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We propose an automatic method to identify people who are potentially-infected by

droplet-transmitted diseases. This high-risk group of infection was previously identified by

conducting large-scale visits/interviews, or manually screening among tons of recorded

surveillance videos. Both are time-intensive and most likely to delay the control of

communicable diseases like influenza. In this paper, we address this challenge by

solving a multi-tasking problem from the captured surveillance videos. This multi-tasking

framework aims to model the principle of Close Proximity Interaction and thus infer the

infection risk of individuals. The complete workflow includes three essential sub-tasks: (1)

person re-identification (REID), to identify the diagnosed patient and infected individuals

across different cameras, (2) depth estimation, to provide a spatial knowledge of

the captured environment, (3) pose estimation, to evaluate the distance between the

diagnosed and potentially-infected subjects. Our method significantly reduces the time

and labor costs. We demonstrate the advantages of high accuracy and efficiency of our

method. Our method is expected to be effective in accelerating the process of identifying

the potentially infected group and ultimately contribute to the well-being of public health.

Keywords: influenza-like infection, person re-identification, multi-person pose estimation, infection risk ranking,

multi-tasking

1. INTRODUCTION

The most frequent infectious diseases in humans—and those with the highest potential for rapid
pandemic spread—are usually transmitted via droplets during close proximity interactions (Salathé
et al., 2010). Such infectious diseases include influenza, common colds, whooping cough, SARS-
CoV, and many others. Influenza alone leads to a projected annual cost of 2.0-5.8 billion USD for
the American health-care system (Yan et al., 2017). It is critical to identify the group of individuals
who are in close contact with the diagnosed patient, in order to understand and mitigate the spread
of the aforementioned pandemic diseases.

Previous attempts model the contact networks relevant for disease transmission by using online
questionnaire (Ibuka et al., 2016), surveys (Leung et al., 2017), and wearable devices (Smieszek et al.,
2016; Ozella et al., 2018). Manual approaches (surveys and interviews) require a significant amount
of human efforts, while wearable devices introduce additional cost and are limited to small-scale
study. Open challenges remain in the development of methods to fast capture the contact networks.
Given the high density of surveillance cameras in metropolitans, the impact of using captured
videos to identify the contact networks is under-explored. However, two significant challenges exist
for this vision-based method: (1) re-identify the diagnosed patient in non-overlapping monitor
cameras and (2) assess the potential risk of infection in the exposed population. The most popular
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solution to identify a specific person from videos is currently face
recognition. However, poor illumination and camera viewpoint
make it difficult for existing face recognition method to achieve
satisfactory performance. Overlapping and occlusion of multiple
faces also create significant difficulties. Meanwhile, it is non-
trivial to assess the infectious risk from the captured video
quantitatively. How to obtain a robust estimation of the
interaction between the detected subjects in the video is still an
open question.

We propose a novel framework to automatically evaluate
the infection risk based on the principle of Close Proximity
Interaction. Our success leverages the advantages of Artificial
Intelligence (AI) systems over human beings in solving
multiple tasks simultaneously. The accurate identification of
this potentially-infected group can only be achieved with
an integrative understanding of personal identity, spatial and
temporal contexts from the video sequences. Such a wide range
of information is processed by individual sub-tasks, including
person detection, re-identification, depth and pose estimation.
The user study shows that our method is effective in reducing
the time and labor costs, and produces consistent results as
human screening.

To this end, we made the following contributions:

• We propose a novel framework to evaluate the infection risk
of identified individuals. This framework is constructed upon
multi-tasking capabilities of modern techniques of computer
vision. Our method effectively addresses the problem of
infectious disease prevention, greatly reducing labor and
time costs.

• We quantitatively model the principle of Close Proximity
Interaction for assessing and ranking the infection risk. This is
achieved by robustly reconstructing the 3D joint trajectories,
based on 3D depth and pose estimation. The proposed metric
takes distance as well as mutual contact between subjects
into account.

• We evaluate our method in real-world environments
including indoor office, and other scenarios with massive
human traffic (e.g., shopping mall, hospital, public transport).
The results show that our automatic method is not only
time-efficient but also produces consistent prediction results
as human observers.

The rest of this paper is structured as follows. Section 2
summarizes the related works, and section 3 describes the
proposed framework to model the principle of Close Proximity
Interaction, including the cornerstones to build this framework.
Section 4 presents the results from our experiments, and section 5
discusses the failure cases and limitations of our method.
Section 7 concludes this work and points out the directions for
future efforts.

2. RELATED WORK

2.1. Infectious Disease Monitor
Monitoring the spread of infectious disease is critical for taking
prompt actions to control the expansion. The contact in close
distance between an infectious individual and the population

leads to the spread of respiratory infections (Leung et al., 2017).
This paper investigates the diseases transmitted via droplets.

The conventional methods started with social surveys, by
asking participants to report their contact patterns, including
the number/duration of contacts and other demographical
information (including age, gender, household size) (Eames et al.,
2012; Read et al., 2014; Dodd et al., 2015). Understanding the
contact pattern allows us to build parameterized models and
capture the transmission patterns. Leung et al. (2017) proposed a
diary-based design, using both paper and online questionnaires,
and found out that the approach of using paper questionnaires
leads to an increasing report of contacts and longer contact
duration than using online questionnaires. However, conducting
such social surveys and questionnaires requires a significant
amount of time and effort.

Researchers use wearable devices to analyze the contact
patterns among a group of individuals. A recent work measured
face-to-face proximity between family members within 16
households with infants younger than six months for 2-
5 consecutive days of data collection (Ozella et al., 2018).
Researchers compared the two methods of reporting with paper
diaries and recording with wearable sensors, to monitor the
contact pattern at a conference (Smieszek et al., 2016). They
found out that reporting was notably incomplete for contacts <5
min, and participants appear to have overestimated the duration
of their contacts. The typical device is RFID-based and proves to
be useful in a variety of scenarios, including a pediatric hospital
(Isella et al., 2011), a tertiary care hospital (Voirin et al., 2015),
and a primary school (Stehlé et al., 2011). The merit of using
wearable devices is a high-resolution measurement of contact
matrices between individuals with the device. However, it is not
feasible to apply to a wide, dynamic, and unconstrained scenario.

Different from existing methods, our work utilizes the
surveillance cameras as the capture device and process the
video input with the state-of-the-art techniques in computer
vision. Our method quantitatively modeled the principle of
close proximity interaction and introduced a graph structure to
represent the contact pattern.

2.2. Person Re-identification
Person re-identification is a long-standing and significant
problem that has profound application value for a wide range
of fields such as security, health care, business. It aims at re-
identifying the person of interest from a collection of images
or videos taken by multiple non-overlapping cameras in a
large distributed space over a prolonged period. Re-ID is
fundamentally challenging due to three difficulties: (1) diverse
visual appearance changes caused by variations in view angle,
lighting, background clutter, and occlusion. (2) difficulties in
producing discriminating feature representation invariant to
background clutter. (3) over-fitting problem due to the limited
scale of a tagged dataset.

Two types of solutions are proposed to address these
problems. One is to learn a more distinctive feature
representation to make a trade-off between recognition
accuracy and generalization ability. The other is to leverage
the Siamese neural network and triplet loss to minimize the
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loss of images with the same identity and maximize that with
different identities. We briefly survey the person re-identification
literature from these two aspects in this paper.

2.2.1. Improvements in Feature Representation
Improvements in feature representation mainly achieved by
leveraging local parts of the person. Representative methods
applied part-informed features such as segmentation mask,
pose, gait, etc. Pose sensitive model proposed by Saquib Sarfraz
et al. (2018) incorporates both fine- and coarse-grained pose
information into CNN to learn the feature representation
without explicitly modeling body parts. The combined
representation includes both the view captured by the camera
and joint locations, which ensures the discriminating embedding.
Song et al. (2018) proposed a mask-guided contrastive attention
model to learn features separately from the background and
human bodies. Their work takes the binary body mask as
input to remove the background in pixel-level and use gait
information as features. However, failure cases will happen
when discriminative body parts are missing. Horizontal Pyramid
Matching (HPM) approach is proposed by Fu et al. (2018),
solving this problem by using partial feature representations
at different horizontal pyramid scales and adopting average
and max pooling for inter-person variations. For similarity
measurement, metric learning approaches are exploited such as
cross-view quadratic discriminant analysis (Liao et al., 2015),
relative distance comparison optimization (PRDC algorithm)
(Zheng et al., 2011), locally-adaptive decision functions (LADF)
(Li et al., 2013) and etc.

2.2.2. Siamese Neural Network Architecture
Siamese neural network architecture is also adopted to tackle
the problem of person re-identification by taking image pairs
or triplets (Ding et al., 2015) as input. Siamese CNN (S-CNN)
for person re-identification was presented in Yi et al. (2014)
and Li et al. (2014). Improvements such as Gated Siamese CNN
(Varior et al., 2016) aimed at acquiring finer local patterns
for discriminative capacity enhancement. Cheng et al. (2016)
proposed a Multi-Channel Parts-Based CNN with improved
triplet loss consisting of multiple channels to jointly learn the
global full-body and local body-parts features. Triplet loss is also
widely used to learn fine-grained similarity image metrics (Wang
et al., 2014). Quadruplet loss Chen et al. (2017c) strengthens
the generalization capability and leads the model to output with
a larger inter-class variation and a smaller intra-class variation
superior to triplet loss.

2.3. Multi-Person Pose Estimation
Multi-person pose estimation aims at recognizing and locating
key points on multiple persons in the image, which is the basis
for resolving the technical challenges such as human action
recognition (HAR) and motion analysis. Single person pose
estimation is based on the assumption that the person dominates
the image content. Deep learningmethods performwell when the
assumption is satisfied. However, for our specific problem in this
paper, the case of a single person in one captured image seldom
happens. Thus, we focus on the survey of multiple people pose

estimation problem here. Cases such as occluded or invisible key
points and background clutter lead to significant difficulties for
multi-person pose estimation. State-of-the-art approaches built
on CNN can be mainly divided into two categories: bottom-up
approaches and top-down approaches.

2.3.1. Bottom-Up Approaches
Bottom-up approaches (Insafutdinov et al., 2016; Pishchulin
et al., 2016; Cao et al., 2017)mainly adopt the strategy of detecting
all key points in the image first and then matching poses to
individuals. Deepcut (Pishchulin et al., 2016) casts the problem in
the form of an Integer Linear Program (ILP), and the proposed
partitioning and labeling formulation jointly solve the task of
detection and pose estimation. A follow-up work, Deepercut
(Insafutdinov et al., 2016), achieves better success by adopting
image-conditioned pairwise terms with deeper ResNet (He et al.,
2016). An open-source effort, Openpose (Cao et al., 2017), uses a
non-parametric representation referred to as Part Affinity Fields
(PAFs) for associating body parts with individuals, achieving
real-time performance with high accuracy.

2.3.2. Top-Down Approaches
Top-down approaches (Fang et al., 2017; Huang et al., 2017;
Papandreou et al., 2017; Chen et al., 2018) are opposed to
the former, locating and partitioning all persons in the image
followed by utilizing single person pose estimation caches
individually for each person. Cascaded Pyramid Network (CPN)
(Chen et al., 2018) takes two steps to cope with overlapping or
obscured keypoints: GlobalNet for easy recognized keypoints and
RefineNet for hard one. Papandreou et al. (2017) leverages the
Faster RCNN (Ren et al., 2015) as the person detector and the
fully convolutional ResNet to predict heatmaps and offsets. The
recent work based on Mask-RCNN (He et al., 2017) extends
Faster RCNN to predict human keypoints by combining the
human bounding box and the corresponding feature map.

2.4. Multi-Tasking Intelligence
Multi-tasking refers to the capability of solving many tasks
simultaneously. The current advances of artificial intelligence
outperform human beings in effortlessly handling multiple tasks
without switching costs. There are a couple of mainstream
techniques for solving multi-tasking problems.

One of the popular techniques is to use the evolutionary
algorithm to tackle the problem of multi-tasking. This is
referred to as evolutionary multi-tasking optimization. In
classic EAs, different optimization problems are typically solved
independently. Researchers proposed a variety of techniques,
such as multi-factorial memetic algorithm (Chen et al.,
2017a), opposition-based learning (Yu et al., 2019), cross-
task search direction (Yin et al., 2019), explicit autoencoding
(Feng et al., 2018), and cooperative co-evolutionary memetic
algorithm (Chen et al., 2017b), for the purpose of solving the
multi-tasking problem. Evolutionary multi-tasking algorithms
share knowledge among individual tasks and accelerate the
convergence of multiple optimization tasks (Liang et al., 2019).

Relevant domains to multi-task are transfer learning and
multi-objective optimization. A linearized domain adaptation
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FIGURE 1 | Pipeline of our method. Written informed consent for the publication of this image was obtained from the identifiable persons.

(LDA) strategy transforms the search space of a simple task to the
search space similar to its constitutive complex task (Bali et al.,
2017). Researchers explored the use of transfer learning to tackle
the problem of dynamicmulti-objective optimization (Jiang et al.,
2018). This method can significantly speed up the evolutionary
process by reusing past experience and generating an effective
initial population pool. The formulation of multi-objective
optimization allows us to share the underlying similarity between
different optimization exercises and automates the information
transfer, which improves the convergence (Gupta et al., 2016).

Inspired by the methods mentioned above, our method solves
a multi-tasking problem by effectively taking advantage of the
information from a few building blocks. Our method directly
applies to real-world scenarios to identify potentially-infected
subjects. So far, we found that this problem is under-explored.

3. METHODOLOGY

The key contribution of our method is to quantitatively model
the principle of Close Proximity Interaction (Salathé et al., 2010),
based on the state-of-the-art techniques in computer vision. The
input to our workflow is video sequences VSi, i = 1, 2, 3, · · · ,Nc,
captured by multiple (Nc) cameras. These cameras are potentially
non-overlapping and installed at different locations. The search
starts with a diagnosed patient P∗, who is confirmed in the
clinic with the pandemic disease. The goal of this work is
to identify the contact graph (CG) and quantitatively evaluate
their potential infection risk (PR) with the principle of close
proximity interaction. The workflow of our method is presented
in Figure 1.

Our method successfully evaluates the infection risk and
requires to solve multiple problems simultaneously. The tasks
range from the fundamental problem to extract human from an
image, to identify the same subject across different cameras and
eventually to evaluate the infection risk for potential subjects. The

knowledge learned from one task is harnessed for use in other
tasks. The final goal of infection assessment can only be achieved
by integrating the knowledge from prior sub-tasks. We describe
our method as two main stages: (1) identifying the potentially-
infected group, (2) modeling close proximity interaction.

3.1. Identifying the Contact Graph
The first step of our method is to identify the potentially-
infected group of subjects. This includes a couple of sub-tasks:
(1) segmenting the persons from the image, (2) re-identifying the
diagnosed patient P∗ across different cameras, (3) constructing
the contact graph (CG) by adding the individuals who appear in
the same image with the patient P∗.

Faster R-CNN (Ren et al., 2015) is used for person
segmentation as the first step of our method. Faster R-CNN
extends Fast R-CNN by unifying the Region Proposal Networks
(RPNs) with the original network architecture to break the
bottleneck of computing time cost. RPNs are a kind of fully-
convolutional network (FCN) for generating detection proposals,
sharing convolutional layers with Fast R-CNN. RPNs and Fast
R-CNN are trained independently. The unified architecture
provides convolutional features for both object detection and
region proposal tasks.

We leverage an open-source project, SVDNet (Sun et al.,
2017), for person re-identification. We choose this method
because of its mesrits in computational performance and
comparable accuracy as the state-of-the-art. This work optimizes
the deep representation learning process with Singular Vector
Decomposition (SVD). It is motivated by the observation
that after training a convolutional neural network (CNN) for
classification, the weight vectors within a fully-connected layer
(FC) are usually highly correlated.

We use a graph representation to model the contact
network. Each edge E is a sequence involving two subjects
SA, SB as the graph nodes. Two nodes can be connected with
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multiple edges since two subjects can encounter each other at
multiple locations.

3.2. Modeling Close Proximity Interaction
We model the principle of close proximity interaction by
extracting contextual knowledge from the surveillance videos.
The knowledge includes personal identity (acquired from the
previous stage), spatial and temporal information. The latter two
components describe the movement trajectories of individual
persons in the 3D space. These are used o evaluate the extent
of interaction proximity among subjects in the contact graph
(CG). This is based on the assumption that the infection
transmitted via droplet is critically related to the physical distance
between individuals.

For each edge E in the contact graph CG, we segment the
sequences from the video containing both subjects SA, SB on the
edge E. For each sequence, we perform three tasks: (1) depth
estimation, (2) posture estimation, and (3) risk evaluation.

For the task of depth estimation, we use the existing method
(Zhou et al., 2017). This method estimates the depth information
from unstructured video sequences captured by a monocular
camera. The acquired depth information is used to estimate the
joint trajectories in the 3D world robustly.

For the task of posture estimation, we use OpenPose (Cao
et al., 2017), an open-source real-time multi-person pose
estimation system.We use the provided body and hands detector
to obtain the 24 key points of each individual in the image.
Two-dimensional position information can be acquired by the
pre-trained model.

Third, we calculate the Euclidean distances between all visible
keypoints of two people separately and seek the joint on the
identified patient with the smallest distance to a potential subject.
The distance of joints in the 3D world can be computed with
the pose positions on a 2D image and the extracted depth
information. We compute the infection risk as:

R =

1

Nj

Nj∑

i = 1

D(Ji, J
∗

m) (1)

J∗m = argmin
j

D(Ji, J
∗

j ), i, j = 1, · · · ,Nj (2)

where Nj is the number of joints. J∗m indicates the joint on the
identified patient with the minimum distance to the potentially-
infected subject. D(Ji, J

∗

m) computes the distance between the Ji
joint on the potentially-infected subject and J∗m on the patient.
The risk R indicates the average distance of all joints on the
potentially-infected subject to J∗m on the patient. We iterate this
process for all identifiable subjects in the image.

4. RESULTS

4.1. Hardware and Software
Our algorithm runs on a standard PC (CPU: Intel i7 9700, GPU:
RTX1080Ti, RAM:16G). The algorithm is implemented in the
Python environment. The deep learningmodels are implemented
with the open-source framework, TensorFlow.

4.2. Person Detection
The model is trained on COCO dataset for 160k iterations,
starting from a learning rate of 0.02 and reducing it by 10 at 60k
and 80k iterations. In RPN network, we use 5 scales with box
area of the square of 32, 64, 128, 256 and 512 pixels for anchors
and 3 ratios of 0.5, 1, 2. There are 256 anchors per image to use
for training in total. The Faster R-CNN outputs the individual
detection results. The average time cost for this task is 0.011 s.

4.3. Person Re-identification
We use the database of CASIA (Yu et al., 2009; Chen
et al., 2017c) to train our network model for the task of
person re-identification. The task of person re-identification
achieved 88.24% top-1 accuracy, mAP = 70.68% only with
softmax loss. The training strategy of combining Part-based
Convolutional Baseline (PCB) and ResNet50 achieves state-of-
the-art performance. We use Adam Optimizer with the learning
rate of 0.1, the batch size of 32, and the stride of 2. Dropout
strategy is adopted to avoid the over-fitting problem, and the drop
rate is set to be 0.5. The process of the training is presented in
Figure 2.

The number of people in the image critically affects the
computation load of our method. The initial process for person
segmentation leveraging the Faster R-CNN is insensitive to the
number of people. The average time cost of one single image
is 0.8 s. However, the amount of time spent on subsequent
steps is affected by the number of people involved. The person
re-identification method takes segmented individuals as input
and seeks the target person among these people. The increase
in the number of people leads to greater time consumption,
increasing from 0.8 s of 5 persons to 1.4 s of 70 persons (shown in
Figure 3). The time cost of multi-person pose estimation based
on OpenPose is 0.8 s for 4, 032× 3, 024 pixels’ image. Thus, the
total time cost of our method is no more than 3 s, far below the
average time required by labor.

4.4. Experiment on Public Dataset
Wehere evaluate ourmethod on a public dataset, HDA (Nambiar
et al., 2014). We choose this dataset because they offer the video
sequences in an uncropped way so that the depth information can
be obtained. TheHDAdataset is originally constructed for person
re-identification, with 18 cameras recorded simultaneously
during 30 min in a typical indoor office scenario at a busy hour
(lunchtime) involving more than 80 persons. The cameras are
located on three floors, and 13 cameras have been fully labeled.
The floor plans are offered on the dataset website1. To accurately
evaluate ourmethod, we choose four labeled cameras (camera ID:
50/54/58/60) on Floor 7 and analyze the contact patterns between
the detected persons. Camera 50 and 60 are placed toward the
corridor, Camera 54 captures an indoor office room, and Camera
58 monitors a lobby at the lift. These are typical scenarios in an
office environment.

Figure 4 plots the distance between subjects (marked as ID:
15, 22, 24, 32) in Camera 50. We here assume that the subject of
ID:24 is the diagnosed patient and compute the relative distance

1Available online at: http://vislab.isr.ist.utl.pt/hda-dataset/.

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2020 | Volume 13 | Article 113

http://vislab.isr.ist.utl.pt/hda-dataset/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Guo et al. Droplet-Transmitted Infection Risk Ranking

FIGURE 2 | Time performance in the task of person re-identification. (Left) The training stage. (Right) The time cost given different number of persons.

FIGURE 3 | Illustration of public HDA dataset (Nambiar et al., 2014). (A) Camera layout; (B) Camera 50; (C) Camera 54; (D) Camera 58; (E) Camera 60.

with other subjects who appear in this camera. Because there is no
direct body contact in this scenario, we use the distance between
the body centers (the hip joints) of two subjects for the visual
demonstration. The results show that the predicted distance
between the two subjects is consistent with the perception in the
real world. It shows that our method can reliably capture the
interaction within close proximity.

4.5. Multiple Scenarios
To further verify our method, we consider public places
with a massive flow of people where the infectious
disease spreads quickly. Three typical scenarios are
considered here: a bus station, a bus compartment, and
a hospital.

4.5.1. Bus Station
The scene is rainy and the background is chaotic (Figure 5).
Many people are partially shielded by umbrellas. In the

middle of the image, the crowd is so dense that only
the heads can be seen. Another point worth noting is
that the distance between the person and the camera
varies greatly. Thus, the relative size of the skeleton
varies greatly, which is prone to influence the results
of risk ranking. However, through the robust method
combining depth and posture estimation, risk ranking results
are satisfactory.

4.5.2. Bus Compartment
Insufficient light in the bus compartment makes it harder
to achieve the person retrieval (Figure 6). Besides, the target
person is photographed from a side view rather than the
same angle as his identity photo. Different perspectives
are also an important factor causing difficulties in person
retrieval. Results show that our method is robust to the
view variations.
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FIGURE 4 | Measuring the distance between subjects in Camera 50 from the public HDA dataset (Nambiar et al., 2014).

FIGURE 5 | Experimental results at a bus station. From left to right: the detected persons, the pose estimation and the ranking order of infection risk.Written informed

consent for the publication of this image was obtained from the identifiable persons.

FIGURE 6 | Experimental results in a bus compartment. From left to right: the detected persons, the pose estimation and the ranking order of infection risk. Written

informed consent for the publication of this image was obtained from the identifiable persons.
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FIGURE 7 | Experimental results at a hospital.From left to right: the detected persons, the pose estimation and the ranking order of infection risk. Written informed

consent for the publication of this image was obtained from the identifiable persons.

4.5.3. Hospital
The mutual occlusion between individuals is significant in this
case (Figure 7). Considering the pose information we use is
two dimensional, it is difficult to determine the exact distance
between people. With the depth information, infection risks we
obtained are consistent with our visual, intuitive judgment.

4.6. Comparison With User Study
To evaluate the reasonableness of our method in assessing the
risk of infection, we used the risk assessment obtained by human
subjects as a comparison baseline.

4.6.1. Participants
Ten volunteers (5 males and 5 females) with an average age
of 21 and SD of 3.5 were recruited in this study. They are
all undergraduate and graduate students in the department of
information science. Written agreement to participate in this
study was obtained from individual participant after explanations
of this study. They all agreed to join this study for free.

4.6.2. Procedures
Participants were invited to the lab and conducted this
experiment. After explaining the task details, they signed the
agreement of participation. They were instructed to rank the
infection risk of all detected persons in each video, given the
diagnosed subject. They were not aware of the purpose of this
study, as the comparison baseline of our proposed algorithm.

We used all three scenarios (bus station, bus compartment,
and hospital) in the previous section. Participants were presented
with a short sequence of videos, They were instructed to sort
the infection risk of all detected individuals in the image based
on common sense or intuition. Starting from the candidate with
the highest perceived risk, they associated with the candidate
with the rank number from 1 to N (N is the number of
candidates in each image). No judging criteria were given.
We started the timer when the participant sees the image
and started marking it without explicitly informing the user
of timekeeping. Interviews were conducted after participants
finished the previous procedure by asking open questions and
collecting their subjective feedback on how they perceived and

ranked the risk. Each participant spent around 20 min to
complete the study.

4.6.3. Quantitative Findings
We compared the ranking result from our method and the user
experiments (Figure 8). The bar plots show the distribution of
the ranking order, while the number on top of each box is
the proposed order by our method. The results show that the
ranking order of infection risk is consistent between our method
and human subjects. Participants achieved a higher degree of
consensus with the highest and lowest ranking candidates. For
the examples of both the bus station and the hospital, all
participants identified the person (ID = 3 and ID = 4 in these
two respective examples) closest to the diagnosed patient as
the top candidate of infection risk. For the example of the bus
compartment, the choice of the top candidate is distributed to
two options (ID = 3 and ID = 4). However, for other options
between the highest and lowest ranking candidate, participants
showed a higher degree of variation.

In terms of time cost, our method requires far less time
(3 s) to process one image, than the time cost required by
our participants (2 min). During the decision flow, when the
participants ranked the risk order, we observed that it requires
significantly less time to identify the person of the highest risk
than the rest choices. This is consistent with the high degree
of consensus in the candidate selection. We believe this shows
the advantages of our method in accuracy and efficiency. The
reasoning behind the decision process of human participants is
to be explained in the following paragraph.

4.6.4. Qualitative Findings
We interviewed the participants and collected their feedback and
comments. We asked about how they decided the ranking order,
and all participants mentioned the factor of the distance between
the candidate and the diagnosed patient. This confirms the
principle of close proximity interaction. Six participants explicitly
pointed out that the fact that the top candidate is conversing
with the diagnosed patient in the examples of the bus station and
hospital critically shapes their decision. This is also consistent
with the transmission route of the droplet. When people are
having a face-to-face conversation, the droplets are more likely
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FIGURE 8 | Comparison of manual ranking and our method. Horizontal axis: the candidate ID in the image (from left to right). Vertical axis: the ranking order. A smaller

value of the ranking order indicates a higher risk of infection. (A) Bus station; (B) Bus compartment; (C) Hospital.

FIGURE 9 | Failure cases of our method. Images in (A) are from the public dataset HDA (Nambiar et al., 2014). Written informed consent for the publication of image

(B) was obtained from the identifiable persons.

to spread out to the person in the conversational group. The
carried virus in the droplet causes the infection. For the ranking
decision with lower possibility, participants agreed that it is more
difficult to decide since more than one candidate is located at a
similar distance with the diagnosed patient. However, they also
mentioned that since the rest of the candidates are not exposed
to the high infection risk, their significance to infection control
deserves less attention.

5. DISCUSSION

In this section, we discuss the insights we learned from our
experience, in particular typical failure cases and limitations in
our experiments.

5.1. Failure Case Analysis
The building blocks critically determine the success of inferring
the close proximity interaction in the upstream workflow. Here
we identify the failure cases caused by two components: person
re-identification and distance estimation.

The state-of-the-art methods in person re-identification still
face significant challenges in a complicated environment. The
current accuracy of re-identification in our method is 88%. In
selected scenarios, the method in our work fails to identify the
same person in two different camera views. This is caused by
the relative perspective between the person in the view and the
camera perspective. Improving the method of re-identification
is the solution to this problem. Figure 9A presents one typical
failure case. The person on the left of the image is about to

exit from the corridor and partially occluded. This creates a
detection failure.

Reliable reconstruction of 3D information from the 2D image
is still an open question in the domain of computer vision.
Although we propose an efficient method to infer the depth
information and integrate with the 2D posture, failure cases still
arise due to occlusion and viewpoint perspective. For the former
case, if the two persons are standing in line with the camera
(shown in the right image of Figure 9B), the detected key points
will be almost mixed together. At this time, it is significantly
challenging to predict the distance between the subjects.

6. LIMITATIONS

First, only direct infection is considered, while the indirect
infection is neglected. Some bacteria or viruses will remain
on objects such as escalator rail, doorknob, shopping cart, etc.
handled by infected patients. Though their infection may be
weakened to varying degrees, it still poses potential threats to
indirect infection. We did not take these contaminated objects
into account yet. Object detection and tracking techniques will
help to locate these objects. It is challenging to accurately
determine whether a person is in direct contact with an object
rather than just being close to it due to the factors of occlusion
and overlapping.When the contaminated object is sheltered from
persons or multiple objects overlap each other, the visible part
of the object is insufficient to provide sufficient information for
making a judgment.

Second, formulating the infection risk assessment criteria
based on vision-level rather than chemical analysis also presents
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a unique set of challenges. Obtaining the exact distance between
people in practical circumstances is necessary for verifying the
estimated distance by our method. Besides, the potential risk
of infection varies according to different environmental set-ups
and transmission routes of infectious diseases. A confined space
like a room may lead to a higher risk than an open space. The
cumulative effect of continuously contact over a while rather
than a particular moment is difficult to measure. Besides, it
is worth pointing out that we do not take the intra-person
variations of immunity into account since it cannot be measured
at the vision-level.

7. CONCLUSION

This paper proposes a novel method to represent the potentially-
infected group of people as a graph structure. We also model the
principle of close proximity interaction by robustly analyzing the
physical distance between subjects in the 3D world. This vision-
based approach can re-identify diagnosed patients with infectious
diseases and evaluate the infection risk of people who have
contacted them. We evaluated our method in various scenarios,
including indoor office, bus station, bus compartment, hospital.
The comparison with the process of manual analysis shows that
our method achieves consistent results but significantly reduces
the time cost.

There are a few directions for our future work. Our current
work focuses on the direct contact between the subjects and
neglects the indirect contact between subjects via objects. It is
highly likely that the objects in close contact with the diagnosed
subject contain the virus and thus lead to disease spread.
Investigating the indirect infection caused by contaminated
objects is in line with our future work. Besides, deploying our
method in an in-the-wild study could validate the effectiveness

of our method in the real world. One potential scenario is to
predict the absentee statistics of the childcare center, given the
surveillance camera videos. This could offer advice to parents and
administrators concerning the status of the disease infection on
both individual and group levels.
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