for the investigation of non-linear quantum
interactions of the gravitational field with itself, namely the so-called second-quantization effects, which
can have an intrinsic quantum stochastic character and be also proper-time-dependent contributions
generated by the quantum wave dynamics. Effects of this type are believed to modify in turn the
solution of the same background metric tensor defining the covariance property. More precisely, in
such a framework, the latter tensor does not represent only a given classical tensor field, but rather it
remains prescribed by the same quantum theory to retain imprints arising from its quantum dynamics.
In fact, CQG theory is naturally characterized by the validity of an emergent gravity picture, to be
regarded as a physical requisite of consistency, which establishes the connection between classical GR
and the stochastic property of the quantum gravity theory. In detail, two types of emergent gravity
were identified to hold. The first one was referred to as the first-type emergent gravity paradigm
and consists of the fact that CQG theory preserves the functional form of the Einstein equations
while generating self-consistent quantum corrections to the same field equations obtained without
introducing the semiclassical limit. In fact, the canonical theory has permitted the explicit construction
of non-perturbative quantum-modified Einstein field equations (EFE) [49,50], which can be derived
from the quantum Hamiltonian equations by imposing suitable initial conditions on the hydrodynamic
state x (so) evaluated at initial proper-time so. The remarkable feature is that in both cases considered
in [49,50] for different initial conditions of x (so), the resulting quantum-modified EFE carry a
non-vanishing stress-energy tensor associated with a quantum cosmological constant, which warrants
the existence of a cosmological de Sitter solution for the corresponding quantum-modified background
metric tensor ĝ ≡ ĝµν (see also the mathematical details below in Section 2). The second feature,
denoted as the second-type emergent gravity paradigm, refers instead to the possibility of prescribing
the deterministic background metric tensor ĝ by means of a suitably-defined quantum/stochastic
expectation value of the quantum state. This is identified in terms of a statistical ensemble average
with respect to stochastic fluctuations of the quantum gravitational field gµν, whose quantum-wave
dynamics is described by means of GLP trajectories [47]. For the sake of reference, it may be worthwhile
to recall here some of the key results obtained so far by the CQG theory concerning the issue of the
quantum origin of the cosmological constant. The following outcomes have been pointed out:

(1) In [49], it was proven that CQG theory yields a well-defined quantum prescription of the
cosmological constant and of its physical interpretation. This is ascribed to a quantum gravity
second-quantization effect due to the action of the non-linear Bohm quantum vacuum interaction of
the gravitational field with itself. The existence of the Bohm potential therefore warrants the outcome
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of a cosmological constant term in the Einstein field equations. The result depends generally on the
realization of the quantum probability density for the quantum gravitational field tensor and the
related prescription of the quantum vacuum density obtained in such a framework. The emerging
physical picture predicts a generally non-stationary (with respect to the proper-time parameter)
quantum cosmological constant, which originates from fluctuations (i.e., gradients) of quantum
vacuum gravitational energy density, rather than the vacuum energy density itself, and is consistent
with the existence of quantum massive gravitons.

(2) In [50], small-amplitude quantum gravity periodic perturbations of the metric tensor, occurring
in sequences of phase-shifted oscillations, were investigated for vacuum conditions, based on the
Hamiltonian representation of the quantum hydrodynamic equations of CQG theory subject to
non-stationary initial conditions for the canonical momenta. It was shown that for the de Sitter
space–time, these perturbations give rise to non-linear modifications of the Einstein field equations
in terms of a stochastically-averaged and divergence-free quantum stress-energy tensor. As a result,
a quantum-driven screening effect was proven to occur, which can affect the magnitude of the
cosmological constant. This means that the action of non-stationary momenta of the quantum
gravitational field can decrease the content of the Bohm potential through quantum Hamiltonian
dynamics and reduce in this way the absolute value of the quantum cosmological constant generated
by its gradient.

(3) In [51], the consistency between the prescription of the cosmological constant by CQG theory
and its role in the classical variational theory of the Einstein equations was established. In particular, the
manifestly-covariant Hamiltonian structure of classical general relativity was shown to be associated
with a path-integral synchronous Hamilton variational principle for the Einstein field equations, to be
realized either in unconstrained or constrained forms. As a consequence, the cosmological constant
was found to be identified with a Lagrange multiplier associated with the normalization constraint for
the extremal metric tensor, thus identifying a four-scalar gauge function generally dependent on an
invariant proper-time parameter s, consistent with the prediction of the cosmological constant based
on the theory of manifestly-covariant quantum gravity.

2.3. Construction Method for the Quantum-Modified EFE

As pointed out in [38], Equations (13) and (14) can be used to construct a suitable stationary
solution of the canonical state, i.e., for which identically:

d
ds

gµν =
d
ds

Πµν = 0. (15)

This requirement is actually sufficient in the framework of the classical Hamiltonian theory of GR
developed in [37] to determine the classical EFE, which in the present notation and under the
assumption of vacuum conditions are written as:

R̂µν −
1
2

R̂ĝµν = 0. (16)

However, the rhs of Equation (14) still generally depends on the arbitrary stochastic tensor field
∆gµν. The same quantum Hamilton Equations (13) and (14) were proven in [49,50] to generate a
corresponding quantum-modified EFE. This can be generally written in tensor notation as:

R̂µν −
1
2

R̂ĝµν = T(q)
µν , (17)

with T(q)
µν denoting a suitable quantum stress-energy tensor prescribed by CQG theory and generally

dependent on proper-time. Its expression follows from the gradient of the Bohm potential VQM in
Equation (14), from the actual solution for the quantum PDF ρ (s), and from possible contributions
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due to non-vanishing quantum momenta. Let us now explain how the analytical form of T(q)
µν entering

the quantum-modified EFE is actually achieved. This is obtained by following a two-step procedure:
(1) First, taking the limit condition:

∆gµν → 0 (18)

in Equations (13) and (14) when the representation (10) is set. This is referred to as the deterministic
GLP-limit condition. Its physical meaning is intuitive: it amounts to imposing that the stochastic GLP
quantum trajectories

{
gµν(s), s ∈ I

}
, which drive the quantum wave-function, collapse on the single

deterministic Lagrangian path (LP) Bohmian trajectory
{

Gµν(s), s ∈ I
}

indicated above. Hence, from
the physical standpoint, with such a requirement, the stochastic effect due to the GLP trajectories is
dropped. At the same time, the customary deterministic character of the Einstein field equations is
recovered, so that the same equations actually depend only on the background space-time metric tensor
ĝµν. Nevertheless, non-vanishing quantum gravity contributions can still appear. For completeness, we
mention here that the limit condition (18) is conceptually different from taking the stochastic average
over ∆gµν of the resulting quantum-modified EFE. In the former case in fact, the system becomes
intrinsically deterministic, so that any stochastic contribution due to ∆gµν is effectively set to zero,
while in the latter one, only the average of the stochastic system is obtained.

(2) Second, the initial state x (so) for the initial-value problem associated with the quantum
Hamilton Equations (13) and (14) is prescribed. Imposing vanishing initial conditions, namely
such that:

x (so) =
(

gµν

(o) ≡ gµν (so) , Π(o)µν ≡ 0
)

, (19)

yields the quantum-modified Einstein field equations determined in [49]. This means that the initial
quantum tensor gµν coincides with the background one, and its corresponding momentum (i.e.,
its covariant derivative) is identically vanishing. Notice that in the GLP representation given by
Equation (10), this means that in the validity of (18), one obtains:

gµν(s) = ∆gµν + Gµν(s) = Gµν(s). (20)

Hence, requiring
Gµν(s) = ĝµν(s) (21)

to be equivalent to letting:
gµν(s) = ĝµν(s). (22)

The order in which Assumptions (1) and (2) are taken is irrelevant, which means that Condition (2) can
be equivalently replaced requiring Equation (22). It follows that the tensor T(q)

µν is uniquely determined
in terms of the Bohm quantum potential, and it actually coincides with the tensor Bµν reported in [49],

namely in such a case T(q)
µν = Bµν. One finds that this tensor is a function of the quantum-gravitational

cosmological constant ΛCQG (s) determined in [49], namely of the form Bµν = ΛCQG (s) ĝµν. Here,
ΛCQG (s) arises due to the Bohm quantum vacuum interaction among massive gravitons and is
generally a function of proper-time with the initial value at s = so given by ΛCQG(so), where:

ΛCQG(so) =
h̄2

κ2
1

r4
th

, (23)

and h̄ is the reduced Planck constant.
For completeness, we mention, however, that in principle, also non-equilibrium initial conditions

of the type:
x (so) =

(
gµν

(o) ≡ gµν (so) , Π(o)µν ≡ δπµν (so)
)

, (24)

with δπµν (so) 6= 0 being infinitesimal, can be adopted. This initial condition provides the momentum
quantum-modified EFE discussed in [50] leading to the identification of the quantum-screening
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mechanism for the absolute value of the cosmological constant. In this case, the tensor T(q)
µν is shown to

carry both the contribution from the Bohm potential and proper-time averaged quantum contributions
of the ensemble of perturbations generated by fluctuations of quantum gravitational field and conjugate
momentum. Remarkably, also in this case, the same stress-energy tensor can be expressed in terms of a
screened quantum-gravitational cosmological constant ΛS = KΛCQG(so), where K < 1 is a suitable

numerical correction factor estimated in [50]. More precisely, one finds that T(q)
µν = ΛS ĝµν, and this

expression generalizes the one of Bµν by means of the inclusion of screening factor K.
A remarkable consequence of the initial conditions indicated by Equation (19) and Equation (24)

is that both admit a de Sitter solution for the metric tensor ĝµν, subject to corresponding prescribed
quantum corrections carried by the cosmological constant term. In particular, upon introducing the
four-scalar function B ≡

(
1− r2

A2

)
, the background metric tensor in spherical coordinates (ct, r, ϑ, ϕ)

can be written as ĝµν = diag
{

B, B−1, r2, r2 sin2 ϑ
}

, so that the corresponding Riemann distance takes
the form ds2 = Bc2dt2 − B−1dr2 + r2dΩ2. Here, the parameter A is related to the “radius” of the de
Sitter space-time, which in the framework of the quantum modifications of EFE considered above
depends on either Λ = ΛCQG or Λ = ΛS, respectively in the two cases discussed above, by means

of the prescription A =
√

3
Λ . It must be stressed that the solutions obtained so far include quantum

corrections to space-time ĝµν holding under the deterministic condition (18), so that in previous
treatments, stochastic contributions to EFE due to the stochastic variable ∆gµν and predicted by GLP
theory were ruled out in this way. For the same reason, the de Sitter solution constructed above yields
a deterministic representation for the metric tensor ĝµν and the physical properties of space-time
associated with its cosmological meaning.

3. Stochastic Quantum Gravity

We now carry out explicitly the stochastic generalization of CQG theory. The task is reached by
extending the CQG theory and its GLP representation given in [47] in such a way to include a new
kind of physically-admissible stochastic effects. We intend to show that such effects:

• are actually consistent with the dynamics of the quantum gravitational field;
• have an intrinsic indeterminacy character, because the new stochastically-modified PDF

introduced here does not affect the quantum Hamilton Equations (13) and (14);
• give rise to non-trivial modifications of the corresponding quantum-modified EFE and background

field tensor.

We stress that by construction, GLP theory is intrinsically stochastic. Such a feature arises
thanks to the stochastic displacement tensor ∆gµν, which determines also the statistical distribution
of Lagrangian trajectories around the deterministic Bohmian path and also the quantum PDF ρ (s).
However, the procedure adopted for the construction of the modified EFE (recalled above) requires
ultimately dropping altogether this type of stochastic effect.

Nevertheless, it is possible to prove that a more general solution for the quantum gravity PDF can
be reached, which carries an additional stochastic contribution expressed by a four-scalar stochastic
variable denoted here by the symbol α and having a prescribed probability density function. The new
stochastic effect is actually independent of the GLP stochastic displacement tensor ∆gµν. Its physical
meaning is therefore unrelated to GLP theory, but rather to the nature of stochastic physical observables
arising in quantum gravity (see the discussion below). As a notable feature, the α-stochastic parameter
does not change the GLP stochastic trajectories determined in [47], so that the same GLP theory
previously constructed still applies. It follows that the stochastic contribution of parameter α preserves
the probabilistic character of the new solution for the quantum gravity PDF, denoted by ρα (s), as well
as its unitarity principle.

In detail, let us assume that α ∈ [α0, α1], with α0 < α1, is a four-scalar stochastic parameter
independent of gµν and s. Then, the quantum PDF (11) can be formally extended to include a
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dependence on α, while still retaining its Gaussian character. The solution to the continuity equation
can always be taken in the form ρα (s) ≡ ρ(∆g(α), α, ĝ(s, α)), where:

ρα (s) = ρG (s, α) exp

−
s∫

so

ds′
∂Vµ

ν (s′)
∂gµ

ν (s′)

 , (25)

Vµ
ν (s) is the tensor velocity field (6) assumed independent of α and ρG (s, α) is the shifted Gaussian PDF

(denoted as α-Gaussian PDF), which is now expressed in terms of the stochastic tensor displacement
∆g(α) (see Equation (1)):

ρG (s, α) = K exp

{
− (∆g(α)− ĝ(s, α))2

r2
th

}
g(α, ε), (26)

with g(α, ε) denoting an in principle arbitrary four-scalar stochastic PDF. As an example, g(α, ε) can be
identified with a Gaussian PDF:

g(α, ε) = N exp
{
−α2

ε2

}
, (27)

with ordinarily finite support, so that α ∈ [α0, α1] ⊂ R (this assumption however may on occasion
not be required for numerical estimates) while N is a normalization constant and ε is a suitably
small dimensionless factor to be assumed ε � 1 (see below). In Equation (26), K is therefore the
normalization factor:

K =

∫
Ug

d(∆g)
α1∫

α0

dα exp

{
− (∆g(α)− ĝ(s, α))2

r2
th

}
g(α, ε)

−1

. (28)

In Equation (26), the tensors ∆g(α) ≡ ∆gµν(α) and ĝ(s, α) ≡ ĝµν(s, α) identify the generalized
displacement tensor ∆gµν of GLP theory and the background metric tensor, both now admitted
to generally depend on α itself, while ĝ can also depend on the proper-time s. Similarly, in the same
equation, the exponent (∆g(α)− ĝ(s, α))2 stands for the four-scalar defined as (∆g(α)− ĝ(s, α))2 ≡(
∆gµν(α)− ĝµν(s, α)

)
(∆gµν(α)− ĝµν(s, α)). As proven explicitly below, the expression for ∆gµν(α)

can be realized so that again, the condition D
Ds ∆gµν(α) = 0.

The solution ρα (s) in Equation (26) represents a probability density since by construction:

〈1〉 =
∫

Ug
d(∆g)

α1∫
α0

dαρα (s) = 1, (29)

which means that the quantum continuity Equation (4) preserves quantum unitarity. In addition,
it preserves the second-type emergent gravity feature of CQG theory (see [47]), namely one has
that again: 〈

∆gµν(α)
〉
=
∫

Ug
d(∆g)

α1∫
α0

dα
[
∆gµν(α)ρα (s)

]
= ĝµν. (30)

We notice that in the limit α → 0, one recovers the previous GLP theory summarized in Section 2.
In addition, the distribution of α is a Gaussian centered around zero and with half-width ε, so that its
stochastic average is identically null, namely:

〈α〉 =
∫

Ug
d(∆g)

α1∫
α0

dα [αρα (s)] = 0. (31)
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In this stochastic model, the contribution carried by α leaves invariant the GLP theory developed
earlier. The form of the solution in Equation (25) therefore provides a consistent generalization for the
representation of the quantum gravity PDF, which follows from the indeterminacy property of the
solution of the continuity equation with respect to the dependence on the stochastic parameter α and
the validity of the GLP formulation of CQG theory. In fact, regarding the replacement introduced here
in Equation (25) with respect to [47], namely:

1→ g(α, ε), (32)

and consequently, ρG (s, α = 0)→ ρG (s, α), it must be remarked that the specific form of the stochastic
PDF g(α, ε) does not enter explicitly, as previously for ρG (s, α = 0), in the quantum Hamilton
Equations (13) and (14).

For completeness we notice that two possible realizations of Equation (25) could be distinguished,
depending on the functional form of the half-width parameter ε, namely respectively:

Case 1. In the first case, one can set ε = const. � 1 everywhere. This choice preserves the validity of the
quantum continuity equation and is therefore consistent with the unitary principle, and correspondingly of a
quantum-unitary formulation of CQG theory. Equation (26) preserves its validity as a solution of the continuity
equation, since the dependence on α represents a property of the indeterminacy of the same PDF that generalizes
the solution obtained earlier, while leaving unaltered the theoretical framework of the GLP formalism. In such a
framework, the stochastic PDF (25) holds in the whole space-time.

Case 2. For the sake of completeness, however, we mention that a further more general realization can in
principle be reached. This is obtained by assuming a proper-time dependence for the half-width parameter
ε, namely of the type ε = ε(r(s)), with ε(r(s)) being an arbitrary, but suitably smooth function. Such a
choice preserves quantum unitarity by construction, but, following the guidelines of [32], requires replacing the
quantum continuity Equation (4) with an inhomogeneous one of the form:

dρq

ds
+

∂

∂gµν

(
ρqVµν

)
= Q(q)

L , (33)

with Q(q)
L denoting the quantum “source” term:

Q(q)
L = ρq(∆g(α), α, ĝ(s, α))

2α2

ε2(r(s))
d ln ε(r(s))

ds
. (34)

Notice that, independent of the prescription of the function ε(r) and due to the normalization (29),
Q(q)

L gives nevertheless a vanishing contribution upon the integration indicated in the same
normalization. Therefore, unlike [32], this is not actually a net source or sink term. Therefore, its
physical meaning remains problematic. Nevertheless, if Q(q)

L is considered prescribed, the previous
equation can also be used in principle to determine the profile of ε in terms of the quantum term
Q(q)

L = Q(q)
L (s). Hence, its inclusion could be useful for the search of stochastic effects when a

combination of loss/capture mechanisms is present in a domain that is located suitably close to the
de Sitter event horizon. Thus, if r(1)EH and r(2)EH are two different space-time positions identified with
suitable “internal” and “external” radii with respect to the event horizon radius rEH of the de Sitter
solution, so that by construction r(1)EH < rEH < r(2)EH , a possible choice is to assume that:

ε2 (r(s)) =

{
ε2 (r(s)) > 0 for r(1)EH < r < r(2)EH

ε2
o = const. for r < r(1)EH

}
, (35)
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where the limits apply:

lim
r→r(1)EH

1
ε2 (r(s))

d ln ε(r(s))
ds

= lim
r→r(2)EH

1
ε2(r(s))

d ln ε(r(s))
ds

= 0. (36)

It follows that, in this realization of the quantum PDF, the set Ir ≡
{

r| r(1)EH < r < r(2)EH

}
denotes the

stochastic set surrounding the de Sitter event horizon where the quantum source term Q(q)
L is non-zero.

Furthermore, if additionally, ε2
o is taken to be an infinitesimal dimensionless parameter such that:

ε2
o � r2

th, (37)

then, as a consequence, outside the subset Ir, the shifted α-Gaussian quantum PDF becomes:

ρG (s, α) = K exp

{
− (∆g(α)− ĝ(s, α))2

r2
th

− α2

ε2
o

}
∼= Ko exp

{
− (∆g− ĝ(s))2

r2
th

}
δ(α), (38)

so that effectively outside the same set, the contribution of the stochastic parameter α can be safely
ignored and Ko denotes the normalization factor in the limit α→ 0. Accordingly, this model provides
a convenient solution for the study of stochastic effects near the de Sitter event horizon where
the contribution due to the stochastic parameter is non-vanishing and can be associated with the
quantum sink Q(q)

L . In this regard, however, we notice that the precise realization of Q(q)
L must be

physically-motivated, as well as the physical mechanisms responsible for its occurrence in the stochastic
set Ir and its vanishing limit in the remaining region.

Based on these considerations, in the following, we shall adopt the framework corresponding to
Case 1, so that we shall assume ε = const. everywhere. The investigation of the physical meaning of
the solution corresponding to Case 2 is left to future studies.

4. Stochastic Quantum-Modified Einstein Equations

Based on the extended solution for the quantum gravity PDF obtained in Section 3, which includes
the novel contribution due to the quantum gravity stochastic factor α predicted by CQG theory, in
this section, we consider the consequences of such a dependence on the quantum-modified Einstein
equations and on the validity of a cosmological de Sitter solution for the space-time metric tensor.
For convenience and without loss of generality, to reach the goal, we adopt the setting provided by
Equation (19) reported above for the choice of “equilibrium” initial conditions of the quantum state.
This allows us to single out the new α-stochastic contribution and gain insight into its role in the
Einstein equations. The extension of the solution to the case of “non-equilibrium” initial state will be
then discussed at the end of the section. For the same reason, we exclude here the possible occurrence
of external source fields other than the gravitational one. In detail, in such a setting and without
performing the semiclassical limit h̄→ 0, Equations (13) and (14) subject to the initial condition (19)
reduce to the single equation:

∂

∂gµν (Vo + VQM)

∣∣∣∣
gµν=ĝµν

= 0, (39)

which contains the information by the Hamiltonian potential. Then, invoking the definitions (8) and (9)
for the potential terms Vo and VQM, respectively, it is straightforward to perform the differentiation
with respect to gµν and evaluate the result for gµν = ĝµν (which expresses a condition determined
by imposing the validity of Equation (19)). This yields the following form for the resulting Einstein
field equations:

R̂µν −
1
2

R̂ĝµν(s, α) = B(α)
µν . (40)
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Here, the α-stochastic quantum contribution arising from the Bohm potential is carried by the
symmetric tensor B(α)

µν , to be distinguished from the tensor Bµν obtained in [49] because of the new
dependence on the stochastic parameter α in the quantum gravity PDF. In the following, Equation (40)
will be referred to as the α-stochastic quantum-modified EFE. In particular, the stochastic tensor B(α)

µν is
obtained as:

B(α)
µν ≡ −

1
κ

∂

∂gµν VQM

∣∣∣∣
gµν=ĝµν

=
}2

κ2
f (s)
r4

th

(
∆gµν(α)− ĝµν(s, α)

)
, (41)

where f (s) is a suitably-prescribed four-scalar function depending on proper-time s and satisfying
a given differential equation determined in [49]. Its value for the initial condition s = so is such that
f (so) = 1. This function carries the proper-time dependence of the quantum gravity cosmological
constant, which is in this way transferred to the metric tensor ĝµν. Recalling the notation of
Equation (23) and defining:

ΛCQG (s) =
}2

κ2
f (s)
r4

th
= ΛCQG (so) f (s) , (42)

we can then write Equation (40) in the explicit form:

R̂µν −
1
2

R̂ĝµν(s, α) = −ΛCQG (s) ĝµν(s, α) + ΛCQG (s)∆gµν(α), (43)

where on the rhs, the first term identifies the quantum gravity cosmological constant term, while the
second tensor carries the stochastic contributions due to ∆gµν and α.

In order to express in a convenient way the tensor ∆gµν(α) and realize it consistently with the
constraints set by the underlying quantum GLP theory, it is instructive to make a comparison with the
case of EFE having a perfect fluid as a source term. In fact, we notice that in Equation (43), the role of
the symmetric tensor contribution ∆gµν(α) can be formally associated with a symmetric stress-energy
tensor Tµν, which is due to external fields and is the source of curvature. More precisely, in the case of
a perfect-fluid, the stress-energy tensor is customarily written as:

Tµν =

(
ε +

P
c2

)
UµUν + Pĝµν, (44)

where ε is the energy density and P is the isotropic pressure. The stress-energy tensor of a perfect fluid
contributes in two ways: one is the tensor contribution proportional to the fluid four-velocities UµUν

and the other one is the scalar contribution due to the pressure P only and having tensorial directions
along the background metric tensor. We can similarly introduce a decomposition of this type for the
stochastic tensor ∆gµν(α), thus letting:

∆gµν(α) = ∆gµν + αĝµν(s, α). (45)

In particular, this representation amounts to assuming a polynomial dependence of ∆gµν(α) on α and
ĝµν, retaining in the previous equation only the first-order term (i.e., linear term). This representation
is consistent with the constraint that in the limit α → 0, the stochastic contribution of α vanishes,
and one recovers that in the same limit, ∆gµν(α) → ∆gµν. Comparison between Equation (44) and
Equation (45) shows that ∆gµν, which is associated with the stochastic GLP trajectories, behaves like
the tensorial part of Tµν along the fluid Lagrangian trajectories, while the term proportional to α plays
the role analogous to a stochastic pressure.

Based on this representation, we can further elaborate the tensor Equation (43) by adopting the
same procedure established in Section 2 for the derivation of quantum-modified EFE. In particular, by
virtue of the representation (45), we proceed with the following additional steps:
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(1) Deterministic LP-limit: In Equation (43), the deterministic limit ∆gµν → 0 is taken,
corresponding to the collapse of the stochastic quantum GLP trajectories on the unique LP trajectory.

(2) Stochastic α-contribution: In Equation (43), the four-scalar “pressure” contribution αĝµν(s)
is independent of ∆gµν (see the discussion in Section 3), and it does not vanish when the LP-limit is
imposed. This type of stochastic quantum gravity effect is retained in the field equations.

Hence, one finally obtains the following representation for the α-stochastic quantum-modified EFE:

R̂µν −
1
2

R̂ĝµν(s, α) = −ΛCQG (s) (1− α) ĝµν(s, α), (46)

which exhibits the remarkable feature of being stochastic in terms of the explicit contribution of the
four-scalar parameter α. The field Equation (46) therefore determines a stochastic space-time metric
tensor for which ensemble averages over α should be computed.

The virtue of the representations (45) and (46) is that the linear dependence on α remains
proportional to the CQG expression of the cosmological constant and to the space-time metric
tensor. It follows that necessarily, the stochastic Equation (46) admits a corresponding stochastic
de Sitter solution depending on the cosmological constant ΛCQG (s) and the parameter α itself.
Thus, introducing the notation ĝµν = diag

{
Bα, B−1

α , r2, r2 sin2 ϑ
}

for the background metric tensor in
spherical coordinates (ct, r, ϑ, ϕ) and denoting hereafter for brevity Λ ≡ ΛCQG (s), the line element in
such a case is written as:

ds2 =

(
1− r2

A2
α

)
c2dt2 − 1(

1− r2

A2
α

)dr2 + r2dΩ2, (47)

where the parameter Aα carries the stochastic contribution. It is straightforward to see that the
contribution due to the quantum gravity stochastic parameter α makes the de Sitter event horizon
stochastic as well. In fact, in the absence of the stochastic effect, the location of the de Sitter event
horizon is fixed as a deterministic spherical surface at rEH =

√
3
Λ . In this case instead, the radius of

the event horizon is by analogy formally given by rα−EH = Aα, where:

rα−EH =

√
3

Λ (1− α)
, (48)

which however is no longer fixed as a deterministic surface because of the presence of the stochastic
parameter α.

Given the Gaussian representation for the probability density of α, from the physical point of view,
the condition ε� 1 means that the same distribution is very peaked and with a narrow half-width.
Hence, one can reasonably assume that in actual fact, α varies randomly in the range ∼ [−ε,+ε].
This implies that the argument of the square-root in Equation (48) remains always positive, with
the factor (1− α) ∼ O (1). The behavior of α implies the notable consequence that, similarly, the
de Sitter event horizon acquires a width, to be denoted as a stochastic quantum belt, so that for an
order-of-magnitude estimate, we can write rα−EH ∈

[
rmin

α−EH , rmax
α−EH

]
. The evaluation of the extrema of

such an interval can be estimated from Equation (48) by expanding the square-root. Thus, assuming
α ∼ ε� 1, to leading-order in ε, one finds respectively:

rmin
α−EH =

√
3

Λ (1 + |ε|) =

√
3
Λ

(1 + |ε|)−
1
2 ' rEH

(
1− 1

2
|ε|
)

, (49)

rmax
α−EH =

√
3

Λ (1− |ε|) =

√
3
Λ

(1− |ε|)−
1
2 ' rEH

(
1 +

1
2
|ε|
)

. (50)
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Hence, the width of the stochastic event horizon becomes in the same approximation ∆rα−EH =

rmax
α−EH − rmin

α−EH = rEH |ε|. The main implication is that the existence of a stochastic quantum belt
for the event horizon with a finite width generates a region of space-time where a tunneling effect
of particles/fields (including gravitons) is in principle possible, since according to this model the
same event horizon does not represent anymore a classical deterministic barrier at fixed radius, i.e., a
zero-measure surface separating the inner and outer domains of space-time. This calculation provides
an order-of-magnitude estimate of the spatial width of the stochastic event horizon where the quantum
PDF is expressed by Equation (26) and can be associated with non-vanishing particle-tunneling effects.
In the same linear approximation, it then follows that the average value of the de Sitter event horizon
is estimated by:

rα−EH ∼= rmin
α−EH +

rmax
α−EH − rmin

α−EH
2

= rEH , (51)

since in the linear approximation, positive and negative stochastic contributions to rEH contribute equally
and cancel out. Hence, we can write that rα−EH = rEH + O

(
ε2). However, as shown below, a more

detailed calculation of the averaged radius requires the stochastic average of rα−EH given by Equation (48)
over the stochastic quantum PDF ρα (s) in order to evaluate analytically the O

(
ε2)-corrections. In addition,

we notice that although the stochastic effects due to the inclusion of α and contained in the metric tensor
affect the whole space-time, because of the form of the de Sitter solution and the shape of the Gaussian
PDF, for the smallness value assumed for the half-width ε, they become relevant only close to the event
horizon where the ratio r2

A2
α
∼ O (1) , while they are accordingly negligible elsewhere. We stress that these

considerations remain valid under the assumption that ε � 1 is an infinitesimal parameter. In fact, if
ε ∼ O (1), then the solution (26) for the quantum PDF would still retain its mathematical validity, but
with a different physical meaning. The case ε ∼ O (1) would correspond to having dominant quantum
stochastic effects in the whole space-time, and therefore no longer significant at the event horizon only.
This realization however is not investigated in the present work.

As a concluding remark of this section, we must comment on the relationship between the
α-stochastic effect and the screening effect of the cosmological constant described in [50]. In this
regard, we notice that, given the validity of Equation (46), the stochastic parameter α enters the same
equations as a correction coefficient to the CQG cosmological constant. If the screening effect is taken
into consideration by the prescription of a non-equilibrium initial canonical state xo in the quantum
Hamilton equations, its contribution determines a lowering of the magnitude of the same cosmological
constant by a screening factor K. Therefore, the same screening effect remains preserved also when the
stochastic parameter α is included, as the two contributions are independent and operate separately on
the final representation of the quantum-modified EFE. Therefore, the screening effect does not change
the conclusions on the stochastic event horizon, but, if included, it can change the value of rEH around
which the stochastic quantum width arises.

5. Stochastic Averages of Physical Observables in de Sitter Space-Time

In this section, we consider the calculation of stochastic averages over the PDF ρα (s) for physical
observables of interest in the de Sitter space-time, which depend on the stochastic parameter α. By
definition, given an observable quantity y, its stochastic α-average is denoted with 〈y〉 and is defined as:

〈y〉 ≡
∫

Ug
d(∆g)

α1∫
α0

dα [yρα (s)] ∼=
∫

Ug
d(∆g)

∞∫
−∞

dα [yρα (s)] , (52)

where it is assumed that the PDF ρα (s) is normalized to one when both integrations over ∆g and α

are computed. Notice that in the previous equation, specifically in reference to the prescription of the
stochastic PDF Equation (27), the support of the stochastic parameter α has been identified for the
convenience of calculation with R. We consider here in particular the following observable quantities:
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(1) The quantum cosmological constant.
(2) The de Sitter radius.
(3) The Hawking temperature.

(1) The quantum cosmological constant:

Given the validity of the α-stochastic quantum-modified EFE (46), it is possible to identify
the contribution of the effective stochastic cosmological constant Λ (α), which is provided by the
absolute value:

Λ (α) = ΛCQG (s) (1− α) . (53)

The expression of Λ (α) does not depend on the construction of the stochastic tensor ∆g, but only on α.
Hence, the stochastic average over the Gaussian PDF ρα (s) yields:

〈Λ (α)〉 ≡
∫

Ug
d(∆g)

+∞∫
−∞

dα [Λ (α) ρα (s)] = ΛCQG (s) . (54)

The stochastic cosmological constant in Equation (46) carries a linear (i.e., odd) dependence on α,
which therefore averages to zero over the symmetric Gaussian PDF. The α-averaged cosmological
constant in the stochastic set Ir therefore coincides with the expression obtained in previous papers
(see [49,50]), so that no evidence of corrections to its expression due to the α-stochastic effect appears
in its averaged value.

(2) The de Sitter radius:

Let us now consider the α-average of the de Sitter radius rα−EH given by Equation (48). In this
case, the dependence on α enters through the inverse of the square-root of the stochastic cosmological
constant Λ (α). Again, no dependence on ∆g appears by construction, so the stochastic average only
involves the Gaussian PDF on α. We have by definition:

〈rα−EH〉 =
∫

Ug
d(∆g)

+∞∫
−∞

dα [rα−EHρα (s)] =
∫

Ug
d(∆g)

+∞∫
−∞

dα

[√
3

Λ (α)
ρα (s)

]

=

√
3
Λ

∫
Ug

d(∆g)
+∞∫
−∞

dα
[
(1− α)−1/2 ρα (s)

]
. (55)

In order to evaluate the integral, we proceed by expanding the square-root to second order in α:

(1− α)−1/2 = 1 +
1
2

α +
3
8

α2 + O
(

α3
)

. (56)

The linear term averages to zero, recovering the estimate for rα−EH given by Equation (51). However,
the quadratic term gives a non-vanishing contribution. In particular, neglecting the contributions of
O
(
α3), one obtains that:

〈rα−EH〉 =

√
3
Λ

∫
Ug

d(∆g)
+∞∫
−∞

dα

[(
1 +

1
2

α +
3
8

α2
)

ρα (s)
]

=

√
3
Λ

(
1 +

3
16

ε2
)
= rEH

(
1 +

3
16

ε2
)

. (57)

The particular dependence of rα−EH on α therefore yields an average contribution to 〈rα−EH〉, which
is of O

(
ε2). Outside the stochastic quantum belt surrounding the event horizon, this term can be

regarded as negligible, but not near the de Sitter horizon. It follows that, in the same set, the averaged
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cosmological constant is not affected by stochastic dependence in α, while the de Sitter radius displays
such a dependence. More precisely, the radius is increased by the factor 3

16 ε2, so that the event
horizon is placed further away at a greater radius, because of such a stochastic quantum gravity effect.
However, remarkably, although the radius changes, the averaged curvature of the de Sitter space-time,
the solution of the quantum-modified EFE, remains unchanged. This represents a purely quantum
stochastic effect on the classical solution of EFE.

The consequences are that:
(a) There is a deviation of the relationship between the value of the cosmological constant and

the radius of the event horizon with respect to the deterministic case in the absence of stochastic
phenomena. The averaged curvature of the de Sitter universe remains the same as in the absence of
α-stochastic effects, but the location of the event horizon defined by the radius of the de Sitter solution
is changed.

(b) The stochastic averages of the EFE and that of the solution of EFE do not commute. As
a consequence, linear stochastic contributions on the parameter α that appear in the effective
cosmological constant are finally brought as non-vanishing contributions into the non-linear solution
for the space-time metric tensor by the quantum-modified EFE.

(c) The solution given byEquation (57) yields a posteriori a physical interpretation of ε, which
identifies the half-width of the Gaussian PDF for the distribution of the stochastic scalar α.

(d) This outcome also shows that in a cosmological scenario, the observational measure of the
cosmological constant and the de Sitter radius are not equivalent, but rather they are complementary.
In particular, the underlying action of stochastic effects described by the α-model outlined above can
only appear in the solution of the non-linear EFE, and for the specific case of the de Sitter solution, in
the value of the corresponding de Sitter radius.

(3) The Hawking temperature:

Following the discussion reported in [7], one of the critical issues of black hole dynamics is the
effect of Hawking radiation on black hole evaporation, and in particular the resulting effect on the
survival of primordial black holes due to Hawking evaporation in early cosmology and their possible
contribution as dark matter components. In particular, one must envisage additional quantum effects
(possibly operating down to the Planck scale) capable of interrupting the Hawking evaporation and
make possible its final setup in the absence of singularity. Apart from this issue, that is discussed
in the Introduction of the cited paper, an aspect of interest is about the possibility of defining a
Hawking temperature also for a de Sitter solution. In fact, usually, the Hawking temperature is defined
for classical black holes having a central singularity “hidden” by the event horizon. The de Sitter
cosmological solution is singularity-free, but possesses a cosmological horizon (the boundary of the
universe). As shown in [27], the Hawking temperature is associated with the emission spectrum of a
black hole as seen by an observer located outside the event horizon. It is therefore formally possible to
extend the definition of the Hawking temperature to the de Sitter event horizon. In the following, we
shall adopt for this aim the mathematical derivation presented in [27].

More precisely, we are interested here in applying the stochastic features derived above to the
estimation of the Hawking temperature for the stochastic de Sitter solution obtained retaining α effects.
We start by the definition of the de Sitter temperature (see Equation (9) in [27]):

Tc = −
1−Λr2

c
4πrc

, (58)

where rc denotes the radius of the cosmological horizon in the de Sitter metric. Thus, introducing the
substitutions appropriate for the stochastic de Sitter solution, namely:

rc → rα−EH ,

Λ → Λ (α) ,
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we obtain a stochastic representation for the Hawking temperature, denoted here as Tc (α) and given by:

Tc (α) = −
1−Λ (α) r2

α−EH
4πrα−EH

. (59)

Elaborating the expression, one obtains:

Tc (α) = Tc (1− α)1/2 , (60)

where Tc is the customary Hawking temperature (58) of the de Sitter solution in the absence of
α-stochastic effects, while the explicit contribution due to α has been singled-out.

We can therefore compute the stochastic average of such a temperature, namely 〈Tc (α)〉. We
preliminarily expand in Taylor series the square-root:

(1− α)1/2 = 1− 1
2

α− 1
8

α2 + O
(

α3
)

. (61)

As for the de Sitter radius, the linear term averages to zero. We obtain in fact:

〈Tc (α)〉 =
∫

Ug
d(∆g)

+∞∫
−∞

dα [Tc (α) ρα (s)] = Tc

∫
Ug

d(∆g)
+∞∫
−∞

dα
[
(1− α)1/2 ρα (s)

]
= Tc

(
1− ε2

16

)
. (62)

The result is consistent with the finding of the behavior of the de Sitter radius. In fact, the Hawking
temperature is proportional to the inverse of the event horizon radius. Since the stochastically-averaged
value of the radius increases, then the “surface” gravity experienced by an observer in the vicinity of
the same event horizon is correspondingly reduced.

In conclusion, the stochastic quantum effects modeled by the scalar contribution in α with a given
quantum PDF do not contribute to the observable average measure of the cosmological constant, but
can affect nevertheless the location of the event horizon and the value of Hawking temperature. The
hint that can be inferred from this calculation is that the quantum stochastic effect pointed out here
due to α-dependence in the quantum gravity PDF can help decrease the black hole evaporation rate,
suggesting a possible mechanism able to permit the survival of primordial black holes. The physical
scenario depicted here involves uniquely the stochastic quantum behavior of the gravitational field
without requiring the action of any additional field, and for this reason, it is a purely quantum effect of
the gravitational field.

6. Conclusions

In this paper, we showed that in the framework of a stochastic and hydrodynamic approach to the
manifestly-covariant quantum gravity theory, the quantum-produced cosmological constant arising
due to collective vacuum graviton interactions (Bohm interaction) can in principle carry stochastic
corrections, just as the background field tensor. The basic conceptual implication is that regions with
different metric signatures, which are separated by an event horizon, are no longer treated as strictly
impenetrable both for quantum particles and classical matter. This concerns in principle the occurrence
of a novel tunneling mechanism arising across event horizons, which combines quantum gravity with
the stochastic properties of the quantum gravitational field and its modification of classical metric
tensor solutions. The case study of cosmological de Sitter solution has been treated. According to
the present outcome in fact, it is the classical de Sitter event horizon that acquires a quantum and
stochastic character, so that it no longer remains defined as a deterministic barrier, fixed at a prescribed
classical radius. Rather, the event horizon acquires a quantum width compatible with the occurrence
of tunneling effects and still satisfying the unitarity principle of quantum mechanics. These features
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arise from the solution of the quantum continuity equation associated with the quantum gravity wave
equation and the inspection of indeterminacy properties for the inclusion of stochastic parameters in
the solution of the quantum probability density, which can preserve its Gaussian profile. Observational
consequences on the calculation of the radius of the de Sitter event horizon and related Hawking
temperature were discussed. The conceptual implications of the solution considered in the paper
are challenging, involving the possible generation and emission of massive gravitons, particle or
fields across the de Sitter event horizon, as well as indicating the possible occurrence of similar effects
for other (classical) black hole solutions. The conclusions reached here are therefore meaningful in
the context of quantum gravity, theoretical astrophysics, and cosmology for their potential physical
relevance concerning the characterization of quantum phenomena and tunneling effects that can occur
in the surroundings of event horizons.
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