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INTRODUCTION 
 

Alzheimer’s disease is a major and increasing global 

health challenge in elderly people without available 

curative treatment [1]. Although the pathophysiologic 

mechanism of Alzheimer’s disease is largely unknown, 

impaired glucose metabolism in the brain may 

contribute to Alzheimer’s diseases pathology [2]. 

Recently, several epidemiological studies have 

suggested that some modifiable risk factors, such as 

type 2 diabetes and insulin resistance, were associated 

with cognitive decline or Alzheimer’s disease [3–7]. 

However, positive association was not observed in 

another study [8]. Furthermore, observational studies  

 

might be confounded by potential confounders and  

reverse causation [9]. Whether the association between 

glucose metabolism and Alzheimer’s disease observed 

in observational studies reflect causal association needs 

further investigation. Therefore, the causal association 

between impaired glucose metabolism and Alzheimer’s 

disease is still controversial. 

 

Mendelian randomization (MR), using genetic variants 

as instrumental variables, is a method that enables 

strong causal inference between a risk factor and a 

disease [9]. In this study, we aimed to use MR analysis 

to evaluate the causal association between glycemic 

traits and Alzheimer’s disease.  
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ABSTRACT 
 

Previous observational studies have reported an association between impaired glucose metabolism and 
Alzheimer’s disease. This study aimed to examine the causal association of glycemic traits with Alzheimer’s 
disease. We used a two-sample Mendelian randomization approach to evaluate the causal effect of six 
glycemic traits (type 2 diabetes, fasting glucose, fasting insulin, hemoglobin A1c, homeostasis model 
assessment- insulin resistance and HOMA-β-cell function) on Alzheimer’s disease. Summary data on the 
association of single nucleotide polymorphisms with these glycemic traits were obtained from genome-wide 
association studies of the DIAbetes Genetics Replication And Meta-analysis and Meta-Analyses of Glucose 
and Insulin-related traits Consortium. Summary data on the association of single nucleotide polymorphisms 
with Alzheimer’s disease were obtained from the International Genomics of Alzheimer's Project. The 
Mendelian randomization analysis showed that 1-standard deviation higher fasting glucose and lower 
HOMA-β-cell function (indicating pancreatic β-cell dysfunction) were causally associated with a substantial 
increase in risk of Alzheimer’s disease (odds ratio=1.33, 95% confidence interval: 1.04-1.68, p=0.02; odds 
ratio=1.92, 95% confidence interval: 1.15-3.21, p=0.01). However, no significant association was observed for 
other glycemic traits. This Mendelian randomization analysis provides evidence of causal associations 
between glycemic traits, especially high fasting glucose and pancreatic β-cell dysfunction, and high risk of 
Alzheimer's disease. 
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RESULTS 
 

The inverse-variance weighted (IVW) method showed 

that 1-standard deviation (SD) higher fasting glucose 

and lower HOMA-β-cell function (HOMA-β) 

(indicating pancreatic β-cell dysfunction) were causally 

associated with a substantial increase in risk of 

Alzheimer’s disease (odds ratio (OR)=1.33, 95% 

confidence interval (CI): 1.04-1.68, p=0.02; OR=1.92, 

95% CI: 1.15-3.21, p=0.01) (Figure 1). Similar 

association was observed in fasting glucose using the 

penalized robust IVW, weighted mode-based estimate 

(MBE) and Mendelian Randomization Pleiotropy 

RESidual Sum and Outlier (MR-PRESSO) methods, but 

not using the MR-Egger, simple median and weighted 

median methods of MR analyses (Table 1). For HOMA-

β, similar results were observed using the penalized 

robust IVW, simple median and MR-PRESSO methods, 

but not using the MR-Egger, weighted median and 

weighted MBE methods of MR analyses. The results of 

leave-one-out sensitivity analyses showed that the 

associations between fasting glucose, HOMA-β and risk 

of Alzheimer’s disease were not substantially driven by 

any individual single nucleotide polymorphism (SNP). 

Association between each variant with fasting glucose, 

HOMA-β and risk of Alzheimer’s disease are displayed 

in Figure 2. No significant association of genetically 

predicted type 2 diabetes, fasting insulin, hemoglobin 

A1c (HbA1c) and homeostasis model assessment- 

insulin resistance (HOMA-IR) with risk of Alzheimer’s 

disease was observed using any MR method (Figure 1; 

Table 1).  

 

MR-Egger regression showed no evidence of directional 

pleiotropy for the association of any glycemic trait with 

Alzheimer’s disease (all p values for intercept >0.05) 

(Table 1). There was no evidence of heterogeneity in 

the IVW analysis for fasting glucose (Q=32.71, 

P=0.17), fasting insulin (Q=13.09, P=0.79), HbA1c 

(Q=45.20, P=0.12) and HOMA-β (Q=2.28, P=0.81), but 

heterogeneity was observed for type 2 diabetes 

(Q=67.91, P=0.007).  

 

DISCUSSION 
 

Using two-sample MR analysis based on data from 

large-scale genome-wide association studies (GWAS), 

our study provided genetic evidence in supporting that 

glycemic disorder may lead to Alzheimer’s disease. In 

the present study, genetically predicted higher level of 

fasting glucose and lower level of HOMA-β (indicating 

pancreatic β-cell dysfunction) were causally associated 

with an increased risk of Alzheimer’s disease. However, 

no significant association was observed between type 2 

diabetes, fasting insulin, HbA1c, HOMA-IR and risk of 

Alzheimer’s disease. Sensitivity analyses with different 

statistical models showed almost similar results. 

 

Impaired glucose metabolism, which is modifiable, 

contributes to Alzheimer’s disease pathogenesis. It was 

even proposed that Alzheimer’s disease may be a brain-

specific form of diabetes mellitus, a “type 3 diabetes” 

[10]. However, the precise mechanisms involved in the 

association of glucose metabolism with cognitive 

decline and Alzheimer's disease are not yet fully 

understood. Several assumed mechanisms have been 

proposed. Hyperglycemia may induce increased 

peripheral utilization of insulin and reduce insulin 

transport into the brain, ultimately producing brain 

insulin deficiency [11]. Impaired glucose metabolism, 

such as type 2 diabetes and insulin resistance, may lead 

to impaired neuronal insulin signaling, 

neuroinflammation, oxidative stress, resulting in 

amyloid-β accumulation, tau hyper-phosphorylation and

 

 
 

Figure 1. Risk of Alzheimer’s disease for genetically predicted glycemic traits. The associations are assessed using the inverse-
variance weighted method. Estimates are per 1-unit higher log-odds of type 2 diabetes, 1-SD higher fasting glucose, fasting insulin and 
HOMA-IR, %-units higher HbA1c, and 1-SD lower HOMA-β (indicating pancreatic β-cell dysfunction). Trait values for fasting insulin, HOMA-β 
and HOMA-IR were naturally log transformed. CI, confidence interval; HbA1c, hemoglobin A1c; HOMA-β, homeostasis model assessment- β-
cell function; HOMA-IR, homeostasis model assessment- insulin resistance. 
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Table 1. MR statistical sensitivity analyses. 

   Associations with AD  

Glycemic traits MR methods Parameter OR/Odds (95% CI) P value 

Type 2 diabetes Penalized robust IVW OR 1.01(0.96-1.07) 0.65  

 MR-Egger OR 0.98(0.84-1.14) 0.83  

  Odds (intercept) 1.00(0.99-1.02) 0.63  

 Simple median OR 0.99(0.91-1.08) 0.83  

 Weighted median OR 0.99(0.91-1.07) 0.73  

 Weighted MBE OR 0.99(0.90-1.10) 0.89  

 MR-PRESSO OR 1.03(0.97-1.10) 0.35  

Fasting glucose Penalized robust IVW OR 1.38(1.16-1.66) <0.001  

 MR-Egger OR 1.36(0.78-2.38) 0.28  

  Odds (intercept) 1.00(0.98-1.02) 0.91  

 Simple median OR 1.44(0.96-2.17) 0.08  

 Weighted median OR 1.24(0.90-1.70) 0.19  

 Weighted MBE OR 1.33(1.01-1.75) 0.04  

     MR-PRESSO OR 1.39(1.07-1.82) 0.02  

Fasting insulin Penalized robust IVW OR 1.34(0.81-2.21) 0.25  

 MR-Egger OR 4.31(0.24-75.87) 0.32  

  Odds (intercept) 0.98(0.94-1.03) 0.39  

 Simple median OR 1.35(0.69-2.62) 0.38  

 Weighted median OR 1.33(0.70-2.55) 0.39  

 Weighted MBE OR 1.49(0.61-3.62) 0.38  

     MR-PRESSO OR 1.24(0.83-1.87) 0.31  

HbA1c Penalized robust IVW OR 0.96(0.70-1.32) 0.80  

 MR-Egger OR 1.21(0.55-2.64) 0.64  

  Odds (intercept) 1.00(0.98-1.01) 0.51  

 Simple median OR 0.85(0.51-1.40) 0.52  

 Weighted median OR 1.00(0.61-1.64) 0.98  

 Weighted MBE OR 0.96(0.55-1.67) 0.87  

     MR-PRESSO OR 0.96(0.67-1.37) 0.81  

HOMA-β Penalized robust IVW OR 1.85(1.24-2.77) 0.003  

 MR-Egger OR 0.91(0.22-3.79) 0.90  

  Odds (intercept) 1.02(0.98-1.06) 0.27  

 Simple median OR 2.06(1.04-4.05) 0.04  

 Weighted median OR 1.73(0.93-3.22) 0.08  

 Weighted MBE OR 1.68(0.92-3.06) 0.09 

 MR-PRESSO OR 1.92(1.35-2.71) 0.01  

MR, Mendelian randomization; AD, Alzheimer’s disease; OR, odds ratio; CI, confidence interval; IVW, inverse-variance 
weighted; MBE, mode-based estimate; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; HbA1c, 
hemoglobin A1c; HOMA-β, homeostasis model assessment -β-cell function. Estimates are per 1-unit higher log-odds of type 2 
diabetes, 1-SD higher fasting glucose and fasting insulin, %-units higher HbA1c and 1-SD lower HOMA-β (indicating pancreatic 
β-cell dysfunction). Trait values for fasting insulin and HOMA-β were naturally log transformed. Sensitivity analyses were not 
performed for HOMA-IR since these methods requires >2 variants. 
 

subsequent cognitive decline and Alzheimer's disease 

[12, 13]. Recent studies showed that diabetes and 

insulin resistance were also associated with brain 

atrophy and aberrant functional connectivity [14, 15].  

 

In the last decades, accumulating observational 

evidence has demonstrated that type 2 diabetes and 

insulin resistance were associated with cognitive decline 

or Alzheimer’s disease [3–7]. A meta-analysis showed 

that diabetes mellitus was associated with a 1.6-fold 

higher risk of Alzheimer’s disease [3]. In the English 

Longitudinal Study of Ageing study with 5189 

participants and 10-year follow-up, HbA1c levels and 

diabetes status were associated with long-term cognitive 

decline [4]. Other longitudinal studies from Finland also 

observed significant association between insulin 

resistance and long-term cognitive decline [6, 7]. 

However, the association was nonsignificant between 
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type 2 diabetes, insulin resistance or HbA1c and 

cognitive state or Alzheimer’s disease in a recent British 

cohort study and previous MR analyses [8, 16, 17]. The 

present study further emphasized the causal effect of 

high fasting glucose, pancreatic β-cell dysfunction on 

high risk of Alzheimer’s disease. This also indicated 

that the prediabetic stage could be a potential time-point 

for preventative treatment of Alzheimer’s disease. This 

result was supported by a recent study with 34year 

follow-up that found an U-shaped relationship between 

fasting insulin and dementia and excess risk for 

dementia in subjects with low level of insulin [18]. 

Potential explanation of the negative associations for 

 

 
 

Figure 2. Associations of fasting glucose (A) and HOMA-β (B) 
related variants with risk of Alzheimer’s disease. The red line 
indicates the estimate of effect using inverse-variance weighted 
method. Circles indicate marginal genetic associations between 
fasting glucose, HOMA-β and risk of Alzheimer’s disease for each 
variant. Error bars indicate 95% confidence intervals.  

fasting insulin and HOMA-IR in our study included 

weak instruments and small sample size. Furthermore, 

this might be caused by that HOMA-IR mainly reflect 

hepatic insulin resistance instead of brain insulin 

resistance [19]. 

 

The strength of the study is the design of MR analysis 

based on large-scale GWAS studies. The MR design 

uses genetic variants as instrumental variables to 

estimate the association between an exposure and a 

disease. As genetic variants are randomly allocated at 

meiosis and independent of other factors that may bias 

observational studies, MR analysis is not prone to 

potential reverse causation and unmeasured 

confounders, such as dietary and lifestyle preference, 

and thus can strengthen the evidence for causal 

inference [9]. Using two-sample MR method, we were 

able to test the effect of glycemic traits on Alzheimer's 

disease based on data from a large-scale cohort (17,008 

cases and 37,154 controls). Nevertheless, potential bias 

may exist due to the nature of two-sample MR method 

since data of associations of SNP-exposure and SNP-

outcome were derived from 2 different populations. 

Results in previous one-way or two-way MR analyses 

showed nonsignificant association between type 2 

diabetes or fasting insulin with Alzheimer’s disease [16, 

17, 20], but were not consistent for fasting glucose [16, 

17, 21]. Another MR study found insulin sensitivity 

polygenic score formed from a subset of type 2 diabetes 

associated SNPs, but not the overall type 2 diabetes 

polygenic score, was causally associated with 

Alzheimer’s disease [22]. Our study distinguished from 

previous MR studies [16, 17, 20–22] by comprehensive 

evaluation of six glycemic traits and strict selection of 

instruments via exclusion of SNPs with potential 

pleiotropic effects.  

 

Our study has several limitations. First, our analyses 

were performed in the population of European ancestry 

and may not be generalized to those of non-European 

ancestry. However, recent studies provided evidence of 

shared genetic architecture for glycemic diseases across 

ethnic groups [23]. The uniformity of ancestry 

minimizes the risk of bias by population admixture. 

Second, the estimates may still be biased by potential 

for residual pleiotropy (SNPs affect the outcome via a 

different pathway other than the exposure) [24]. 

However, we had a strict exclusion of instruments with 

potential pleiotropy and pleiotropic effect was not 

observed in MR-Egger regression. Third, further studies 

with large sample size are needed since the results were 

not validated in some sensitivity analyses in our study.  

 

In conclusion, our two-sample MR analysis provides 

evidence of causal associations between glycemic traits, 

especially hyperglycemia and pancreatic β-cell 
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dysfunction, and high risk of Alzheimer's disease. 

However, validating and replicating these findings in 

large-scale studies is warranted. 

 

MATERIALS AND METHODS 
 

Study design  
 

We designed a two-sample MR analysis to evaluate the 

causal effect of glycemic traits on Alzheimer’s disease 

(Figure 3). The MR design assumes that the genetic 

variants are associated with glycemic traits, but not with 

other confounders, and the genetic variants are 

conditionally independent of Alzheimer’s disease given 

glycemic traits and the confounding factors. Using the 

genetic variants as instrumental variables to assess the 

association between an exposure and an outcome, MR 

approach is a method that strengthens causal inferences 

and addresses susceptibility to potential confounding 

and reverse causation prone to conventional 

observational studies [9]. Six glycemic traits, including 

type 2 diabetes, fasting glucose, fasting insulin, HbA1c, 

HOMA-IR and HOMA-β, were evaluated. Data on the 

associations of SNPs with these glycemic traits and 

Alzheimer’s disease were obtained from recently 

published large-scale GWAS (Table 2) [25–30]. The 

protocols of the original studies were approved by the 

institutional review board of participating sites and 

informed consents were obtained from all participants. 

 

Instruments 
 

Genetic variants which were associated with these six 

glycemic traits were obtained from previous published 

GWAS (Table 2). A total of 51 SNPs associated with 

type 2 diabetes were obtained from recently published 

two GWAS meta-analyses from the DIAbetes Genetics  

 

 
 

Figure 3. Conceptual framework for the Mendelian 
randomization analysis of glycemic traits and risk of 
Alzheimer’s disease. The design assumed that the genetic 
variants are associated with glycemic traits, but not with 
confounders, and the genetic variants are associated with risk of 
Alzheimer’s disease only through glycemic traits. SNP, single 
nucleotide polymorphism. 

Replication And Meta-analysis (DIAGRAM) consortium 

[25, 26]. The first study combined the DIAGRAMv3 

GWAS meta-analysis with a stage 2 meta-analysis of 

Metabochip, including 34,840 cases and 114,981 controls, 

overwhelmingly (97.6%) of European ancestry [25]. In 

that study, 38 genetic loci with at least 1 genetic variant 

associated with type 2 diabetes were identified (P< 

5.0×10−8). The second study was an expanded GWAS of 

type 2 diabetes in Europeans, including a GWAS stage 1 

with a total of 26,676 type 2 diabetes cases and 132,532 

control participants from 18 GWAS and a Metabochip 

stage 2 with 14,545 type 2 diabetes cases and 38,994 

controls from nonoverlapping 16 studies [26]. That study 

identified 13 novel type 2 diabetes -associated loci (P< 

5.0×10−8).  

 

SNPs associated with fasting glucose, fasting insulin, 

HbA1c, HOMA-IR and HOMA-β, were obtained from 

the recently published Meta-Analyses of Glucose and 

Insulin-related traits Consortium (MAGIC) [27–29]. 

MAGIC was a collaborative effort to combine data from 

multiple GWAS to identify loci that impact on glycemic 

and metabolic traits. In that GWAS meta-analysis, 36 

genetic loci with at least 1 genetic variant associated 

with fasting glucose were identified in up to 133,010 

non-diabetic participants of European ancestry from 66 

studies, and 19 genetic loci with at least 1 genetic 

variant associated with fasting insulin in up to 108,557 

individuals of European ancestry from 56 studies (P< 

5.0×10−8) [27]. A total of 43 genetic loci with at least 1 

genetic variant associated with HbA1c were identified 

in up to 123,665 non-diabetic individuals from 82 

cohorts of European ancestry (P< 5.0×10−8) [28]. A 

total of 7 SNPs associated with HOMA-β and 2 SNPs 

associated with HOMA-IR were identified from GWAS 

meta-analysis of 46,186 non-diabetic participants from 

21 studies with follow-up in up to 76,558 additional 

individuals of European ancestry (P< 5.0×10−8) [29]. 

Detailed information about the DIAGRAM and MAGIC 

consortia are showed in Supplementary Materials, 

Details of Studies and Participants.  

 

All these SNPs were in different genomic regions and 

not in linkage disequilibrium with other SNPs in the 

same glycemic trait (r2<0.20). We performed a look-up 

of these SNPs in Phenoscanner to evaluate whether 

these SNPs were associated with other diseases or traits 

at genome-wide significance level (P< 5.0×10−8) which 

may indicate potential pleiotropic effects [31]. We 

found that eight SNPs for type 2 diabetes, eight SNPs 

for fasting glucose, six SNPs for HbA1c and one SNP 

for HOMA-β were also associated with other diseases 

or traits, such as white blood cell count, neutrophil 

count, low density lipoprotein cholesterol, high density 

lipoprotein cholesterol, triglycerides, total cholesterol, 

self-reported hypertension, coronary artery disease,
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Table 2. Characteristics of the GWAS used in this study. 

Phenotype Consortium Sample size Ancestry Genotype data PMID 

Exposure (glycemic traits)      

    Type 2 diabetes DIAGRAM Up to 212,747 individuals European 
GWAS array and 
metabochip array 

22885922, 
28566273 

    Fasting glucose MAGIC Up to 133,010 individuals European 
GWAS array and 
metabochip array 

22885924 

    Fasting insulin MAGIC Up to 108,557 individuals European 
GWAS array and 
metabochip array 

22885924 

    HbA1c MAGIC Up to 123,491 individuals European GWAS array 28898252 

    HOMA-β MAGIC Up to 98,372 individuals European GWAS array 20081858 

    HOMA-IR MAGIC Up to 94,636 individuals European GWAS array 20081858  

Outcomes       

    Alzheimer’s disease IGAP Up to 54,162 individuals European GWAS array 24162737 

HbA1c, hemoglobin A1c; HOMA-β, homeostasis model assessment -β-cell function; HOMA-IR, homeostasis model assessment 
-insulin resistance. 
 

years of educational attainment, serum urate 

(Supplementary Table 1). After exclusion of these SNPs 

and one SNP (rs12621844) for HbA1c not found in 

outcome datasets, we used the remaining 43 SNPs for 

type 2 diabetes, 28 SNPs for fasting glucose, 19 SNPs 

for fasting insulin, 36 SNPs for HbA1c, 6 SNPs for 

HOMA-β and 2 SNPs for HOMA-IR as the instrument 

in the MR analysis. Supplementary Table 2 shows the 

characteristics and associations of these included SNPs 

with the corresponding glycemic traits.  

 

Outcomes 
 

Summary statistics for the associations between each 

glycemic trait- associated SNP and Alzheimer’s disease 

were obtained from the open-access GWAS of the 

International Genomics of Alzheimer's Project (IGAP) 

[30]. In brief, IGAP is a large two-stage GWAS on 

individuals of European ancestry [30]. In the first stage, 

IGAP mate-analyzed association of 7,055,881 SNPs 

with Alzheimer's disease in a total of 17,008 

Alzheimer's disease cases and 37,154 controls of 

European ancestry from four GWAS datasets. In the 

second stage, IGAP genotyped and tested 11,632 SNPs 

for association with Alzheimer's disease in an 

independent set of 8,572 Alzheimer's disease cases and 

11,312 controls. In that study, Alzheimer's Disease was 

defined as autopsy- or clinically-confirmed Alzheimer's 

Disease cases according to criteria, such as National 

Institute of Neurological and Communicative Disorders 

and Stroke and the Alzheimer's Disease and Related 

Disorders Association (NINCDS-ADRDA) criteria 

(Supplementary Materials, Details of Studies and 

Participants). We derived summarized data of the 

glycemic trait- associated SNPs from the dataset of 

stage 1 of the IGAP. The associations between each 

SNP related to glycemic traits and Alzheimer’s disease 

are presented in Supplementary Table 2.  

 

Statistical analysis  
 

Two-sample MR approaches were used to compute 

estimates of each glycemic trait- Alzheimer’s disease 

association using summarized data of the SNP-glycemic 

trait and SNP-Alzheimer’s disease associations. The 

causal effect for each glycemic trait was evaluated by 

IVW method in which SNP-outcome coefficients were 

modeled as a function of SNP-exposure coefficients 

weighted by the inverse-variance of genetic associations 

with the outcome, assuming all SNPs were valid 

instruments [32]. In sensitivity analyses, we also 

performed complementary MR analyses using the 

penalized robust IVW, MR-Egger, simple median, 

weighted median, weighted MBE and MR-PRESSO 

methods for the traits of type 2 diabetes, fasting 

glucose, fasting insulin, HbA1c and HOMA-β. 

Sensitivity analyses were not performed for HOMA-IR 

since these methods require  more than 2 variants. The 

penalized robust methods improved the robustness by 

penalizing the weights of candidate instruments with 

heterogeneous ratio estimates and providing robustness 

to outliers by performing robust regression [33]. The 

MR-Egger method was performed by the same 

weighted linear regression as IVW method but with the 

intercept unconstrained. The slope coefficient from the 

MR-Egger regression is a robust estimate of the causal 

effect against potential violations of assumptions due to 

directional pleiotropy (genetic variants affect the 

outcome via a different biological pathway from the 

exposure) [24]. The weighted median method used the 

weighted median ratio estimate with less weight given 

to outlying estimates and can provide a robust estimate 



 

www.aging-us.com 22694 AGING 

even if up to 50% of instrumental variables are invalid 

[34]. The weighted MBE method used the mode of the 

IVW empirical density function as the effect estimate 

and can provide an estimate robust to horizontal 

pleiotropy [35]. The MR-PRESSO approach can detect 

and correct for pleiotropy via outlier removal in multi-

instrument summary-level MR testing [36]. 

Heterogeneity between genetic variants was estimated 

by Q statistic in IVW method [34]. Potential pleiotropic 

effects were estimated by the values of intercept in MR-

Egger regression. An intercept term that differs from 

zero indicates overall directional pleiotropy [24]. For 

the traits of fasting glucose and HOMA-β, we also 

performed a leave-one-out sensitivity analysis by 

leaving each genetic variant out of the MR analysis in 

turn to estimate the influence of outlying SNPs [37].  

The associations between genetically predicted 

glycemic traits and Alzheimer’s disease were presented 

as ORs with their 95% CIs per 1-unit-higher log-odds of 

type 2 diabetes, 1-SD higher fasting glucose, fasting 

insulin and HOMA-IR, %-units higher HbA1c, and 1-

SD lower HOMA-β (indicating pancreatic β-cell 

dysfunction), respectively. Trait values for fasting 

insulin, HOMA-IR and HOMA-β were naturally log 

transformed. The associations of each genetic variant 

with fasting glucose and HOMA-β were further plotted 

against their effects for the risk of Alzheimer’s disease. 

The threshold of statistical significance was 2-sided p-

value <0.05. All analyses were performed using R 

version 3.5.3 (R Development Core Team). All data 

generated or analyzed during this study are included in 

this published article. 
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SUPPLEMENTARY MATERIALS 
 

DETAILS OF STUDIES AND PARTICIPANTS 
 

DIAbetes genetics replication and meta-analysis 

(DIAGRAM) 

 

The DIAGRAM consortium is a grouping of researchers 

with shared interests in performing large-scale studies to 

characterize the genetic basis of type 2 diabetes (T2D), and 

a principal focus on samples of European descent. The 

membership and scope of DIAGRAM has developed as 

the scale of collaboration in the field has increased. The 

initial instance of DIAGRAM (retrospectively termed 

"DIAGRAM v1") enabled the combination of T2D 

genome wide association studies (GWAS) from the UK 

(WTCCC), DGI and FUSION groups. An incremental 

meta-analysis ("DIAGRAM v2" or "DIAGRAM+") added 

GWAS data from a further five studies (DGDG, KORA, 

Rotterdam, deCODE, EUROSPAN for a total of 8,130 

cases and 38,987 controls) together with extensive 

replication involving 20 other cohorts. GWAS data from 

the Framingham, ARIC and NHS studies was only used 

for in silico replication, the full data from these studies was 

subsequently combined to constitute the largest current 

GWAS dataset in samples of European descent 

("DIAGRAMv3": 12,171 cases and 56,862 controls). The 

present study combined the DIAGRAMv3 (stage 1) 

GWAS meta-analysis with a stage 2 meta-analysis 

comprising 22,669 cases and 58,119 controls genotyped 

with Metabochip, including 1,178 cases and 2,472 controls 

of Pakistani descent (PMID: 22885922). 

 

An expanded GWAS of T2D in Europeans were 

performed with a GWAS stage 1 and Metabochip stage 

2. The DIAGRAM stage 1 analyses comprised a total of 

26,676 T2D cases and 132,532 control participants from 

18 GWAS (ARIC, BioMe, deCODE, DGDG, DGI, 

EGCUT-370, EGCUT-OMNI, EPIC-InterAct, FHS, 

FUSION, GoDARTS, HPFS, KORAgen, NHS, PIVUS, 

RS-I, ULSAM, WTCCC). The Metabochip stage 2 

follow up comprised 14,545 T2D case and 38,994 

control subjects from 16 studies (D2D2007, DANISH, 

DIAGEN, DILGOM, DRsEXTRA, EMIL-Ulm, 

FUSION2, NHR, IMPROVE, InterACT-CMC, Leipzig, 

METSIM, HUNT/TROMSO, SCARFSHEEP, STR, 

Warren2/58BC) with Metabochip data, in which the 

participants did not overlap those included in stage 1. 

Stage 1 study sizes ranged between 80 and 7,249 T2D 

cases and from 455 to 83,049 controls. The Metabochip 

follow-up study sizes ranged from 101 and 3,553 T2D 

cases and from 586 to 6,603 controls. For SNVs not 

captured on Metabochip directly or by proxy, follow-up 

in 2,796 individuals with T2D and 4,601 controls from 

the EPIC-InterAct study was performed. In addition, 

9,747 T2D cases and 61,857 controls from the GERA 

study were used to follow-up six low frequency variants 

not captured on Metabochip. All study participants were 

of European ancestry and were from the United States 

and Europe (PMID: 28566273). 

 

Meta-analyses of glucose and insulin-related traits 

consortium (MAGIC) 

 

MAGIC represents a collaborative effort to combine 

data from multiple GWAS to identify additional loci 

that impact on glycemic and metabolic traits. MAGIC 

investigators have initially studied fasting glucose, 

fasting insulin, 2h glucose and HbA1c, as well as 

performed meta-analysis of more sophisticated 

measures of insulin secretion and sensitivity.  

 

GWAS meta-analysis data results for fasting glucose are 

from models adjusted for age and sex, and from up to 

133,010 non-diabetic participants of European ancestry 

from 66 studies. Fasting insulin results are for ln-

transformed fasting insulin as the outcome and are 

adjusted for age, sex and are reported both with and 

without BMI adjustment, and from up to 108,557 

individuals of European ancestry from 56 studies 

(PUBMED: 22885924).  

 

Ancestry-specific and transethnic genome-wide meta-

analysis summary statistics for association with HbA1c 

in up to 159,940 individuals from 82 cohorts of 

European (N=123,665), African (N=7,564), East Asian 

(N=20,838) and South Asian (N=8,874) ancestry. All 

participants were free of diabetes. HbA1c trait values 

are untransformed and adjusted for age, sex and study-

specific covariates (PMID: 28898252). Only data of 

European ancestry were used in the present analysis. 

 

The fasting insulin and fasting glucose datasets were 

generated by performing a meta-analysis of up to 21 

genome-wide association studies (GWAS) informative for 

fasting glucose, fasting insulin and indices of β-cell 

function (HOMA-β) and insulin resistance (HOMA-IR) in 

up to 46,186 non-diabetic participants. Follow-up of 25 

lead SNPs were performed in up to 76,558 additional 

individuals of European ancestry. Fasting glucose trait 

values are not transformed. Trait values for fasting insulin, 

HOMA-IR, HOMA-β and fasting proinsulin have been 

naturally log transformed. All datasets are adjusted for age, 

sex and study-specific covariates (PMID: 20081858). 

 

International Genomics of Alzheimer's Project 

(IGAP)  
 

IGAP is a large two-stage study based upon GWAS on 

individuals of European ancestry. In stage 1, IGAP used 
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genotyped and imputed data on 7,055,881 SNPs to 

meta-analyse four GWAS datasets with a total of 

17,008 Alzheimer's disease cases and 37,154 controls 

(The Alzheimer Disease Genetics Consortium [ADGC], 

The Cohorts for Heart and Aging Research in Genomic 

Epidemiology consortium [CHARGE], The European 

Alzheimer's disease Initiative [EADI], and The Genetic 

and Environmental Risk in AD consortium [GERAD]). 

In stage 2, 11,632 SNPs were genotyped and tested for 

association in an independent set of 8,572 Alzheimer's 

disease cases and 11,312 controls. The present study 

used the dataset of stage 1 of the IGAP (PMID: 

24162737). 

 

The investigators within IGAP contributed to the design 

and implementation of IGAP and/or provided data but 

did not participate in analysis or writing of this report. 

IGAP was made possible by the generous participation 

of the control subjects, the patients, and their families. 

The i–Select chips was funded by the French National 

Foundation on Alzheimer's disease and related disorders. 

EADI was supported by the LABEX (laboratory of 

excellence program investment for the future) 

DISTALZ grant, Inserm, Institut Pasteur de Lille, 

Université de Lille 2 and the Lille University Hospital. 

GERAD was supported by the Medical Research 

Council (Grant n° 503480), Alzheimer's Research UK 

(Grant n° 503176), the Wellcome Trust (Grant n° 

082604/2/07/Z) and German Federal Ministry of 

Education and Research (BMBF): Competence 

Network Dementia (CND) grant n° 01GI0102, 

01GI0711, 01GI0420. CHARGE was partly supported 

by the NIH/NIA grant R01 AG033193 and the NIA 

AG081220 and AGES contract N01–AG–12100, the 

NHLBI grant R01 HL105756, the Icelandic Heart 

Association, and the Erasmus Medical Center and 

Erasmus University. ADGC was supported by the 

NIH/NIA grants: U01 AG032984, U24 AG021886, U01 

AG016976, and the Alzheimer's Association grant 

ADGC–10–196728. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. SNPs associated with other diseases or traits at genome-wide significance level (P< 
5.0×10−8). 

Glycemic traits SNP Associated other diseases or traits 

T2D rs10203174 Lymphocyte percentage of white cells, lymphocyte count 

T2D rs13389219 Waist hip ratio, triglycerides, body mass index 

T2D rs2943640 HDL cholesterol, triglycerides 

T2D rs7202877 Coronary artery disease 

T2D rs10401969 Total cholesterol, triglycerides, LDL cholesterol 

T2D rs9271774 White blood cell count, lymphocyte count, neutrophil count 

T2D rs635634 LDL cholesterol, total cholesterol, white blood cell count 

T2D rs2925979 HDL cholesterol, adiponectin, self-reported hypertension 

FG rs983309 Inflammation, total cholesterol, HDL cholesterol 

FG rs3829109 Neutrophil count, white blood cell count, granulocyte count 

FG rs9368222 Self-reported hypertension 

FG rs11715915 Years of educational attainment 

FG rs17762454 Serum urate, white blood cell count 

FG rs780094 Triglycerides, serum urate, white blood cell count, C reactive protein 

FG rs7944584 Self-reported hypertension 

FG rs174550 Triglycerides, LDL cholesterol 

HbA1c rs7616006 Lymphocyte count, monocyte count, total cholesterol, LDL cholesterol 

HbA1c rs9818758 Years of educational attainment 

HbA1c rs1800562 Self-reported hypertension 

HbA1c rs592423 Reticulocyte count, triglycerides, HDL cholesterol 

HbA1c rs579459 LDL cholesterol, total cholesterol, interleukin 6, coronary artery disease 

HbA1c rs10774625 Lymphocyte count, self-reported hypertension, coronary artery disease, total 

cholesterol 

HOMA-β rs174550 Triglycerides, LDL cholesterol, HDL cholesterol, white blood cell count 

SNP, single nucleotide polymorphism; T2D, type 2 diabetes; FG, fasting glucose; HbA1c, hemoglobin A1c; HOMA-β, 
homeostasis model assessment -β-cell function; LDL, low density lipoprotein; HDL, high density lipoprotein. 
 

 

Supplementary Table 2. Characteristics of the SNPs associated with glycemic traits.  

 

 

 

 


