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ABSTRACT

Introduction: We aimed to assess risk factors
for multidrug-resistant Gram-negative bacilli
(MDR-GNB) from a large amount of data
retrieved from electronic health records (EHRs)
and determine whether machine learning (ML)
may be useful in assessing the risk of MDR-GNB
infection at febrile neutropenia (FN) onset.
Methods: Retrospective study of almost 7 mil-
lion pieces of structured data from all consecu-
tive episodes of FN in hematological patients in
a tertiary hospital in Barcelona (January
2008–December 2017). Conventional multi-
variate analysis and ML algorithms (random

forest, gradient boosting machine, XGBoost,
and GLM) were done.
Results: A total of 3235 episodes of FN in 349
patients were documented; MDR-GNB caused
180 (5.6%) infections in 132 patients. The most
frequent MDR-GNBs were MDR-Pseudomonas
aeruginosa (53%) and extended-spectrum beta-
lactamase-producing Enterobacterales (46%).
According to conventional logistic regression
analysis, independent factors associated with
MDR-GNB infectionwere age older than45 years
(OR 2.07; 95% CI 1.31–3.24), prior antibiotics
(2.62; 1.39–4.92), first-ever FN in this hospital-
ization (2.94; 1.33–6.52), prior hospitalizations
for FN (1.72; 1.02–2.89); at least 15 prior hospital
visits (2.65; 1.31–5.33), high-risk hematological
diseases (3.62; 1.12–11.67), and hospitalization
in a room formerly occupied by patients withCarolina Garcia-Vidal and Pedro Puerta-Alcalde
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MDR-GNB isolation (1.69; 1.20–2.38). ML algo-
rithms achieved the following AUC and F1 score
for MDR-GNB prediction: random forest,
0.79–0.9711; GMB, 0.79–0.9705; XGBoost,
0.79–0.9670; and GLM, 0.78–0.9716.
Conclusion: Data generated in EHRs proved
useful in assessing risk factors for MDR-GNB
infections in patients with FN. The great num-
ber of analyzed variables allowed us to identify
new factors related to MDR infection, as well as
to train ML algorithms for infection predictions.
This information may be used by clinicians to
make better clinical decisions.

Keywords: Machine learning; Electronic health
records; Multiresistance; Neutropenia

Key Summary Points

Why carry out this study?

Hematological patients with febrile
neutropenia presenting with multidrug-
resistant Gram-negative bacilli (MDR-GNB)
infections frequently receive inappropriate
empirical antibiotic therapy which
increases their morbidity and mortality.

Current studies aiming to identify patients
at risk for MDR-GNB in this population
use single predictive analysis focused on
small sets of variables.

We hypothesized that machine learning
using information stored in electronic
health records could be useful to predict
MDR-GNB in these patients.

What was learned from the study?

Clinical data stored directly in electronic
health records can be used to identify risk
factors for MDR-GNB infections in severe
hematological patients at FN onset.

The high quantity of data allowed us to
identifynew risk factors forMDR infections.

Machine learning has proved useful for
clinical predictors in MDR-GNB
infections, thereby helping to provide
personalized medical care.

DIGITAL FEATURES

This article is published with digital features,
including summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.14248775.

INTRODUCTION

The increasing availability of data from daily
clinical care electronic health records (EHRs)
represents a major opportunity for progress in
medicine.New statistical techniques, specifically
machine learning (ML) approaches, can provide
us with the ability to work with large amounts of
data and provide optimal predictions in different
scenarios [1–5]. However, there is very little
information on the use of these techniques
within the field of infectious diseases [6–9].

Our hypothesis was that the data directly
retrieved fromEHRs canbeused tobuildpractical
tools to identify in real time which hematologi-
cal patients with febrile neutropenia (FN) will
have multidrug-resistant Gram-negative bacilli
(MDR-GNB) infections. Identifying these
patients is crucial, as patients with MDR-GNB
frequently receive inadequate empirical antibi-
otic treatment [10–14], increasing their morbid-
ity and mortality [11, 15–18]. Administration of
broad-spectrum antibiotics to cover all potential
microorganisms requires the use of 2–3 antibi-
otics; however, this can increase antibiotic pres-
sure, as well as resistance selection, toxicity, and
economic costs. Currently, few studies have
identified risk factors for MDR-GNB infection in
hematological patients with documented
bloodstream infections. These studies were per-
formed using simple predictive analytics and
scoring systems focused on small sets of manual
data entry, with a limited number of variables
[11–13, 15]. There is a lack of current studies
analyzing an entire population with FN.

We aimed to identify risk factors for MDR-
GNB infections in hematologic patients at FN
onset by performing analyses of a large amount
of data obtained from EHRs through common
statistical methods. Moreover, we trained ML
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algorithms to predict which patients will need
broad antibiotic coverage for MDR-GNB infec-
tions. We also aimed to highlight differences
offered by both mathematical approaches for
general clinicians.

METHODS

Setting, Study Population, Data Mining,
and Study Design

This study was performed at the Hospital Clinic
(Barcelona, Spain), a 700-bed university insti-
tution which provides care to a population of
500,000 inhabitants. For this study, we analyzed
all consecutive episodes of FN occurring in
hematological patients from January 2008 to
December 2017. No major outbreaks occurred
during this period.

Our data mining approach was conducted as
follows: (1) infectious diseases physicians listed
data to create the study dataset. Patients’ med-
ical history, physical examination, clinical and
laboratory data, present and past results of
microbiological tests from patients, and ther-
apy, including current and prior antibiotic
treatments, were selected. Figure 1 summarizes
the most important variables selected for the
dataset generation. Only structured data were
used. (2) Computer scientists extracted a large
set of data (6,768,767 pieces of data) from Jan-
uary 2008 to December 2017 directly from EHRs
and worked on pre-processing data. (3) As it was
the first time our department had used data
from EHRs created from daily clinical practice,
we manually performed a full data check of 100
patients. We achieved a perfect match between
data obtained from EHRs and data reviewed. (4)
A multidisciplinary team with experts across
several scientific fields—clinical medicine,
computer science, and statistics—worked on
pre-processing data (selection, clearing, enrich-
ment, and transformation of the database), as
well as on subsequent statistical analyses. This
study was performed in accordance with the
Helsinki Declaration. The study was approved
by the Ethics Committee Board of our institu-
tion (HCB/2018/0308) and followed privacy
laws regarding active anonymity.

Definitions

High-risk patients were defined as those with
prolonged (more than 7 days’ duration) and
profound neutropenia (less than 100 cells/mm3)
and/or significantmedical comorbid conditions,
including hypotension or hyperlactacidemia,
intensive care unit (ICU) requirement, pneumo-
nia or hypoxemia, intravascular catheter infec-
tion, evidence of renal failure or hepatic
insufficiency. Patients with FN were defined as
those who had a temperature measurement
greater than 38.0�C and an absolute neutrophil
count of less than 500 cells/mm3. Separate epi-
sodes of FN were considered to be those whose
febrile determinationwasprecededbymore than
4 days of apyrexia. In accordance with hospital
protocols, patients with expected neutropenia
over 10 days received prophylaxis with a fluoro-
quinolone and an azole. Prior antibiotic therapy
was explained as the usage of any antimicrobial
agent prior to FN episode including antibiotic
prophylaxis.

Following the current definitions [19], Gram-
negative bacilli were considered to be MDR
when these conditions were present: (1) exten-
ded-spectrum beta-lactamase (ESBL)-producing
or AmpC-hyperproducing Enterobacterales, (2)
MDR strains of non-fermenting GNB such as
Pseudomonas aeruginosa, Acinetobacter bauman-
nii, and Stenotrophomonas maltophilia. Non-fer-
menting GNB were defined as MDR strains
when they were resistant to at least one antibi-
otic in three or more classes of antibiotics: car-
bapenems, ureidopenicillins, cephalosporins
(ceftazidime and cefepime), monobactams,
aminoglycosides, fluoroquinolones, fos-
fomycin, and colistin. Positive culture was
considered related to FN event when collected
during a time period of ± 24 h after FN onset.
Empirical coverage for MDR-GNB was consid-
ered as needed in patients who have MDR-GNB
or had had MDR-GNB infection within the prior
6 months.

Microbiological Methods

Our center follows international guideline rec-
ommendations to collect and incubate cultures
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[20]. Blood samples were treated using the
BACTEC 9240 system or Bactec FX system
(Becton–Dickinson Microbiology Systems), with
an incubation period of 5 days. Isolates were

recognized by standard techniques. Antimicro-
bial susceptibility testing was performed by
using a microdilution system (Microscan
WalkAway Dade Behring, West Sacramento, CA

Fig. 1 Main variables in dataset generation
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or Phoenix system, Becton Dickinson, Franklin
Lakes, NJ) or the Etest method (AB Biodisk,
Solna, Sweden/bioMérieux, Marcy l’Etoile,
France). Current CLSI (from 2008 to 2010) and
EUCAST breakpoints (from 2010 to 2018) were
employed to describe susceptibility or resistance
to such antimicrobial agents; intermediate sus-
ceptibility was perceived as resistance. ESBL
were detected by minimum inhibitory concen-
tration (MIC) results and double-disk synergy
test using disks containing cefotaxime, cef-
tazidime, and cefepime that are applied to
plates next to a disk with clavulanic acid.

Statistical Analysis, Model Development,
and Validation

Descriptive analysis of the entire cohort was
provided. Categorical variables were detailed as
counts and percentages, whereas continuous
variables were described as either means and
standard deviations (SD) or medians and
interquartile ranges (IQRs). For independent
variables, we chose parameters that showed
predictive value using a univariate analysis (age
older than 45 years, autologous stem cell
transplant, prior antibiotic treatment, first-ever
episode of FN in this hospitalization, more than
three FN episodes in this hospitalization, more
than 90 days since a past episode of febrile
neutropenia, prior hospitalizations for FN, more
than 15 prior hospital visits, ICU admission,
breakthrough bacteremia, high-risk hematolog-
ical diseases, prior positive culture, prior MDR,
more than 14 days with neutropenia, and hos-
pitalization in a room formerly occupied within
the last 3 months by a patient with MDR-GNB
isolation (same pathogen, same resistance pat-
tern)). A logistic regression model with step-
forward procedure in the overall cohort of
patients was performed to identify independent
factors related to the need for empirical MDR-
GNB coverage, and significance (p) was set at
the value of 0.05. The goodness of fit of the
multivariate models was assessed by the Hos-
mer–Lemeshow test. The accuracy of the rule
was assessed by the area under receiver operat-
ing characteristic (ROC) curve (AUC). These

analyses were performed using the SPSS soft-
ware (version 23.0; SPSS, Inc., Chicago, IL).

In the second part of the study, ML algo-
rithms were used to predict which patients will
need empirical coverage for MDR-GNB. We
started by performing a descriptive analysis of
the data to ensure data quality of each of the
available variables. Coherence of the obtained
results was checked. Correlation between dif-
ferent variables was also analyzed. Patients with
positive microbiology were a minority among
the total number of patients available, and the
rules to classify a patient as positive were
exclusively in adherence to definitions. The list
of patients, together with the variables used to
perform the classification and the resulting
target variable, was provided. It was validated by
doctors on a case-by-case basis. Some numerical
variables needed to be within a certain range
(provided by the team at Hospital Clinic). A
similar approach was taken for observations
with incoherent data. This step was also guided
by doctors. Observations with missing data in
categorical variables were either classified into a
‘‘missing’’ or ‘‘blank’’ category or dropped.
Missing data in numerical variables such as
results from blood tests was usually substituted
by the mean of the valid interval. Class imbal-
ances were managed in the way most suitable to
the selected model. Variable importance was
measured by calculating the increase in the
model’s prediction error after permuting the
features. A variable is considered to be impor-
tant if shuffling its values increases the model
error, and unimportant if the permutation
leaves the model error unchanged. Decision tree
algorithms were used [4]. We trained four
models typically used for classification prob-
lems: (1) random forest—an ensemble method
that uses decision trees as base models, and are
good for capturing complex data structures; (2)
gradient boosting machine (GBM)—an ensem-
ble method that sequentially fits new models to
improve the estimate on the response variable;
(3) XGBoost is another tree boosting imple-
mentation which uses a clever penalization of
individual trees, as well as Newton boosting; (4)
and a logistic regression, using R and with the
dataset methodology used for ML techniques.
The study cohort was divided into training and
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test sets. Each model was trained using the
training set. We then used these trained models
to predict the response variable for the episodes
in the test set. This separation is standard pro-
cedure used to be able to assess ML model per-
formance. We followed a 70–30 time split,
meaning 70% of the episodes were in the
training set and 30% were reserved for the test.
We followed a time split for building these two
data sets instead of a random split for two rea-
sons: (i) time consistency; (ii) stress the capa-
bility of these algorithms behaving in a real-life
scenario. Test accuracy was measured by the F1
score, which considers both the precision
(number of correct positive results divided by
the number of all positive results) and the recall
(number of correct positive results divided by
the number of all relevant samples) of the test.
ML analyses were done by using the R language
and environment for statistical computing
(Version 3.5.1-07/2018). The ML models men-
tioned here come from the following R pack-
ages: (1) glmnet 2.0-16; (2) XGBoost 0.71.2; (3)
Random Forest 4.6-14; and (4) gbm 2.1.4.

RESULTS

Demographics and Epidemiology

A total of 3235 FN episodes in 349 hematolog-
ical patients were documented. Median age was
57 (IQR 44–67) years and 1841 (56.9%) were
male. Most patients had acute leukemia (1221,
38%) and stem cell transplantation (914, 28%).
Table 1 summarizes the main demographic and
clinical characteristics of the patients.

A total of 395 (12.2%) episodes have con-
firmed infection by cultures, primarily bac-
teremia (245; 7.6%). MDR-GNB accounted for
180 (5.6%) episodes in 132 patients. The most
frequent MDR-GNB were MDR-P. aeruginosa, 96
episodes (53%) and ESBL Enterobacterales, 84
episodes (46%). In total, 295 (9.1%) were
patients considered in need of empirical cover-
age for MDR-GNB.

Independent Factors Associated with Need
for MDR-GNB Coverage by Conventional
Logistic Regression Model

Independent factors in the logistic regression
model associated with the need for MDR-GNB
coverage among patients with FN using all
dataset were age older than 45 years (OR 2.07;
95% CI 1.31–3.24), prior antibiotic treatment
(OR 2.62; 95% CI 1.39–4.92), first FN in this
hospitalization (OR 2.94; 95% CI 1.33–6.52),
prior hospitalizations for FN (OR 1.72; 95% CI
1.02–2.89), more than 15 prior hospital visits
(OR 2.65; 95% CI 1.31–5.33), high-risk hema-
tological diseases (OR 3.62; 95% CI 1.12–11.67),
and hospitalization in a room formerly occu-
pied within the last 3 months by a patient with
GNB-MDR isolation (OR 1.69; 95% CI

Table 1 Main demographic and clinical characteristics of
the patients

Episodes
N = 3235
(%)

Demographics

Male sex 1841 (56.9)

Age, median (IQR) years 57 (44–67)

Older than 45 years 2378 (73.5)

Baseline disease

Acute leukemia 1221 (38)

Hematopoietic stem cell transplant 914 (28)

Main clinical conditions

Prior antibiotic consumption 2086 (64.5)

First-ever episode of FN 1542 (47.7)

First FN in this hospitalization 2540 (78.5)

Median days from hospital admission to

FN episode (IQR)

9 (1–17)

More than 15 prior visits to hospital 255 (7.9)

Severe mucositis 591 (18.3)

FN in ICU 319 (9.9)
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1.20–2.38). The goodness of fit of the multi-
variate model was assessed by the Hos-
mer–Lemeshow test (0.76). The discriminatory
power of the model, as evaluated by the area
under the ROC curve, was 0.849 (95%
0.814–0.871), demonstrating a robust ability to
identify factors related to the need for MDR-
GNB coverage among patients with FN.

Prediction of Need for MDR-GNB Coverage
by Machine Learning Models

Figure 2 shows the correlation among main
variables in the dataset. The correlation
between the target variable of having MDR and
that capturing whether patient had MDR before
was positive and important (correlation 0.67).
As mentioned before, the whole data was ran-
domly split into two different datasets: 70% to
train (2262 episodes) and 30% to test (973 epi-
sodes). Based on the training set, a prediction
model to select the need for MDR-GNB antibi-
otic coverage was developed.

Figure 3 details plots showing the global
varying importance of the many variables for
different models. Among them, ‘‘prior GNB-
MDR positive culture’’ is the most influential
variable in the pool of potential predictors.

Table 2 shows the results of different models
in the test set according to varying metrics,
always applying the standard rule that the
probability should be higher than 50%, so that
the episode is to be labelled as the most ‘‘prob-
able’’ category. Provided that MDR episodes are
a small sample in the dataset, an F1 score
accuracy metric could be a better comparison
tool. With this metric in mind, there is no sig-
nificant difference in the results obtained from
the four models. As we established a cutoff of a
50% probability, the models had high speci-
ficity, high negative predictive value, and fair
sensitivity.

DISCUSSION

This study is innovative in several sections of its
approach. The study was originated from a large
amount of data obtained from daily clinical
practice, contrasting with the common practice

of using specific datasets constructed for
research. This approach allowed us to evaluate
risk factors usually difficult to assess, as well as
demonstrate associations among such factors
like hospital epidemiology and the risk of MDR-
GNB infection. Importantly, the use of data
from EHRs can allow for the creation of a real-
time prediction tool. Another significant nov-
elty is that prediction of which patients will
need coverage for MDR-GNB infections was
performed at FN onset, and not when clinicians
received microbiological confirmations, as done
in many prior studies. Consequently, our study
provides a clinical recommendation based on
data obtained at the moment when the clini-
cian must make a decision regarding antibiotics.
Finally, our study demonstrates that ML can be
used to train data from some episodes and pre-
dict new episodes, namely which high-risk
hematological neutropenic patients will need
broad empirical antibiotic coverage for MDR-
GNB infection when the patient has a fever.

Our study was based on data at FN onset.
There is a lack of current information of
antibiotic resistance rates in the overall popu-
lation with FN. More studies report the per-
centage of MDR-GNB among patients with
documented infection and our data is concor-
dant with these papers [10, 11, 21–23]. How-
ever, patients with documented infection
account for a small subset of patients among
hematological patients with FN; clinicians must
decide antibiotic treatment at FN onset, and not
when documented infection is confirmed. In
our study, we found that infections caused by
MDR-GNB are uncommon among the entire
population with FN. Consequently, a personal-
ized antibiotic approach in patients with FN can
be an important measure to save the use of
antibiotics, when not necessary.

Our study agrees with prior studies that
describe some factors related to the need for
MDR-GNB coverage: older age, prior antibiotic
treatment, some specific hematological dis-
eases, or previous episodes of FN
[10, 11, 13, 24, 25]. Additionally, the possibility
to comprehensively analyze non-common
variables via our approach has allowed us to
document the relationship between multiresis-
tance and factors such as more than 15 prior
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hospital visits, first febrile episode recorded
during current hospital admission, or hospital-
ization in a room formerly occupied within the
last 3 months by patients with MDR-GNB iso-
lation. These factors are closely related to the
likelihood of colonization by multiresistant
bacteria due to changes in microbiota caused by
treatments—mainly antibiotics—as well as
contact with hospital environments where
MDR-GNB colonize inert surfaces.

We employed an ML approach to predict
which patients would necessitate coverage for
MDR-GNB. The main difference between com-
mon medicine statistics and ML is that the ML
approach extends beyond the comprehension
of causal relationships, focusing on a potential
set of variables and algorithms to predict an
event [26, 27]. Logistic regression is one
approach that pertains to ML, given that its
ability to identify risk factors also helps to pre-
dict when an event can happen. ML techniques
cannot easily express the reasoning behind the
assignment. For this reason, clinicians may have
a ‘‘black box’’ feeling concerning ML predictive
models, and results of ML algorithms might be
difficult to introduce in the clinical decision-
making process [28]. In our study, we demon-
strate that factors used by different ML tech-
niques to perform algorithms are very similar to
those used by our conventional logistic regres-
sions. One of the main strengths of the ML
approach is that their predictions will be always
done on the basis of input variables. Within the
setting of MDR prediction, geographical differ-
ences in resistance rates and patterns are
important. Thus, following our approach, input
data will always be its own data center. Predic-
tion of function and output is useful in the area
explored as well. In our study, predictive

accuracy of ML algorithms is good, but not
optimal yet. Factors such as including a higher
number of patients, integrating more data,
working on the learning process of ML models,
or the integration of different models may result
in more precise predictions. The disparity found
between sensitivity and the high predictive
values is perhaps related to the lower number of
MDR events. Likewise, our metrics are calcu-
lated applying a rule that probability must be
higher than 50%, so that the episode is labelled
as an event. Different calibrations of this
parameter can provide varying values on sensi-
tivity, specificity, and predictive values.

This study has several limitations. First, our
study provides predictions validated in a test
dataset. All data were obtained from hospital
EHRs. Some outpatient data might be missing.
However, algorithm prospective validation will
be needed. Second, as we previously com-
mented, ML algorithms are typically more
opaque than classic statistical models: their
predictions might be difficult for physicians to
understand. Closing the gap between computer
algorithm results and medical clinical under-
standing will prove to be a challenge for the
future. Our study does shed some light, though,
in that results obtained from ML are not very
different than those obtained by usual regres-
sion models. Third, the study was conducted in
a single center, with its particular epidemiology.
If ML algorithms are applied to a different
population, ML will use data from the receiving
center. It is unknown what type of impact the
new hospital epidemiology will have on the
sensitivity and specificity of the algorithm.
Moreover, computing power and infrastructure
necessary to real-time models are not available
everywhere, and patients could be admitted to

Table 2 Metrics of ML models to predict the need for MDR-GNB coverage in patients with FN in the test set

Models AUC F1 score Sensitivity Specificity Negative predictive value Positive predictive value

GBM 0.7872 0.9705 0.4583 0.9988 0.9438 0.9778

XGBoost 0.7945 0.9670 0.4895 0.9886 0.9464 0.8246

Random forest 0.7896 0.9711 0.4583 1.00 0.9439 1.0

GLM 0.7827 0.9716 0.4687 1.00 0.9449 1.0
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different healthcare areas, making medical
backgrounds misleading. Finally, the percent-
age of patients with MDR-GNB was very low,
jeopardizing the sensitivity of the mathematical
approaches.

CONCLUSION

This is the first study that demonstrates that
clinical data stored directly in EHRs can be used
to identify risk factors for MDR-GNB infections
in severe hematological patients at FN onset.
ML approach has proved useful for clinical
predictors in MDR-GNB infections and helps
pave the way for personalized medical care.
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