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Abstract: There is considerable interest in the noncontact monitoring of patients as it allows for
reduced restriction of patients, the avoidance of single-use consumables and less patient—clinician
contact and hence the reduction of the spread of disease. A technology that has come to the fore
for noncontact respiratory monitoring is that based on depth sensing camera systems. This has
great potential for the monitoring of a range of respiratory information including the provision of
a respiratory waveform, the calculation of respiratory rate and tidal volume (and hence minute
volume). Respiratory patterns and apneas can also be observed in the signal. Here we review the
ability of this method to provide accurate and clinically useful respiratory information.

Keywords: noncontact monitoring; depth-sensing camera; respiratory monitoring; respiratory rate;
tidal volume; respiratory patterns; pandemic monitoring

1. Introduction

The measurement of respiratory physiological parameters is ubiquitous in the hospital
setting. Of these, respiratory rate (RR) is the most often measured and recorded, and forms
an essential component of many early warning clinical scoring systems such as MEWS,
NEWS, etc. [1]. Changes in RR are often one of the earliest and more important indica-
tors that precedes major complications such as respiratory tract infections, respiratory
depression associated with opioid consumption, anaesthesia and/or sedation, as well as
respiratory failure [2-4]. A wide range of methods have been proposed for the determina-
tion of respiratory rate using noncontact means including RGB video camera systems [5,6],
infrared camera systems [7], laser vibrometry [8], piezoelectric bed sensors [9], Doppler
radar [10], thermal imaging [11], acoustic sensors [12], and radio frequency methods (radar
and WiFi) [13]. Tidal volume (TV) is less often measured at the bedside, as it requires a
measurement of airflow from the patient’s mouth which necessitates a sealed mask or
intubation. However, along with its counterparts of RR, SpO2 and PaCO;, it is recognised
as a critical parameter in understanding pathophysiologic patterns of death which evolve
due to sepsis, congestive heart failure, pulmonary embolism, hypoventilation, narcotic
overdose, and sleep apnea [14].

Depth cameras have proved adept at capturing the motion associated with respiration.
From the resulting respiratory volume (RV) signal, measures of both respiratory rate and
tidal volume can be made. This has prompted an interest in the use of such cameras
for providing these physiological parameters. Moreover, the combination of RR and TV,
combined within a noncontact modality, could provide a valuable monitoring tool during
viral pandemics, including novel coronavirus (COVID-19) patients as well as those with
other viral respiratory tract diseases where minimum contact with the patient is desired [15].
It has been emphasised by Massarroni et al. [16] that respiratory rate can be poorly recorded
despite its relevance in the context of COVID-19.
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This review of the literature considers the implementation of depth cameras in the
noncontact physiological monitoring of respiratory information. The technology has great
potential for the noncontact monitoring of a range of respiratory and contextual patient pa-
rameters, including respiratory rate, tidal volume and minute volume trending, respiratory
pattern identification, apnea detection, motion activity, presence in bed, etc. In addition,
noncontact monitoring allows for reduced restriction of patients, the avoidance of single-
use consumables and the reduction of the spread of disease. Here, the performance of
depth-sensing systems in the measurement of respiratory parameters is reviewed in detail.

This review was conducted by manual inspection of a Google Scholar search including
various combinations of the terms: ‘respiratory’; ‘tidal volume’; ‘depth sensing’; ‘camera’;
‘monitoring’, etc. These were reviewed manually and those that corresponded to the aim
of the literature review were selected for inclusion.

2. Deriving Respiratory Information Using a Depth Camera

A depth camera measures the distance to the surface of all objects within its field of
view (FOV) and outputs a single matrix of distances (or depths) for each image frame. This
is in contrast to an RGB image, used for photographs and video feeds, which comprises
three matrices encoding colours in the scene: red, green and blue (RGB). As an example of
the difference between these two modalities, Figure 1 shows the RGB and depth images
taken of the same scene of a subject lying supine under covers. To view the final depth
information, we are required to convert the depth values to a false colour image. Here,
a blue scale was used with the darker blue representing surfaces nearer to the camera.

Figure 1. An RGB image of a subject under a sheet (left) and its corresponding depth image (right).
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Depth camera systems may be based on one of stereoscopic, structured light or
time-of-flight principles. Stereoscopic depth cameras resolve depth through two slightly
different perspective views of the same scene. This method is similar to the manner in
which frontal vision animals perceive depth. Algorithmically, depth is constructed from
the two views by calculating the disparities between features or key points in the scene.
Depth cameras operating on the time-of-flight principle, measure distance to points in the
scene by measuring the time it takes for a signal emitted from the camera to return due to
reflection. The scene is thus actively illuminated by the camera’s emitter (usually an IR
laser) and recovers the distance information either through a direct (i.e., half the return
time) or indirect (i.e., phase recovery of a modulated emitter signal) method. Structured
light and the related coded light-based cameras project a (usually IR) pattern onto a scene.
The pattern, a series of stripes for example, is known and depth is obtained by analysing
the deformation caused by the scene and perceived by the camera.

When directed at a patient’s chest region, the changes in distances to the chest as the
patient breathes can be used to calculate a respiratory volume signal (RV signal). This is
achieved by integrating the depth changes across a ROI defined on the patient’s chest. This
summing up of the distances across the area of the region of interest produces a volume
change between each frame of the depth image. This volume change may then be used to
produce a volume signal over time: the RV signal. A schematic of an RV signal derived in
this way is shown in Figure 2a. The ROl may be selected by the camera user by defining
a simple rectangular region on the scene which includes some, or all, of the chest region.
In some cases, the whole scene in the field of view may be used as the ROI and in other
cases a bespoke, nonrectangular ROI which better fits the area of interest may be used.
(Examples of various ROIs are provided in the next paragraph.) A number of physiological
parameters can be determined from this respiratory volume signal including the tidal
volume and respiratory rate. An estimate of TV may be determined from the difference in
volume between the peak and the trough of the RV signal, and the RR is calculated from
the number of RV signal modulations (breaths) occurring within a window of period T.
These measurements are depicted schematically in Figure 2a. An example of a respiratory
volume signal from a healthy volunteer is shown in Figure 2b. This was acquired from
a healthy adult subject lying supine and breathing at a rate of around 10-12 breaths per
minute. Figure 3 contains an example of respiratory rate and tidal volume measurements
calculated from the respiratory volume signal taken from a healthy volunteer using a Kinect
depth camera. Figure 3a shows the respiratory volume signal obtained as the volunteer
undertook various respiratory volume changes over time. The peaks and troughs of the
individual breaths are marked by triangles in the plot. Figure 3b shows the instantaneous
respiratory rate (per breath) and its equivalent smoothed rate to mimic the smoothing
of the reference signal taken from a ventilator. In this way we could match the filtering
characteristics of the respiratory rate reported by the ventilator. Figure 3c shows the
tidal volume calculated from the respiratory volume signal compared to the tidal volume
measured by the ventilator.
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Figure 2. (a) Depth camera system schematic illustrating the field of view (FOV) and region of interest (ROI) and the
processing of the ROI information to produce the respiratory volume (RV) signal. T is the length of a time window used in
the calculation of respiratory rate. (b) Respiratory volume signal acquired from a heathy volunteer using a Kinect™ V2
depth camera (Microsoft, Redmond, WA, USA). Triangles indicate the peaks and troughs of the signal modulations.
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Figure 3. An example of respiratory rate and tidal volume derived from a depth sensing system. (a) The volume signal

obtained from a depth sensing camera. The signal was generated by the subject varying his tidal volume over time. (b) The

raw and filtered respiratory rate from a depth system compared to a ventilator reference. (c) The tidal volume computed

from the respiratory volume signal (peak to trough in (a)) compared to a ventilator reference.

Respiratory patterns can be observed in the RV signal, including reductions in tidal
volume and apneic events. Figure 4 contains some illustrative examples of respiratory
patterns evident in the respiratory volume signal together with the various ROIs used
to generate them. Figure 4a shows the respiratory pattern generated during the same
experimental set up as Figure 2a. A healthy subject lay supine on the floor and breathed at
varying tidal volumes over a cyclical pattern. The figure also contains the depth image of
the subject with the ROI used to capture the data indicated. We can see that the ROl in this
case was fitted to the chest and abdominal region. Figure 4b shows the respiratory pattern
obtained during a breathe-down study conducted as part of a pulse oximetry trial [17].
In this study, volunteers were fitted with a face mask in order to adjust their FiO, levels
using a mixture of nitrogen and oxygen to induce desaturation. The Cheynes—Stokes-like
respiratory pattern shown in Figure 4b was exhibited by one of the subjects during an
induced hypoxic episode within the study. In this case, the ROI was confined to a small
rectangular region within the chest of the subject. Figure 4c contains one of a sequence
of cyclical apnea events generated by a healthy volunteer. This was done to simulate the
repetitive reductions in airflow signals observed in sleep apnea patients. The periodic
absence of respiratory activity is apparent in the respiratory volume signal shown. Note
that the whole field of view was used as the ROI in order to generate this RV signal.
It should be noted that the quality, and quantity (), of the RV signal depends on the choice
of ROI. A wide ROI may take in background motions and cause noise on the RV signal.
A smaller RO, e.g., a subchest region, may be relatively noise free but not adequately
represent the full tidal volume. An optimal method may be to detect the whole chest region
through, for example, a flood fill or other automated method. This may appeal in theory,
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but these methods must accurately track the ROI and if not, can cause their own issues
resulting in the degradation of RV signal quality. Clothing and/or bed sheets and blankets
may also cause the derived tidal volumes to not match actual tidal volumes. However, the
signals derived will scale with tidal volume and thus provide accurate respiratory rate
determination and the display of respiratory patterns. In addition, movement of the subject
can cause large scale volume changes and should be dealt with in the post-processing
phase of physiological parameter determination. Motion artefact is, of course, something
that most physiological monitoring, contact and noncontact, must deal with [18].
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Figure 4. Examples of respiratory patterns in the RV signal from three separate studies. (a) Respiratory patterns generated by

deliberately varying tidal volume cyclically. The ROl is fitted to the chest region using a flood fill technique. (b) Respiratory

patterns manifest in a signal collected during a breathe-down study. The ROl is a rectangular subset of the chest. (Reprinted

from [17].) (c) A simulated apnea signal. The ROl is the whole image.

3. Respiratory Rate

Depth-sensing respiratory rate studies fall into two reasonably distinct categories:
(1) benchtop or laboratory studies and (2) clinical healthy volunteer and patient studies.
These are discussed in turn as follow:

3.1. Respiratory Rate Benchtop/Lab Studies

These studies usually comprise ad hoc investigations conducted with the purpose
of understanding key fundamental aspects of the technology or providing limited proof
of principle. They usually involve a limited number of volunteers (often just a single
volunteer) and limited recording and/or analysis.

An early study by Benetazzo et al. [19] involved five healthy volunteers who took
part in various experiments. These included preliminary tests to choose the best sampling
frequency, validation tests and finally robustness tests to evaluate the performance of the
algorithm in different operating conditions (i.e., orientation of the person, lighting condition
and type of clothing). All operating conditions produced high Pearson correlations (with a
minimum correlation of 0.93 obtained at low lighting conditions) between breaths recorded
over a minute using a spirometer and their depth system; thus, it was concluded that
such a system could be used for measuring human respiratory rate. Another study by
Dang et al. [20] utilised a Prime Sense camera (PS1080) to obtain depth information. In
this investigation, six subjects were monitored while lying on a bed. The value obtained
for respiratory rate from the depth camera was compared to that from visual counting.
The volunteers breathed for periods of 1 and 3 min, and at rates ranging from 14 to
25 breaths/min. Although no rigorous statistical analysis was performed in this limited
study, the differences found between the depth camera and the reference RR were all within
1 breath/min. In a single subject study, Prochazka et al. [21] investigated the measurement
of respiration rate using depth, RGB camera and IR cameras. A limited number of tests
were conducted over deep and shallow breathing and at different respiratory rates. The
depth RR was compared to RRs from RGB and IR images and all found to be within a
0.26% error. (Note that, for reasons not stated, the authors did not compare the depth RR
to a reference—they only compared the IR RR to the Garmin RR.) A real time respiratory
monitoring study of 41 clips from nine subjects by Lin et al. [22] utilised a depth camera
with the capability of automatically locating the individual and corresponding region of
interest (ROI) and then calculating RR. Good results were achieved with a correlation
coefficient for RR of 0.98 and RMSE of 0.82 breaths/min when compared to a reference
(which is not specified by the authors). It is interesting to note that the technology described
by the authors also had the ability to detect multiple ROISs, from a single person or more
than one person at a time. Mateu-Mateus et al. [23] studied 20 healthy subjects in a car
driving simulator. The RR was referenced against a Respiband Biosignals PLUX thorax
plethysmography system. They obtained a global sensitivity of 77.21% and global PPV
(positive predictive value) of 80.69%. (Note that this group did not measure RR per se,
rather the frequencies associated with individual breaths found within the RV signal which
is more variable in nature than longer term averages.) In a small animal study, Rezaei
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et al. [24] investigated the respiratory rate of restrained rodents when subjected to fear-
inducing predatory odours. They found they could measure respiratory rate with an
accuracy of 94.8% using a reference RR from visual observation. A preliminary part of the
study involved testing a human over different distances where 0.9 m was found to achieve
the highest accuracy (=100%) for RR. Although, not a human study per se, it illustrates the
small scales at which such technologies can be utilised.

Taken as a whole, these benchtop studies highlight the potential for respiratory rate
monitoring using depth sensing equipment.

3.2. Respiratory Rate Clinical Healthy Volunteer and Patient Studies

These studies typically include larger scale, more rigorous examinations of the tech-
nology within a clinical setting: often they involve IRB approval and comprise a large
number of subjects.

Two related experiments were conducted by Yu et al. [25,26] to determine the accuracy
of monitoring respiratory rate during sleep using a depth sensing camera. The effects of
motion and sleep position were also considered. The first experiment involved eight healthy
participants and consisted of each subject changing sleeping position every 15 breathing
cycles in order to determine how body position affects the accuracy of a depth camera
in calculating RR. The average accuracy for sheet/no sheet and supine/side position
scenarios was found to be 86.3% when compared to reference RIP (respiratory inductance
plethysmography) bands (where accuracy was defined as the ratio of the total breathing
cycles detected by the depth system and those detected by the RIP bands). In the second
part of the work, a single participant was monitored in a series of overnight sleep studies,
resulting in a total of 42 h of sleep data over a 10-day period. (Five days using a light
blanket and 5 days without a blanket.) An average RR accuracy of 92% was achieved in this
sleep study. (Note that the authors also found the average accuracy for detecting the head
and torso in the depth video to be between 98.4% and 96.4%, respectively.) Martinez and
Stiefelhagen [27] assessed 67 healthy patients in a sleep lab study where 3239 segments of
data were collected, each 30 s long. They studied various features such as blanket thickness,
various sizes of pillows, presence of books, newspaper and magazines, etc. They achieved
an accuracy of 88.7% for RR with reference to a thermistor placed under the nose (where
accuracy was specified as being within 1 breath/min from the reference). In addition, they
detected a reduction in performance of the system during episodes of apnea. The dynamic
region of interest was aligned to the bed and centred on the chest area.

A study involving healthy adult patients was performed by Seppanen et al. [28]. They
measured the respiratory function of eight volunteer subjects, including respiratory rate.
The subjects were instructed to follow a variety of breathing patterns while being monitored.
They selected 2.5 cm wide bands as the ROIs for the depth camera in order to mimic
chest/abdomen bands used in sleep studies. They compared their results to a spirometer
RR and found very small absolute errors of between 0.26% and 0.30%. Bernacchia et al. [29]
assessed 10 healthy young adult subjects and found good agreement between the breath
periods derived from a Kinect depth sensing system and a spirometer reference. They
achieved a 9.7% RMSD for the breath periods between the two devices. During the
tests, which lasted only 40 s per acquisition, the subjects were asked to maintain ‘regular
respiratory activity’. (Note that this study considered only individual breath periods and
not respiratory rate per se, and less difference would have been obtained if they had taken
the mean period as the following group did.) A one-person proof-of-principle study by
Centonze et al. [30] used a Kinect to continuously monitor a single patient for 8 h and
calculated RR with reference to a polysomnographic record. The average error in frequency
was calculated to be 0.87%. This study achieved great accuracy for RR during regular
breathing frequency, however, the authors stated that when the breathing behaviour is not
regular, a dominant frequency is difficult to identify in the power spectrum.

A 14-person protocolised breath-down lab study by our own group at Medtronic [17]
measured continuous RR during an acute hypoxic challenge using a Kinect V2 depth
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camera. The hypoxic challenge consisted of oxygen saturation reduction steps, down from
100% to 70% which elicited a wide range of respiratory rates. A capnograph was used to
provide a reference RR. A bias and RMSD of 0.04 and 0.66 breaths/min, respectively, were
found. In addition, there was a high correlation between the depth camera and the reference
RR (R =0.99). Clear respiratory patterns induced by the hypoxic challenge protocol were
also exhibited in a number of the signals (as shown in the example of Figure 4b).

A number of research groups have concentrated on younger, nonadult populations.
Monitoring the respiratory rates of three preterm infants was the focus of a study by Cenci
et al. [31] where each infant was assessed in five 30 s intervals. This group reported the
mean breath period, rather than RR, but found excellent agreement with the reference
derived from ECG impedance pneumography. An overall correlation coefficient of R = 0.95
was found. A study of two children in the PICU (4 months and 1 year old) by Rehouma
et al. [32] demonstrated the ability of depth cameras to accurately calculate RR in this
patient population. The patients were ventilated, and the ventilator RR was used as the
reference over five 1-min data acquisition periods. RMSDs of 0.77 and 0.68 breaths/min
were obtained for the two patients. (Note that the authors also completed a preliminary
side study on a mannequin which resulted in an RMSD of 0.53 breaths/min.) In another
study concerning younger patients, Al-Naji et al. [33] studied five children, aged between 1
and 5 years old, and found excellent agreement between depth-sensing RR and a piezo-belt
reference. Correlation coefficients ranging from 0.97 to 0.99 were found depending on
background lighting levels and whether bed sheets were used. Bland-Altman analysis
was undertaken with limits of agreement ranging from [—0.91 to +1.0] to [—1.3 to 2.3]
breaths/min for scenarios with and without blankets. Apnea events were also included in
the protocol.

Taken as a whole body of evidence, the clinical studies involving both healthy volun-
teers and patients described in this section clearly highlight the potential for respiratory
rate monitoring using depth sensing equipment.

4. Respiratory Volume Analysis

Many researchers have focused their attention on the characteristics of the respiratory
volume signal, often determining its correlation with a refence signal from a spirometer or
ventilator. The RV signal is the signal obtained by integrating the depth changes across
the patient ROI (usually on the chest as described in Section 2 and Figure 1). However, the
measurement of characteristic volumes, e.g., tidal volume (peak-to-trough breath measure-
ment in spontaneous breathing) or forced vital capacity (FVC) from the RV signal and its
comparison with a reference is less common. This section deals with both characteristic
volumes and the RV signal in turn.

4.1. Tidal Volume and Other Characteristic Volumes

A few groups have compared the volume calculated from the depth signal against a
known patient volume measurement. These are dealt with here. An early study by Aoki
et al. [34] involved four healthy volunteers in a sitting position who were instructed to
vary their respiratory flow over 180 s measurement epochs while being monitored by a
Kinect depth camera. Correlation coefficients of 0.99 were obtained for all four subjects
for tidal volume relative to a flow reference obtained using an expiration gas analyser.
Although no statistical measures of error were provided in their paper, the per-subject scatter
and corresponding Bland—-Altman plots with limits of agreement drawn on are provided.
Oh et al. [35] studied 10 healthy adult volunteers, comparing their results against a ventilator
reference. They obtained a correlation coefficient and mean tidal volume error of 0.98 and
8.1%, respectively, when they combined both spatial and temporal information within their
method. At a much smaller scale, Rehouma et al. [32] investigated the tidal volume of two
neonatal patients where they obtained a mean RMSD of 5.9 mL between their depth-based
method and the ventilator reference. A study of other pertinent respiratory volumes from
the RV signal has been conducted by Soleimani et al. [36] who measured lung volume
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changes in 40 COPD patients using a Kinect V2 camera. For each patient at least three
forced vital capacities (FVCs) and three slow vital capacities (SVCs) were recorded using
a depth camera. These values were validated against those obtained using a spirometer.
Correlation coefficients of 0.999 were found for both SVC and FVC. The mean/standard
deviation of the differences was calculated to be 0.029/0.049 and 0.009/0.039 litres for SVC
and FVC, respectively. A more recent paper by Soleimani et al. [37] extends this method
further and performs full-body plethysmography for pulmonary function testing using two
Kinect depth cameras. In another investigation by the same group, Sharp et al. [38] studied
100 patients from a general respiratory physiology laboratory with a variety of lung issues.
They investigated the determination of critical lung capacities using a Kinect-based depth
system. They found that their method tracked estimated forced vital capacity (FVC) and
vital capacity to within £ <1% but forced expiration volume did not demonstrate acceptable
limits of agreement, with 61.9% of readings showing more than 150 mL difference.

4.2. Respiratory Volume Signal Analysis

Many other authors have only considered the respiratory volume signal against a
reference without calculating tidal volume, or any other characteristic volume from it. For
example, Transue et al. [39] investigated the measurement of respiratory volume from a
Kinect V2-based depth camera system by employing a Bayesian-based neural network
gaining high accuracies when compared to a reference spirometer for this four volunteer
proof of principle study. A real time respiratory motion monitoring study, involving
10 healthy volunteers by Wijenayake et al. [40] utilised a depth camera and principal
component analysis (PCA). The first 100 depth frames from each subject were used in a
PCA respiratory model where temporal and spatial noise of the input data was removed.
The RV signal was calculated to have a correlation of 0.97 when compared to a spirometer.
A laser line scanner was used as truth for depth measurements. On average there was a
0.53 mm error for depth measurements. In a small study, by Lim et al. [41] with a single
volunteer, the respiratory volume signal was measured using a depth camera and validated
against a respiratory belt. The correlation coefficient was determined to be 0.74 for non-
normalised and 0.96 for normalised signals. A further one-person study investigating the
RV signal by Nguyen et al. [42] consisted of an automated system to monitor RV during
a 30-min sleep study, by applying depth camera technology. The method applied neural
networks to establish a relationship between the RV measured from the depth camera
and a spirometer. The mean error in volume measurement between the reference and the
depth camera was calculated to be 0.02 litres and the max error 0.05 litres. This study
was another example of a proof of principle with limited results and statistical analysis.
Kempfle et al. [43] assessed seven healthy volunteers, in a study investigating parameters
that influence the ability of the depth camera to measure the RV signal. The parameters
included distance from the depth camera, area of the torso being measured by the depth
camera and the sampling rate. Data was recorded for two breathing rates (0.17 and 0.25 Hz)
for 1 and 2 min, respectively. The experiment was repeated at different distance markers
from 1 to 4 m. The optimal region of the torso was found to be the chest, with a larger
selected area of the chest performing better than a smaller selection. The respiration signal
to noise became ‘debilitating” as the distance to the person approached 4 m. In addition,
they found that, as the sampling rate decreased, there was more time for processing but a
negative influence on the signal to noise ratio.

Other studies include those by Harte et al. [44] who studied respiratory volume in
groups of healthy and cystic fibrosis patients; Samir et al. [45] who compared respiratory
volume measurement using both a Kinect V1 and Kinect V2; Ostadabbas et al. [46] who
investigated respiratory volume and airway resistance in a study of the correlation of FEV1
derived from a spirometer and depth sensing system; Ernst et al. [47] who completed a
study on respiratory motion tracking with a depth camera; Yang et al. [48] who included
sleep patients in a study of sleep event detection and respiratory volume; Shan et al. [49]
who also investigated respiratory volume signals in the context of stress classification;
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Kempfle and Van Laerhoven [50] who propose modelling chest elevation to robustly moni-
tor a user’s respiration, whenever users are sitting or standing or the view is occasionally
blocked; some smaller scale proof of principle studies by Yu et al. [51], Prochazka et al. [52],
and Aoki et al. [53].

4.3. Patterns and Apneas in Respiratory Volume Signals

The manifestation of respiratory patterns in the RV signal was demonstrated earlier
in Section 2 and the examples of Figure 4 using signals collected by the authors’ group.
There are many examples of patterns emerging in the waveform in the literature. For
example, Wang et al. [54] studied the detection of unexpected respiratory patterns in adults
for the prognosis, diagnosis, and screening for the patients infected with COVID-19 (the
novel coronavirus) based on breathing characteristics. They identified a variety of patterns
including Eupnea, Bradypnea, Tachypnea, Biots, Cheynes—Stokes breathing, and Central
Apnea using a variety of deep learning approaches. They found that a bidirectional gated
recurrent unit with bidirectional and attention mechanisms (BI-AT-GRU) model performed
best, attaining a 94.5% classification accuracy. They extended this work to include results
from various ROIs and window lengths. More details of their work can be found in
Wang et al. [55]. Delimayanti et al. [56] investigated the clustering and classification of
breathing patterns using a support vector machine. Three patterns were tested from four
volunteers: deep and fast breathing, reading aloud and relaxed breathing. They found that
a support vector machine provided the most efficient classifier with the highest accuracy
for all subjects of over 99%. Niérat et al. [57] found that structured light patterns (SLPs)
enabled the detection of different breathing patterns in COPD patients compared with
subjects with no respiratory disease. In other work, the ability of a classifier (trained on
data from commercially available depth camera systems) to detect sleep apnea events has
been reported by Schitz et al. [58]. They obtained 100% accuracy in identifying apneas
when compared to a sleep expert as reference in a data set comprising 57 whole night
polysomnographic records. In another study of the detection of respiratory events in sleep
patients, Yang et al. [59] combined both depth sensing and audio inputs to a classifier. They
found 0.4% error rates for identifying the classes (1) central apnea, (2) obstructive/mixed
apnea, (3) hypopnea, and (4) other events, using a support vector machine.

5. Concluding Remarks

An extensive review of the literature was conducted with a specific focus on the
determination of respiratory parameters using depth sensing camera methods. The review
began by introducing the concepts involved in deriving information using depth sensing
cameras, before explaining its use in monitoring respiratory information. This was followed
by key sections on respiratory rate and respiratory volume analysis.

Depth-based RR and TV were found to be generally accurate in all studies reviewed.
However, note that most TV studies involved an experimental set up with a clear view of
the chest region which was orthogonal to the line of site. In practice the patient may be in
a range of postures and/or under blankets. In such cases RR will still perform with high
absolute accuracy (i.e., absolute RR will correspond well with the true value) whereas TV
may only be able to trend accurately with true tidal volume (i.e., high correlation between
the depth-sensing TV and a reference but not a 1:1 correspondence). However, TV trending
could prove very useful for monitoring respiratory patterns and following reduction in
volumes over time associated with respiratory compromise [60]—an area where there is a
clear need for improved monitoring according to the study by Willens et al. [61]. Another
important aspect of the technology is that clear patterns, including apneic events, may be
discerned from the RV signal. (These are, in fact, localised trends in tidal volume over short
periods of time.)

Depth sensing respiratory monitoring technologies may provide a useful adjunct to
traditional camera systems which are becoming more prevalent for remote patient moni-
toring prompted, in part, by the COVID-19 pandemic [62]. Respiratory rate is a ubiquitous
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physiological parameter in clinical practice with wide ranging utilisation across a range of
areas of care and disease states, both inside and outside the hospital environment [63]. Tidal
volume is constrained in its use to much more specific use cases as it generally required
more obtrusive equipment such as face masks or endotracheal tubes to monitor. However,
a simple method for determining tidal volume (or even tidal volume trending) and respira-
tory patterns, via depth sensing technologies may accelerate the use of this parameter in
the wider patient population. It is recommended that further rigorous studies with large
subject numbers should be conducted. These should be targeted at areas of care where this
technology may prove particularly useful, including the general care floor (GCF), where a
significant number of patients may suffer from respiratory issues stemming from a variety
of aetiologies which may manifest in cyclical respiratory patterns, tachypnea or bradypnea,
or reductions in tidal volume including apneas; the recovery room, where monitoring of
the deeply sedated patient could be automated; the sleep clinic where cyclical respiratory
patterns including hypopnea and apnea are of interest; the neonatal intensive care unit
where minimising the attachment of probes to delicate skin is important, as is the accurate
monitoring of the number and severity of apneic events might aid in the better provision of
therapeutic interventions. The technology may also prove useful for out-of-hospital appli-
cations including home sleep monitoring, home respiratory monitoring or early discharge
to home monitoring.
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