
Manipulating Oxidative Stress Following Ionizing Radiation

Adriana Haimovitz-Friedman1,*, Aviram Mizrachi2,3, Edgar A. Jaimes4

1Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, 
USA

2Department of Otorhinolaryngology Head and Neck Surgery and Center for Translational 
Research in Head and Neck Cancer, Rabin Medical Center, Petah Tikva, Israel

3Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

4Department of Medicine, Renal Service, Memorial Sloan-Kettering Cancer Center, New York, 
NY, USA

It is now well accepted that the ionizing radiation-generated reactive oxygen species (ROS), 

that constitute ~2/3 of the effects of external beam radiation, do not only produce direct 

tumor cell death, but also affect the surrounding microenvironment. Moreover, this indirect 

effect of radiation may result in systemic effects, specifically the initiation of an 

inflammatory response.

We have previously shown the existence of an endothelial-stem cell linked pathway that is 

activated by single-high-dose radiotherapy (SDRT) (>8 Gy/fraction). This endothelial-stem 

cell linkage pathway mediates normal tissue injury after SDRT of the intestines, lung and 

salivary glands [1–3], suggesting that this represents a generic response mechanism for 

mammalian tissue damage injury by large single-dose irradiation, i.e. ablative radiation 

therapy. Prior studies reported by Moeller et al. [4] provided strong evidence that bursts of 

ROS are generated by waves of hypoxia/reoxygenation that occur after each radiation 

exposure in response to conventional fractionated radiotherapy in tumors. Recently, 

Mizrachi et al. [3] demonstrated that SDRT-induced salivary glands (SG) hypofunction was 

to a large extent mediated by microvascular dysfunction involving ceramide and ROS 

generation.

ROS generation is important in the maintenance of homeostasis between pro-apoptotic and 

pro-survival signals [5–7]. However, enhanced accumulation of ROS generates chronic 

pathological conditions. While a large number of studies on oxidative stress focused on the 

mitochondria-generated ROS, Wortel et al. [8] in their recent study confirmed that the 

endothelium is one of the major sources of ROS and identified the different types of ROS 

generated by the SDRT-induced oxidative stress, both within the plasma membrane and in 

the cytosol of endothelial cells (Figure 1). Similar findings were previously reported by our 
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collaborators in the same cells in response to Fas ligand, tumor necrosis factor-α (TNF-α), 

endostatin, and homocysteine [9–15].

Ours as well as others previous studies have shown that the endothelial cells within the 

different tissues are the most sensitive cells to the effects of ionizing radiation (IR), since 

they are 20-fold enriched in secretory acid sphingomyelinase (ASMase), as compared to any 

other cell type in the body [16]. We also showed that ceramide is a sphingolipid messenger 

capable of initiating apoptotic cascades in response to various stressful stimuli, including IR 

[17,18]. IR induced alterations in the plasma membrane hydrolyzes sphingomyelin to 

generate ceramide via sphingomyelinases activation [19,20]. The sphingomyelinases are 

expressed preferentially in the vascular endothelium [21], suggesting that these mechanisms 

may be of particular relevance for vascular structure and function. Furthermore, data derived 

from acid sphingomyelinase-knock-out mice, showed that they have a radioresistant 

vasculature and are partially protected from end-organ radiation injury [2,22] emphasizing 

the biological significance of this phenomenon.

Advances in cancer diagnosis and treatment have led to increases in life expectancy, 

bringing forward the issue of long-term treatment-related morbidity and mortality in these 

patients. Numerous reports have concluded that these patients should be regarded as long-

term cancer survivors rather than as healthy individuals due to their long-term risk of 

developing treatment-related adverse events, and in particular cardiovascular events. With 

this clinical background in mind, several groups have embarked in the search for the 

mechanism(s) by which these effects are inflicted upon the cardiovascular system with 

special attention to the vascular wall and the vascular endothelium [23–26].

Radiation induces microvascular dysfunction via activation of the acid sphingomyelinase 

(ASMase)/ceramide pathway. Microvascular dysfunction is crucial for tumor response to 

radiation. ASMase activation triggers the generation of ceramide-rich platforms (CRPs), 

NADPH oxidase (NOX) activation and subsequent production of ROS, resulting in 

microvascular endothelial dysfunction (Figure 1) [27]. Elevated ROS formation in the 

vascular wall is a key feature of all cardiovascular diseases and a likely contributor to 

endothelial cell dysfunction, vascular inflammation and plaque formation. The NOX family 

of enzymes comprises seven members (NOX1–5, DUOX1–2), with each one of them 

displaying distinct patterns of expression, intracellular compartmentalization, regulation, and 

biological function. NOX-derived ROS control multiple aspects of cell physiology via 

redox-activated signaling pathways. Nevertheless, NOX over-activity, a condition that is 

typically associated with significant up-regulation of its expression, has been increasingly 

reported in a variety of cardiovascular diseases [28]. Numerous studies have demonstrated 

that expression and activity of at least two isoforms of NADPH oxidase - NOX1 and NOX2 

- is increased in animal models of hypertension, diabetes and atherosclerosis. Several studies 

in transgenic mice support the role for NOX1- and/or NOX2-containing oxidases as sources 

of excessive vascular ROS production and as triggers of endothelial cell dysfunction in 

hypertension, atherosclerosis and diabetes [29].

The apolipoprotein-E-deficient (ApoE−/−) mouse is the most widely studied animal model 

of hypercholesterolemia and atherosclerosis [30,31]. It has been reported that ApoE−/−/
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p47phox−/− double KO are protected, compared to the ApoE−/− single KO mice, from the 

development of aortic atherosclerotic lesions [32–34]. Moreover, Drummond et al. [24] 

demonstrated that ApoE−/−/NOX2−/− double KO mice were also protected from endothelial 

cell dysfunction and development of atherosclerotic lesions, suggesting that at least some of 

the protective actions of p47phox deletion were likely due to inhibition of NOX2 activity. A 

major mechanism by which NOX-derived ROS contribute to vascular disease is via 

superoxide (O2•−)-mediated inactivation of NO, resulting in loss of its vasoprotective 

actions, and the subsequent generation of the highly reactive ROS, peroxynitrite (OONO−) 

(Figure 1). Peroxynitrite is a powerful oxidant that causes irreversible damage to 

macromolecules including proteins, lipids, and DNA, thereby disrupting crucial cell 

signaling pathways and promoting cell death.

Recent studies have indicated that NOX-derived O2•− production in the extracellular 

compartment may be markedly increased during vascular disease. Atherogenic stimuli such 

as tumor necrosis factor-α (TNF-α), endostatin, cholesterol, and homocysteine increase 

endothelial cell expression of NOX1 and NOX2, cause CRP generation, resulting in NOX2 

activation in the plasma membrane (PM) [12,15,35,36]. The translocation of p47phox to the 

cytosolic face of these CRP-containing NOX2 aggregates is likely to result in ‘hot spots’ of 

activity in the endothelial cells PM. This, combined with the accumulation of macrophages 

(which normally express NOX2 oxidase in the PM) in the vessel wall, will result in 

markedly higher amounts of O2•− being generated in the extracellular space, thereby 

increasing the likelihood of NO breakdown and production of OONO−. This may explain, at 

least in part, why the majority of oxidative damage detected in atherosclerotic lesions occurs 

in the extracellular matrix space [37]. All cardiovascular pathologies have in common 

excessive NOX-dependent ROS formation associated with up-regulation of the various NOX 

subtypes. In this study, Wortel et al., [8] were able to demonstrate for the first time that IR 

induces excessive NOX activation and ROS generation. This study and other studies 

published recently by their collaborators [38], demonstrate that ROS generation is an 

indispensable mediator of SDRT-induced ischemia/reperfusion pathobiology in tumors. 

They also demonstrated the transient and immediate O2•− generation and the subsequent 

accumulation of peroxynitrite (OONO−) after SDRT, which resulted in impaired endothelial 

function.

Recently, the first class of the dual NOX1 and NOX4 pharmacological inhibitors, 

GKT137831, received the approval for phase II clinical trial for the treatment of diabetic 

nephropathy. According to a recent press release of Genkyotex, the leading pharmaceutical 

company that develops NOX inhibitors, treatment of patients with diabetic nephropathy with 

GKT137831, significantly reduced liver enzymes and markers of inflammation. Moreover, 

the beneficial effects of GKT137831 were reported in several experimental models of 

disease, including atherosclerosis, hypertension, and diabetes [39–41], emphasizing the 

major role of the endothelial dysfunction in these pathological conditions and the 

involvement of NOX-mediated ROS.

Obtaining profound knowledge on the pathogenesis of IR-induced vascular injury could help 

stratify patients who might be at risk for cardiovascular events and potentially identify 

specific biomarkers that would warrant close surveillance and indicate specific diagnostic 
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interventions. We postulate that acute IR-induced microvascular dysfunction of normal 

tissue vasculature may contribute to and increase the risk for long-term cardiovascular 

morbidity and other vascular related diseases.

Wortel’s [8] finding that sildenafil protected endothelial cells from RT-induced oxidative 

stress in the endothelial cells via reduction of NOX-mediated ROS formation and, thus 

inhibited the pro-apoptotic ASMase/ceramide pathway, is of paramount importance. The 

endothelium plays a role in the initiation of pulmonary oxidative injury induced by 

Ischemia/Reperfusion (I/R), and endothelial cells could be either a source or a target of 

oxidants. Oxidative injury to endothelium has been found to set the stage for secondary 

pulmonary injury by leukocytes [42,43].

While it is known that sildenafil affects NO levels in the blood vessels, Wortel et al., [8] 

elucidated the cellular mechanism by which sildenafil, attenuates endothelial dysfunction 

and protects against radiation-induced erectile dysfunction (ED). This study showed that 

sildenafil inhibited RT-induced NOX generation of ROS in endothelial cells and protected 

them from apoptotic death via the acid sphingomyelinase (ASMase)/ceramide pathway. 

Specifically, by inhibiting ASMase and ceramide generation, sildenafil significantly 

inhibited O2•− generation, and subsequently NO was not used to generate ONOO− [44]. 

ONOO− can disrupt crucial cell signaling pathways and initiate cell death by causing 

damage to macromolecules, including proteins, lipids, and more critically DNA [3,44]. In 

addition, to reducing the toxicity of ONOO−, sildenafil maintained the bioavailability of NO 

in the endothelial cells, and therefore preserved its vasoprotective properties. Reduced NO 

bioavailability is considered one of the main characteristics of endothelial dysfunction, 

which is also linked to erectile dysfunction [45]. In addition, since endothelial cells are a 

major target for RT-induced pneumonitis, GI syndrome, kidney damage, and xerostomia and 

because it is known that sildenafil is well tolerated, repurposing this drug should be 

considered for the treatment and prevention of RT-induced side effects, including 

cardiotoxicity for which it was initially successfully introduced.

Many cancer survivors find themselves struggling with health issues related to prior cancer 

treatment many years after they are declared cancer-free. These problems include chronic 

pain, neuropathy, infertility, recurrent infections, memory problems, sexual health issues, 

cognitive impairments and more, including increased risk of secondary malignancy. For 

many cancer survivors, these health issues last a lifetime, and some might even be life 

threatening. Mitigating treatment side effects by protecting the vasculature, in particular the 

generation of ROS, may result in a significant improvement of patient’s quality of life by 

reducing morbidity and mortality.
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Figure 1: Sildenafil effect on Irradiated Stem/Progenitor cell-linked Endothelium.
Recent studies of single dose radiotherapy (SDRT) in mouse models provided a mechanism 

linking acid sphingomyelinase (ASMase)/ceramide-mediated microvascular injury with 

normal tissues stem cell demise or with the functional progenitors of the organ. SDRT-

induced ceramide, having fusigenic properties, initiates the generation of CRPs. 

Subsequently, NOX subunits, such as gp91phox and p47phox, are aggregated, resulting in 

activated NOX via this process, and producing O2•−. O2•− may activate ASMase in a feed-

forward mechanism, enhancing CRPs clustering and forming positive amplifications of this 

process. O2•− coupling with NO generates another ROS, peroxynitrite (OONO−) but, most 

importantly depletes NO levels. Altogether, these processes constitute a redox signaling 

network or signalosome, resulting in endothelial dysfunction and impairment of 

endothelium-dependent vasodilation. Sildenafil significantly inhibited ROS production in 

general: the immediate O2•− production and the subsequent OONO− generation, in 

endothelial cells, by stopping the feed-forward activation of ASMase, ceramide generation, 

and NOX activation and thus reduced endothelium injury and normal tissue toxicity. In the 

case of RT-induced gastrointestinal syndrome, the crypt stem cells use the homologous 

recombination repair (HRR) of DNA to recover. SDRT-induces transient Ischemia/

Reperfusion and thus inhibiting HRR, resulting in GI toxicity. Similarly, in other organs the 

damage to the vasculature results in normal tissue dysfunction.
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ASMase: Acid Sphingomyelinase; BAECs: Bovine Aortic Endothelial Cells; CRPs: 

Ceramide-Rich Platforms; NOX: NADPH Oxidase; HRR: Homologous Recombination 

Repair
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