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To improve food production via fermentation with co-cultures of microorganisms (e.g., multiple
lactic acid bacteria-LAB strains), one must fully understand their metabolism and interaction
patterns in various conditions. For example, LAB can bring added quality to bread by releasing
several bioactive compounds when adding soy flour to wheat flour, thus revealing the great
potential for functional food development. In the presentwork, the fermentation of three soy and
wheat flour mixtures is studied using single cultures and co-cultures of Lactobacillus plantarum
and Lactobacillus casei. Bio-chemical processes often require a significant amount of time to
obtain the optimal amount of final product; creating a mathematical model can gain important
information and aids in the optimization of the process. Consequently, mathematical modeling
is used to optimize the fermentation process by following these LAB’s growth kinetics and
viability. The present work uses both multiple regression and artificial neural networks (ANN) to
obtain the necessary mathematical model, useful in both prediction and process optimization.
The main objective is to find a model with optimal performances, evaluated using an ANOVA
test. To validate each obtained model, the simulation results are compared with the
experimental data.

Keywords: lactic acid bacteria, process optimization, mathematical model, regression, artificial neural
network (ANN)

1 INTRODUCTION

Humans’ survival and disease risk is mainly conditioned by lifestyle, genetic, and environmental
factors (Ekmekcioglu, 2019). Lifestyle is primarily associated with everyday physical activity, normal
body mass, and a healthy diet (Szabo et al., 2018; Pignolo, 2019; Precup and Vodnar, 2019; Martău
et al., 2020). To this end, there is an increasing consumer trend regarding “natural” food with added
health benefits (functional food). Traditional foods’ upgrading enhances the added nutritional value
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of foodstuff by adding several health-related effects, like
decreased risk of type 2 diabetes, obesity, hypertension,
cardiovascular risk, and metabolic syndromes (Rice et al.,
2019; Liu et al., 2021; Wang et al., 2021).

Cereals recently are researched concerning their ability to
develop functional food because they have an increased
growth (73% of the entire harvested area of the world) and
provide appropriate amounts of proteins, dietary fibers,
minerals, and vitamins. Wheat, part of the Poaceae family,
and Triticum genus have a global production of approx. 765
million (M) tons (http://www.fao.org/worldfoodsituation/csdb/
en/) and has the highest popularity among cereal grains. Wheat
flour (WF) serves as the primary source of human food and
contributes meaningfully to the human diet, containing (in 100 g)
carbohydrates (71 g), proteins (13.3 g), fibers (2.3 g), minerals,
and vitamins (Călinoiu and Vodnar, 2018; Charalampopoulos
et al., 2002). Soybeans, part of the Fabaceae family, and the
Glycine genus are also often used to produce functional food with
an increasing world production of 352 M tons in 2017 (http://
www.fao.org/faostat/en/#data). Raw soy flour (SF) is rich in
nutrients, containing (in 100 g) carbohydrates (31.9 g), lipids
(20.6 g), proteins (37.8 g), minerals, vitamins (https://fdc.nal.
usda.gov/fdc-app.html#/food-details/174273/nutrients) and as
active component isoflavones (30% daidzein and 60%
genistein) (Faraj and Vasanthan, 2004; Coman et al., 2019; Hu
et al., 2019). Isoflavones possess many health-promoting
properties with positive effects against cancer, cardiovascular
disease, hypercholesterolemia, osteoporosis, atherosclerosis,
and diabetes (Faraj and Vasanthan, 2004). Cereals present a
favorable substrate for lactic acid bacteria (LAB) growth. The
SF and WF mixture is advantageous nutritionally, and the β-
glucosidase enzyme from LAB can increase the aglycone content
of doughs by increasing the bioactive and functional
characteristics of bakery products (Thoenes, 2004; Faria et al.,
2018; Zhang et al., 2018).

To naturally enhance bread quality, a convenient solution is
using appropriate LAB as starter culture in single or co-cultures

for bread production, with several beneficial effects (Ferraz et al.,
2019; De Pasquale et al., 2020; Pontonio et al., 2020). These
microorganisms can reduce breadcrumb hardness, diminish
acrylamide content, increase storage time and dough elasticity
(Bartkiene et al., 2017). In addition, the incorporation of LAB in
dough preparation has several other important beneficial aspects,
like their probiotic characteristics, which can be efficiently
applied in functional food production (Min et al., 2017;
Călinoiu et al., 2019a; Wang et al., 2021). The beneficial role
of probiotic bacteria is primarily due to the creation of
antimicrobial metabolites, elimination of enteric pathogens, the
useful variation of systemic and mucosal immune behavior, and
the dissolution of dietary carcinogens (Corthésy et al., 2007).

Lactobacillus genus taxonomically is part of the Firmicutes
phylum, Bacilli class, Lactobacillales order, and Lactobacillaceae
family (König et al., 2009). As energy and carbon sources, the
primary substrates are carbohydrates used through the
homofermentative and heterofermentative pathways. These LAB
can substantially heighten different food’s antimicrobial and
antioxidant effects due to biosurfactant production, which can
intensify food flavors (Paucean et al., 2013; Liu et al., 2018a;
Bintsis, 2018). Lactobacillus plantarum, an industrially relevant
LAB with use in vegetable (Liu et al., 2018a; Malik et al., 2019),
wine (Brizuela et al., 2019), and other food fermentations (Min et al.,
2017), is a facultative heterofermentative (pentose) or
homofermentative (hexose) bacterium and possesses competent
adaptability to alternative microorganisms (like the yeast
Saccharomyces cerevisiae), and environments. Fermentation of
glucose with L. plantarum has as primary products lactic and
acetic acids (Verni et al., 2019), and the fermentation of raw
food, are “generally recognized as safe” (GRAS) (Brizuela et al.,
2019) by the U.S. Food and Drug Administration (FDA) and has
passed the Qualified Presumption of Safety (QPS) assessed by the
European Food Safety Authority (EFSA) (Liu et al., 2018b). L. casei,
an adaptive bacteria with primary usage in the dairy industry, can
metabolize different carbohydrates and have heterolactic and
homolactic characteristics (Calinoiu et al., 2014; Stefanovic et al.,

FIGURE 1 | Fermentation process (A)microorganism activation (B) re-incubation (C) washing step (D) dough fermentation (E) viability of LAB in Petri plates (F,G)
LAB under the microscope.
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2017). Isolated from diverse environments, L. casei is a rod-shaped
and aciduric bacterium (Hosseini Nezhad et al., 2015). The most
well-known probiotic strain in the food industry is L. casei ATCC
393, with many health-related positive effects, like immunity
enhancement and intestinal tract regulation (Cai et al., 2019;
Dimitrellou et al., 2019).

The interaction of these two LABs and their underlying
mechanisms is scarce (Sieuwerts et al., 2018). Therefore,

mathematical modeling is applied to anticipate the
consequences of fermentation processes through the utilization
of possible starter cultures, pH, oxygen content, temperature, type
of substrate, accumulation of metabolites, can determine essential
understanding of fermentation strategies and getting increased
attention (Neysens and De Vuyst, 2005; Ricciardi et al., 2009).
Nowadays, artificial neural networks (ANN) have grown in
popularity when discussing the modeling process (Panerati

FIGURE 2 | Viability results from (A) L. plantarum, (B) L. casei, (C) co-cultures of L. plantarum and L. casei.

TABLE 1 | Model fitting.

Source Sum of squares DF Mean square F-Value p-value

Model fitting for the L. plantarum
Mean 22.823 1 22.823
Linear 22.828 3 22.828 114.301 0.4745
2FI 22.826 5 4.5652 60.682 2.0397e-09
Quadratic 23.412 4 5.8529 172.440 6.1526e-13
Cubic 23.704 5 4.7408 283.810 2.6878e-14
Residual 1.132 19 0.060
Total 116.720 37 10.145,025

Model fitting for the L. casei
Mean 34.525 1 34.413
Linear 34.172 3 34.172 179.62 0.4421
2FI 34.620 5 6.924 119.25 1.5799e-11
Quadratic 34.525 4 8.631 142.97 2.644e-12
Cubic 34.962 5 6.992 198.29 3.803e-13
Residual 1.078 19 0.057
Total 173.882 37 15.198

Model fitting for co-cultures of L. plantarum and L. casei
Mean 28.540 1 28.540
Linear 28.641 3 28.641 46.728 0.2437
2FI 28.970 5 5.793 28.555 3.6923e-07
Quadratic 29.067 4 7.266 39.472 4.2459e-08
Cubic 30.350 5 6.070 54.751 4.2177e-09
Residual 3.473 19 0.183
Total 149.041 37 12.749
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et al., 2019). The reasoning behind the success of these models is
in the properties of neural networks. Since most processes are
nonlinear, the neural networks adaptability and ability to learn
make them a better choice when compared to other methods. On
the other hand, the main disadvantage of ANN is that, depending
on the chosen training parameters, the model may have great
complexity.

ANN is widely used to create mathematical models for the
fermentation processes. For example, Elmeligy et al. used such
tools to create a model for biobutanol production (Elmeligy
et al., 2018). This study aimed to optimize the fermentation
process combined with a membrane pervaporation unit and

establish the optimal operating conditions. The optimization
problem was solved using the dual population evolutionary
algorithm. Valdez-Castro et al. used recurrent neural networks
to predict the fed-batch fermentation kinetics for the bacteria
Bacillus thuringiensis (Valdez-Castro et al., 2003). Some ANN
parameter rules specified in this paper, such as the number of
inputs and outputs and the number of neurons in the hidden
layer, help predict and identify the appropriate fermentation
process. Besides, the accuracy of the models created via neural
networks is highlighted, with the obtained results around 2%.
Liu et al. used the Levenberg-Marquardt optimization method
to model ethanol production (Liu et al., 2014). They stated that

TABLE 2 | Regression and ANOVA results.

Regression and ANOVA Results for L. plantarum

Estimate SE tStat p-value
x1 0.063390 0.039901 1.5874 0.14073
x2 0 0 0 0
x3 0 0 0 0
x1

2 0.019703 0.005484 3.5924 0.00422
x2

2 0.002115 0.000144 14.6900 1.4195e-08
x3

2 0 0 0 0
x1

3 −0.000692 0.000165 −4.1845 0.00152
x2

3 −1.4844e-05 1.5918e-06 −9.3248 1.4798e-06
x3

3 −4.0525e-08 1.4821e-07 −0.2734 0.78959
Root mean square error 0.129
R-squared 0.99
Adjusted R-squared 0.986
F-statistic vs. constant model 284
p-value 2.69e-14

Regression and ANOVA results for L. casei
Estimate SE tStat p-value

x1 0.015823 0.057974 0.2729 0.78996
x2 0 0 0 0
x3 0 0 0 0
x1

2 0.026551 0.007968 3.3318 0.00669
x2

2 0.002017 0.000209 9.6415 1.0635e-06
x3

2 0 0 0 0
x1

3 −0.000846 0.000240 −3.5201 0.00479
x2

3 −1.4639e-05 2.3129e-06 −6.3292 5.6043e-05
x3

3 −1.5864e-07 2.1534e-07 −0.7366 0.47674
Root mean square error 0.188
R-squared 0.985
Adjusted R-squared 0.98
F-statistic vs. constant model 198
p-value 3.8e-13

Regression and ANOVA results for L. casei
Estimate SE tStat p-value

x1 −0.096252 0.10279 −0.9363 0.36919
x2 0 0 0 0
x3 0 0 0 0
x1

2 0.044862 0.01413 3.1751 0.00883
x2

2 0.002448 0.00037 6.5992 3.8679e-05
x3

2 0 0 0 0
x1

3 −0.001450 0.00042 −3.4014 0.00591
x2

3 −1.8861e-05 4.1009e-06 −4.5993 0.00076
x3

3 2.614e-07 3.8182e-07 0.68462 0.50775
Root mean square error 0.333
R-squared 0.948
Adjusted R-squared 0.931
F-statistic vs. constant model 54.8
p-value 4.22e-09
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this method is arguably the best method to use in modeling
problems. The results obtained from their models are
evaluated using the R squared value, the best value received
being 0.96. Peng et al. described ANN to model a fed-batch
fermentation process and a genetic algorithm (GA) to optimize
the obtained model (Peng et al., 2014). The obtained mean-
squared error of the model is 0.083, indicating very high
accuracy. The GA was needed to find the optimal values for
the inputs to maximize the production of the output. De J. C.
Munanga et al. developed a global model of the lactic
fermentation step of gowé by assembling blocks hosting
models for bacterial growth, lactic acid production, and the
drop of pH during fermentation (de J. C. Munanga et al., 2016).
As concluded, the determination of kinetic parameters needs
increased attention (Freire et al., 2015). The most cost- and
time-saving method is by mathematical modeling (Dulf et al.,
2020).

The main objective of the present work is to optimize single
and co-cultures of LAB while utilizing different substrate
mixtures for optimal growth and viability. The fermentation
of three soy and wheat flour mixtures is studied using single
cultures and co-cultures of Lactobacillus plantarum and
Lactobacillus casei. It is well known, that bio-chemical
processes often require a significant amount of time to
obtain the optimal amount of final product. Therefore
creating a mathematical model can gain important
information and aids in the optimization of the process.

Consequently, mathematical modeling is used to optimize
the fermentation process by following these LAB’s growth
kinetics and viability. Several models are created using
multiple regressions and ANN with different optimization
algorithms (Levenberg-Marquardt, Quasi-Newton, Scaled
Conjugate Gradient, Fletcher-Powell, and Polak-Ribiere).
From a modeling point of view, the considered inputs are
time and wheat and soy flour concentrations, respectively.
First, the model validation is done using comparisons with
experimental data. Then, using the best models with the
leading performance measures, optimum process values
were established, like the optimal value of the final product
and the optimal WF and SF concentrations.

2 MATERIALS AND METHODS

2.1 Bacterial Strains and Culture Media
The present research used particular microorganisms for
fermentation on different concentrations of wheat and soy-
flours. The LAB used during the whole experiment were L.
plantarum ATCC 8014 (Lp) and L. casei ATCC 393 (Lc)
received from the University of Agricultural Science and
Veterinary Medicine Cluj-Napoca, Romania. For both LAB,
the used medium was MRS broth (enzyme digested casein
10 g/L, meat extract 10 g/L, yeast extract 5 g/L, glucose 20 g/L,
dipotassium hydrogen phosphate 2 g/L, sodium acetate 5 g/L, di-

FIGURE 3 | Cook’s distance for (A) L. plantarum; (B) L. casei; (C) co-cultures of L. plantarum and L. casei.
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ammonium citrate 2 g/L, magnesium sulfate 0.2 g/L, manganese
sulfate 0.05 g/L, and tween 80 1.08 g/L) with a final pH of 6.4 ±
0.2 at 25°C.

2.1.1 Substrate
The microbial fermentation took place on three types of wheat
compositions containing 100% WF, 95% WF with 5% SF, and
90% WF with 10% SF. First, WF (type 000) was purchased
from commerce and soybean (Onix variety) obtained by
conventional soil tillage system with plow and 60%
vegetable debris from the Agricultural Research and
Development Center Turda (https://scdaturda.ro/onix/),
which afterward was minced. Next, the measured flour in
special 500 ml bottles was autoclaved, after which 100 ml of
sterile distilled H2O was added. Finally, the dough was
homogenized, and the appropriate amount of
microorganisms was added, as previously reported (Paucean
et al., 2013). Each experiment was performed in triplicate.

2.2 Fermentation
The first step consisted of microorganism activation on model
media. The initial step was the introduction of 9 ml of MRS
broth medium in special vials, after which followed the
sterilization in autoclave and inoculation with 1 ml of pure
L. plantarum or L. casei culture (Figure 1A). These vials with
9 ml of medium and 1 ml of pure culture were incubated at

30°C for 18–24 h. After the introduction of activated bacteria
(10 ml) in 90 ml MRS broth and cell viability establishment
(Figure 1B), the bottles were re-incubated for 18–24 h
(Paucean et al., 2013; Teleky et al., 2020). Each step was
performed under sterile conditions.

The incubated media (100 ml) with each LAB was centrifuged
for 10 min at 4°C and 7,000 rpm. The supernatant was removed,
and the pellet was resuspended in physiological serum
(Figure 1C). This washing process was repeated twice. After
this phase, the LAB concentration was measured with a UV-VIS
spectrophotometer (NanoDrop 1,000; Figure 1D), and the
transfer in the dough substrate was effectuated separately. The
determination of bacterial concentration was performed by
measuring the optical density at 600 nm (OD600) as reported
in (Sieuwerts et al., 2018; Dulf et al., 2020). The dough inoculation
adapted after (Gerez et al., 2012; Mitrea et al., 2019) from 100 ml
media occurred with 10% (20 ml) of microorganisms at the
concentration of 8 log10 CFU/mL (Figure 1E). The incubation
time during the fermentation process was 24 h at 37°C.

2.3 Viability
Sample prelevation during fermentation took place at regular
intervals (0, 2, 4, 6, 8, 10, and 24 h). For cell viability, the pour
plate method was used for LAB and expressed using logarithmic
values of the colony-forming units per mL of sample (log10 CFU/
mL) (Călinoiu et al., 2019b). The inoculated agar plates were

FIGURE 4 | Normal probability for (A) L. plantarum; (B) L. casei; (C) co-cultures of L. plantarum and L. casei.
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incubated for 48 h at 37°C, after which cell counting was
performed (Figures 1F, G).

2.4 Modeling Methods
The first step implied using a response surface method to evaluate
various operating conditions and determine the optimal
parameters for the fermentation process. The multiple
regression model used at the beginning considers three factors
contributing to each response. Experimental data processing
implies the use of polynomial equations:

y � a0 +∑
i

aixi +∑
i

aiix
2
i +∑

i,j

aijxixj +∑
i

aiix
3
i +∑

i,j,k

aijkxixjxk

(1)
where y is the response variable, a0, ai, aii, aij are the model
constant term, the coefficient of linear terms, the coefficient of
quadratic and cubic terms, and the coefficient for the interaction
between variables i and j, respectively xi are the independent
variables. The model allows the drawing of surface response
curves, and through their analysis, the optimum conditions
can be determined. The adequacy of the model is determined
by evaluating the root mean square error, the regression
coefficient (R-squared), and the F-value and p-value obtained

from the analysis of variance (ANOVA). Matlab (R2018a) ®
software is used to perform the modeling, analyses, and plots.

The second research step consists in establishing a model using
neural networks. The neural network model defines a family of
possible equations alongwith a set of data and a strategy to find better
rules among the possible ones based on these data. In contrast, the
model form is given explicitly in multiple regression methods.

In the training stage are used 75% of experimental data. The
remaining 25% of the data should be used in the model validation
step. As data splitting method, the systematic stratification
semideterministic method is used. The data were first ordered
along the output variable dimension in increasing order. The
starting point was randomly selected. Training samples were used
first, followed by the testing samples.

The model is required to be as simple as possible. To achieve
this, the number of layers is considered 1, and the number of
neurons is maximized to 10. If the models created with these
parameters have significant errors, they can be adjusted using
different neural networks and optimization algorithms. As an
optimization algorithm, five specific training methods are used:
Levenberg-Marquardt, Quasi-Newton, Scaled Conjugate
Gradient, Fletcher-Powell, and Polak-Ribiere. The obtained
mathematical model has the following form:

FIGURE 5 | 3D plots for (A) L. plantarum; (B) L. casei; (C) co-cultures of L. plantarum and L. casei.
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FIGURE 6 | Model results with the Levenberg-Marquardt method and six neurons for (A) L. plantarum; (B) L. casei; (C) co-cultures of L. plantarum and L. casei.

FIGURE 7 | Model results with Levenberg-Marquardt method and eight neurons for (A) L. plantarum; (B) L. casei; (C) co-cultures of L. plantarum and L. casei.
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y � A · ( 2
eB·X+bi + 1

− 1) + bii (2)

where y is the response variable, A is a row matrix of dimension (1:
number of neurons); B is a matrix of weights for each variable,
dimension (number of variables: number of neurons); X: variable
columnmatrix of dimension number of variable: 1; bi: column matrix
of coefficients with dimension (number of neurons:1) and bii is the bias
value. The adequacy of themodels is determined by evaluating the root
mean squared error, the regression coefficient (R-squared), and the
p-value obtained from the analysis of variance (ANOVA). Matlab
(R2018a)® software is used to perform the modeling, analyses, and
plots. As software is also used the tool described in (Dulf et al., 2018).

3 RESULTS

3.1 Experimental Results
The study’s purpose is to optimize fermentation by utilizing
different substrate compositions of WF and SF by using LAB
in single or co-cultures. In Figure 2, the viability results for the
three WF and SF mixtures for the LAB L. plantarum, L. casei, and
the co-cultures of L. plantarum and L. casei are presented.

The viability of the three different substrate mixtures reaches a
final concentration of 9.61 ± 0.04 log CFU/mL. With L. plantarum
(Figure 2A), the increase is uniform throughout the experiment. At

the same time, L. casei at the beginning presents a slower growth, but
the final concentration is similar to L. plantarum of 9.54 ± 0.11
log CFU/mL (Figure 2B). With both LAB, the viability is efficient,
with the highest results of 9.67 ± 0.10 log CFU/mL (Figure 2C) The
data are also available in the Appendix.

3.2 Multiple Regression Models
The first step is the analysis of multiple regression models
derived from the three different experiments presented in the
previous section. In the beginning, the used model is on L.
plantarum, after which the L. casei model and the third model
implied the co-cultures of L. plantarum and L. casei. The
considered independent variables are x1 time, x2
concentration of wheat flour, while x3 represents the
concentration of soybean flour.

The obtained experimental data were fitted using the four high
degree polynomial models, such as the linear, interactive (2FI),
quadratic, and cubic models. The test results and model summary
statistics are depicted in Table 1.

Based on the test results, the adequacy of the proposed models
was estimated. To determine whether the model equations
developed are significant, the analysis of variance (ANOVA) is
used for the chosen models. In Table 2 the results from ANOVA
for all three fermentations are presented. ANOVA also showed
that the coefficient of variable x2 and the interaction terms x2x3
are not significant because x2 and x3 are complementary variables.

FIGURE 8 | Model results with Fletcher-Powell method and 10 neurons for (A) L. plantarum; (B) L. casei; (C) co-cultures of L. plantarum and L. casei.
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The sum of these two is 100% in each case. The resulted models
are presented above.

Case 1.

y � 0.00069266x31 − 1.4844e − 05x32 − 4.0525e − 08x33

+ 0.019703x21 + 0.0021154x22 + 0.06339x1 (3)

Case 2.

y � −0.00084662x3
1 − 1.4639e − 05x3

2 − 4.0525e − 08 − 1.5864e

− 07x3
3 + 0.026551x2

1 + 0.0020173x2
2 + 0.015823x1

(4)

Case 3.

y � −0.0014505x3
1 − 1.8861e − 05x3

2 + 2.614e − 07x3
3

+ 0.044862x2
1 + 0.0024482x2

2 − 0.096252x1 (5)

The Cook’s distance and the normal probability plot for the
obtained models are presented in Figures 3, 4, where subfigures
1) represent the results for L. plantarum, 2) are for L. casei, while
3) is for the co-culture of L. plantarum and L. casei. Since there
were no significant deviations from the straight line in the normal
probability plot, it can be concluded that the standardized

residuals of the model have a normal distribution. The Cook’s
distance implied that the outliers were not present among the
data fitted by the regression model.

The three-dimensional plots are used to present the impact of
analyzed factors on the fermentation by utilizing different
substrate compositions of WF and SF by using LAB in single
or co-cultures. The effects of fermentation time, the
concentration of wheat flour, and the concentration of
soybean flour are depicted in Figure 5, using the same
labeling as in previous figures: 1) for the results for L.
plantarum, 2) for L. casei and 3) for the co-culture of L.
plantarum and L. casei. Based on the presented plots, the
relationship between the response and factors can be
considered. The extraction time exhibited a linear, quadratic
(in the second case) and a cubic effect, reaching a maximum
value and later decreasing in value. The concentration of wheat
flour effect presents a slight linear increase. The concentration of
soybean flour effect presents a slight linear decrease.

3.3 ANN Models
Although the regression model exhibits good results, being a
more advanced modeling tool, ANN models are also developed.
The best optimization algorithm and the optimum number of
neurons for the neural network are obtained using experimental
data. Analyzing the mean squared error in each case are obtained
as competitive the models developed with the Levenberg-
Marquardt, Quasi-Newton and Fletcher-Powell algorithm with

FIGURE 9 | Model results with the Quasi-Newton method and eight neurons for (A) L. plantarum; (B) L. casei; (C) co-cultures of L. plantarum and L. casei.
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6, 8 and 10 neurons. The obtained mean squared errors are:
0.0265 for Levenberg-Marquardt with 6 neurons, 0.0306 for
Levenberg-Marquardt with 8 neurons, 0.0377 for Quasi-
Newton with 8 neurons, 0.0439 for Quasi-Newton with 10
neurons and 0.0364 for Fletcher-Powell with 10 neurons.

An ANN model is established for each experimental setting case
with different training methods and several neurons. The
comparison between the 2D simulation results of ANN models
with Levenberg-Marquardt training methods with different neuron
numbers and the multiple linear regression from the models
mentioned above are presented in Figures 6–8, with the labeling
of subplots as follows: 1) for the results for L. plantarum, 2) for L.
casei and 3) for the co-culture of L. plantarum and L. casei. The
experimental data of cell viability for LAB are presented with stars
and are expressed using logarithmic values of the colony-forming
units permL of sample (log10 CFU/mL). For amore accuratemodel
validation, one more dataset was realized, with a smaller sampling
period. Using more neurons improves the model’s performance, as

presented in Figure 7. The disadvantage is the model complexity.
Some of the matrices will grow in size from 6 to 8.

Using the Fletcher-Powel method, the obtained models are
more complex, having matrices with 10 rows and 10 columns.
The performance of the models is worse than the achievements of
the models created via Levenberg-Marquardt, being 0.0113,
0.0441, and 0.0513 in the considered cases. The results are
plotted in Figure 8.

Using the Quasi-Newton method as a training network, the
created models lead to the errors: 0.0523, 0.0467, and 0.0627, with
the simulation results presented in Figure 9. Since it has the same
number of neurons as the Levenberg-Marquardt method, it is just
as complex, but the performances are more accurate for the
model created with Levenberg-Marquardt.

The mathematical models obtained in these three case studies
have the form:

y � A · ( 2
eB·X+bi + 1

− 1) + bii (6)

The L. plantarum case model:

bi �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.97
1.8
1.58

−0.03157
−0.187
2.53
2.3
3.73

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;B �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.49 −1.97 −0.73
−1.78 −0.88 −1.84
−1.78 −1.79 −0.36
−1.61 −2.02 1.01
3.4 0.16 0.23
2.62 0.91 0.68
3.1 1.08 1.39
3.21 0.99 0.94

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (7)

A � ( 0.08 0.39 0.27 −0.025 0.86 0.9 0.56 −1.98 );
bii � 0.563. (8)
The L. casei case model:

bi �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.81
−1.88
1.044
0.22
0.47
−1.86
−2.64
−2.81

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;B �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.49 1.21 −1.12
2.7 −0.82 0.85

−0.78 −0.84 −2.61
0.16 −2.58 0.49
1.91 0.44 0.51
−1.77 −1.63 −0.911
−0.338 −2.15 −0.3
−2.021 −1.119 1.18

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(9)

A � (−0.17 0.33 0.62 0.08 0.79 −0.36 1.36 0.17 );
bii � 1.0356. (10)
The co-cultures of L. plantarum and L. casei case model:

bi �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.82
−1.99
−0.49
0.77
1.1

−0.27
−2.26
−1.71

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;B �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.88 1.02 0.9
0.2 1.68 −2.24
2.24 1.69 −0.8
−6.3 3.09 0.43
−0.66 −0.27 2.69
2.12 1.12 −0.2
−1.12 1.51 −1.15
−3.07 −2.31 1.44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (11)

A � ( 1.38 0.17 −0.37 −0.82 0.39 0.98 0.05 −0.35 );
bii � −0.72. (12)

FIGURE 10 | 3Dmodel simulation results with the Levenberg-Marquardt
method and eight neurons for L. plantarum.

FIGURE 11 | 3Dmodel simulation results with the Levenberg-Marquardt
method and eight neurons for L. casei.
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The 3D simulation results of these models are presented in
Figures 10, 11, 12. Figure 10 presents the 3D model simulation
results with the Levenberg-Marquardt method with eight neurons
for L. plantarum; Figure 11 is for results with the Levenberg-
Marquardt method with eight neurons for L. casei, while
Figure 12 show the results with the Levenberg-Marquardt
method with eight neurons for co-cultures of L. plantarum
and L. casei.

With the use of the 3D plots and the use of the models, an
approximation of the optimal concentration is found by
searching the highest point. For the first process, the optimum
value of the final product is 10.3076 obtained for 97.7083%
concentration of WF and 19 h of fermentation.

In the case of the second process, the optimum value is 9.7571,
with a concentration of 95.625% WF in 21 h.

The third process has a maximum amount of 12.2755, with
97.7083% WF in 19 h. Under these optimal conditions, repeated
validation experiments are performed, obtaining close values to
the predicted ones.

4 DISCUSSIONS

4.1 Regression Models Analysis
From the ANOVA test of the regression model for L.
plantarum, the p-value is 2.69·10−14, which means that the
model is significant. R squared has the value of 0.99, showing
that the regression model fits well for the first bacterium. The
root-mean-squared error has the value of 0.129, proving that
the quadratic response for this case fits the results obtained in
the experiment.

In the case of the second bacterium, L. casei, the p-value is
3.8·10−13 with the R squared value 0.985. The root mean squared
error is 0.188. The values are not so different from the previous
results giving almost as good performance as in the first case.

For the final case, with the co-cultures of L. plantarum and L.
casei, the p-value is 4.22·10−9 with R squared value of 0.948. The
root means squared error is 0.333. Out of the three cases, this one
presents the less agreeable performances, but still a good result.
The results obtained with regression are good for all three cases,
with mean squared error under the accepted values.

4.2 ANN Models Analysis
The performance of the developed ANN models is evaluated by
mean squared error. The first developed ANN models were with
the Levenberg-Marquardt method with six neurons on each layer.
The obtained mean squared error for the L. plantarum is 0.028,
for L. casei 0.0176, and the mixed culture of this two is 0.0418.
Increasing the number of neurons on each layer can lead to better

FIGURE 12 | 3Dmodel simulation results with the Levenberg-Marquardt
method and eight neurons for co-cultures of L. plantarum and L. casei.

TABLE 3 | Performance measures for the models created.

Performance Measures for the Models Created for L. plantarum

Method/Number of Neurons Mean Squared Error R-value p-Value
Regression 0.1900 0.97700 8.45e-12
Levenberg-Marquardt/6 0.0280 0.99150 2.82e-18
Levenberg-Marquardt/8 0.0014 0.99940 2.60e-29
Quasi-Newton/8 0.0523 0.98250 2.44e-15
Fletcher-Powell/10 0.0113 0.99552 1.30e-20

Performance measures for the models created for L. casei
Method/Number of neurons Mean squared error R-value p-value
Regression 0.2540 0.9730 3.38e-11
Levenberg-Marquardt/6 0.0176 0.9955 6.59e-21
Levenberg-Marquardt/8 0.0185 0.9957 4.26e-21
Quasi-Newton/8 0.0467 0.9878 8.21e-17
Fletcher-Powell/10 0.0441 0.9883 5.66e-17

Performance measures for the models created for co-cultures of L. plantarum and L. casei
Method/Number of neurons Mean squared error R-value p-value
Regression 0.4110 0.9210 9.42e-8
Levenberg-Marquardt/6 0.0418 0.9871 1.38e-16
Levenberg-Marquardt/8 0.0124 0.9961 1.79e-21
Quasi-Newton/8 0.0627 0.9796 1.06e-14
Fletcher-Powell/10 0.0513 0.9838 1.21e-15
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performances. That was the reason for developing models with
eight neurons. The obtained mean squared errors are for the first
case 0.0014, for the second case 0.0185, and 0.0124 for the third
case. However, a great influence on the results has the used
optimization algorithm. For example, the performance of the
models with 10 neurons with the Fletcher-Powel method is worse
than the achievements of the models created via Levenberg-
Marquardt with 8 neurons, being 0.0113, 0.0441, and 0.0513
in the considered cases instead of 0.0014, 0.0185, and 0.0124.
Using the Quasi-Newton method with 8 neurons as a training
network, the created models lead to the errors: 0.0523, 0.0467,
and 0.0627.

4.3 Comparison of Regression and Different
ANN Models
The synthesis of the considered ANN models performance
measures (Table 3), compared with the results obtained with
the regression method, highlights the superiority of the ANN
models. The best-considered model for this process (with all three
used bacterium) is obtained with the Levenberg-Marquardt
method using eight neurons.

For the first case, with L. plantarum, the best results are
obtained with the Levenberg-Marquardt method using 8
neurons. In the case of the L. casei, the model with Levenberg-
Marquardt with 6 and 8 neurons presents similar performances,
but because the best model in most cases is Levenberg-Marquardt
with 8 neurons, the decision is to use the same parameters in all
cases. As a result, the performance for the two methods differs by
an insignificant amount. The co-culture of L. plantarum and L.
casei leads to the same conclusion: the best model is obtained with
Levenberg-Marquardt with 8 neurons. The superiority of the
ANN models is proved by the 100 times smaller mean squared
error in almost every case.

4.4 Optimization Results
The optimum process conditions can be found using a standard
optimization algorithm for each developed model. For the
fermentation process with L. plantarum, the optimum value of
the final product concentration could be 10.3076 log CFU/mL,
obtained for 97.7083% concentration of WF and 19 h of
fermentation. In the case of L. casei bacteria, the optimum
value is 9.7571 log CFU/mL, with a concentration of 95.625%
WF in 21 h. The case of co-culture of these two bacteria leads to
the best results. The optimum value is 12.2755 log CFU/mL, with
97.7083% WF in 19 h. These results are of great interest for such
fermentation processes. Using co-cultures of different bacteria
can improve the process performances, as proved in this research.

5 CONCLUSION

The tests with three types of substrate compositions evaluated the
efficiency and ability of two LAB, L. plantarum ATCC 8014 and

L. casei ATCC 393, to metabolize various carbohydrates and
analyze their effectiveness in single and co-cultures for dough
fermentation. L. plantarum presented the most efficient growth
dynamics and viability, reaching a concentration above 9.61
log10 CFU/mL. Although L. casei had a prolonged growth
dynamic in the first 10 h, at 24 h, the cell concentration was
around 9.54 ± 0.11 log CFU/mL. Together, the two LAB grew in
harmony, good cell viability, and efficient growth dynamics.

Process optimization was performed by mathematical modeling.
The presented results prove the superiority of the models created
with neural networks compared to classical multiple regression
analysis. Comparing all the different training methods, the
Levenberg-Marquardt process was found to be the most
dominant and had the best performances while having a
relatively small number of neurons used to create the model. The
performance measures obtained with eight neurons for the case of L.
plantarum are: Mean squared error 0.0014, R-value 0.9994, p-value
2.6e-21. For the second case study, L. casei, the results are: Mean
squared error 0.0185, R-value 0.9957, p-value 4.26e-21. The third
case, co-cultures of L. plantarum and L. casei, leads to a mean
squared error of 0.0124, R-value 0.9961, p-value 1.79e-21. These
results far outweigh the results obtained by the regression method
with a mean squared error of 0.129 for the first case, 0.188 for the
second case, and 0.333. The obtained models can be used safely to
predict or to optimize the process. The process optimization
concluded that the best results could be obtained for the co-
culture of L. plantarum and L. casei. The optimum value, in this
case, is 12.2755 log CFU/mL, with 97.7083% WF in 19 h.
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APPENDIX

L. plantarum Time (h) Cell number (log10)

Wheat flour 100% Wheat flour 90%, Soybean
flour 10%

Wheat flour 95%, Soybean
flour 5%

Exp1 Exp2 Exp3 Exp1 Exp2 Exp3 Exp1 Exp2 Exp3

0 6.447 6.519 6.462 6.255 6.342 6.322 6.342 6.362 6.322

2 6.362 6.380 6.398 6.301 6.301 6.279 6.322 6.342 6.301

4 6.672 6.748 6.813 7.004 6.898 6.954 6.954 6.934 6.914

6 7.230 7.241 7.220 7.371 7.373 7.375 7.294 7.281 7.307

8 7.633 7.667 7.698 7.786 7.810 7.799 7.773 7.826 7.800

10 7.986 7.969 8.003 8.256 8.227 8.195 8.284 8.275 8.266

24 9.792 9.519 9.681 9.362 9.623 9.519 9.230 9.806 9.602

L.casel Time (h) Cell number (log10)
Wheat flour 100% Wheat flour 90%, Soybean

flour 10%
Wheat flour 95%, Soybean

flour 5%
Exp1 Exp2 Exp3 Exp1 Exp2 Exp3 Exp1 Exp2 Exp3

0 5.699 5.477 5.000 5.845 5.903 5.954 5.301 5.301 5.301
2 5.477 5.699 5.845 5.845 5.954 5.903 5.477 5.000 5.301
4 5.477 5.602 5.699 6.000 6.041 6.079 6.146 6.146 6.114
6 6.204 6.255 6.279 6.556 6.613 6.663 6.519 6.505 6.491
8 6.875 6.869 6.875 6.968 6.914 6.845 6.881 6.875 6.863
10 7.386 7.396 7.407 7.566 7.525 7.479 7.554 7.517 7.537
24 7.161 7.179 7.196 7.533 7.550 7.542 7.752 7.772 7.731

L. plantarum+ L. casei Time (h) Cell number (log10)
Wheat flour 100% Wheat flour 90%, Soybean

flour 10%
Wheat flour 95%, Soybean

flour 5%
Exp1 Exp2 Exp3 Exp1 Exp2 Exp3 Exp1 Exp2 Exp3

0 5.845 5.845 5.903 5.954 5.903 5.845 6.255 6.176 6.041
2 6.114 6.079 6.000 6.000 5.954 5.845 6.380 6.204 6.301
4 6.204 6.146 6.041 6.505 6.279 6.415 6.505 6.447 6.556
6 6.820 6.799 6.771 7.041 7.049 7.064 6.968 6.982 6.996
8 7.384 7.352 7.318 7.352 7.401 7.446 7.378 7.387 7.393
10 7.751 7.793 7.773 7.838 7.857 7.848 7.881 7.906 7.854
24 7.013 6.996 6.973 7.877 7.888 7.866 7.667 7.678 7.672
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