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In transcriptomics, differentially expressed genes (DEGs) provide fine-grained phenotypic resolution for
comparisons between groups and insights into molecular mechanisms underlying the pathogenesis of
complex diseases or phenotypes. The robust detection of DEGs from large datasets is well-established.
However, owing to various limitations (e.g., the low availability of samples for some diseases or limited
research funding), small sample size is frequently used in experiments. Therefore, methods to screen reli-
able and stable features are urgently needed for analyses with limited sample size. In this study, MSPJ, a
new machine learning approach for identifying DEGs was proposed to mitigate the reduced power and
improve the stability of DEG identification in small gene expression datasets. This ensemble learning-
based method consists of three algorithms: an improved multiple random sampling with meta-analysis,
SVM-RFE (support vector machines-recursive feature elimination), and permutation test. MSPJ was com-
pared with ten classical methods by 94 simulated datasets and large-scale benchmarking with 165 real
datasets. The results showed that, among these methods MSPJ had the best performance in most small
gene expression datasets, especially those with sample size below 30. In summary, the MSPJ method
enables effective feature selection for robust DEG identification in small transcriptome datasets and is
expected to expand research on the molecular mechanisms underlying complex diseases or phenotypes.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction fields, such as ecology, evolution and population genetics [4–6].
Transcriptomics technology has become ubiquitous in systems
biology, and identifying the differentially expressed genes (DEGs)
is a critical step in analyses of these high-throughput data. Analy-
ses of DEGs provide key insights into the mechanisms underlying
diseases and a basis for the discovery of diagnostic biomarkers
[1–3]. Meanwhile, the DEG analysis was applied to several various
However, identifying DEGs from high-dimensional datasets is a
challenging task. In the context of transcriptomic data analyses,
many candidate biomarkers are unstable and yield false positive
results in clinical applications [7]. The instability of derived
biomarkers has many explanations, of which a core reason may
be that the sample size of datasets is insufficient [8,9]. Large-
scale datasets are considered to have significant statistical power
for DEG identification [10,11], whereas small sample size poses
significant challenges for datasets analysis, including the ‘‘curse
of dimensionality” and the overfitting of training datasets [12].
Unfortunately, large sample size is not typically feasible in broad
laboratory biological experiments owing to the scarcity of speci-
mens or the prohibitive costs of datasets preparation.

To mitigate the reduced power and improve the stability of
biomarkers in gene expression datasets with small sample sizes,
many methods for DEG identification have been proposed (such
as, based on noise distribution [13,14] and optimized machine
learning algorithms and prediction models [15,16]). Apart from
strategies to improve statistical robustness in studies with small
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sample sizes, multiple random sampling is recognized as a good
strategy, in which samples are randomly extracted with replace-
ment from the original dataset to construct independent sub-
datasets [17]. The use of multiple sub-datasets can effectively
adjust the skewed distributions of errors caused by a small sample
size. This method of combining multiple datasets can simulate
large-scale datasets and provide sufficient statistical power [18].
To improve the consistency of biomarkers derived from multiple
datasets, several popular feature selection methods (such as meta-
analysis, permutation test and SVM-RFE) were usually used in bio-
medicine filed [19–21]. Meta-analysis is a statistical technique for
aggregating the results of various independent but related studies
to identify DEGs [19,22–24]. SVM-RFE is a method for feature
selection by iteratively training an SVM classifier with the current
set of features and removing the least important feature indicated
by the SVM [25]. In cases with very small sample sizes, multiple
sub-datasets are generated by random sampling, and the
permutation-derived test statistics for each gene in sub-datasets
are combined to determine DEGs [26,27].

In this study, an improved ensemble learning-based method,
MSPJ (the Joint method of Meta-analysis, SVM-RFE, and Permuta-
tion test) was proposed to discover DEGs adapting to transcrip-
tome dataset with small sample size, so that improve the
reproduction of DEGs by integrating results from multiple sub-
datasets. With the aim of exploring stable molecular signatures
by utilizing small samples to reconstruct large datasets and sub-
datasets. MSPJ is expected to provide opportunities to identify reli-
able, stable biomarkers, irrespective of sample size, in a cost-
effective manner.
2. Materials and methods

2.1. Multiple random sampling procedure

Resampling, a simple but powerful statistical technique, is used
to obtain multiple subsets of data by random sampling with
replacement. In this study, a multiple random sampling strategy
was used to draw a sample from the original dataset without
replacement to create subsets. Each subset had independent sam-
ples, and sizes were not identical. The random sampling method
was as follows:

Original dataset: xE1; xE2; xE3; � � � ; xEM ; xC1; xC2; xC3; � � � ; xCNf };
Sample size: S ¼ M þ N
Take e from xE1; xE2; xE3; � � � ; xEf } and c from xC1; xC2; xC3; � � � ; xCf }
where M > e > 3 & N > c > 3
Sampling K times,
Subset: ye1; ye2; ye3; � � � ; yem; yc1; yc2; yc3; � � � ; yenf g;
Sample size:.s ¼ mþ n
Where xE and xC represent the E-th sample of experimental

group and C-th sample of the control group in the original dataset
individually. S stands for the original sample size, while M and N
represent original sample size of the experimental and control
group, respectively. Similarly, ye and yc represent the e-th sample
of the experimental group and c-th sample of the control group
in the sub-datasets. K denotes the number of random sampling
sets. s represents the subset sample size, m represents the experi-
mental group of subset sample size, n represents the control group
of subset sample size.

2.2. Application of the MSPJ approach to detect differentially expressed
genes

To identify stable candidate biomarkers, the MSPJ method was
built by integrating three algorithms (meta-analysis, SVM-RFE,
3784
and permutation test) for DEG detection. Using this joint method,
shared DEGs estimated by the three algorithms were defined as
robust biomarkers. An overview of the whole process of MSPJ is
provided in Fig. 1. MSPJ procedure contains two steps. Firstly, three
sets of DEGs were identified by three methods (meta-analysis
based on multiple subsets, SVM-RFE based on nested 5-fold
cross-validation, and permutation test in original dataset) individ-
ually. Secondly, the overlap of DEGs from three methods was
obtained, and the share DEGs in overlapping area were considered
as the robust potential biomarkers.

2.2.1. Meta-analysis for gene selection
Themeta-analysis strategy was used in the MSPJ method for the

initial screening of DEGs by combining the results from multiple
sub-datasets [28]. For continuous outcomes according to the fol-
lowing formula:

1) The standard deviation was computed for gene i in every sub-
datasets:

SDk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ne � 1ð Þ � sd2

e þ nc � 1ð Þ � sd2
c

ne þ nc � 2ð Þ ; k ¼ 1; 2; 3; � � � ; N;
s

2) The standardized mean differences (SMDs) were calculated
in experimental and control groups of sub-datasets:

SMDk ¼ MEk
�

�MCk

�

SDk
;

3) The weight vectors xk ¼ neþnc
NeþNc

;
4) The combining effect sizes were calculated:

SMDi ¼
PN

k¼1SMDk �xk

Where ne and nc are number of observations in experimental
and control groups, and the sde and sdc represent the standard
deviation in experimental and control groups. The k is the N-th
sub-datasets, N is the number of sub-datasets, x is the weight vec-

tors. AndMEi

�
and MCi

�
denote the mean values in the two groups. A

gene was considered up-regulated when SMD > 0.5 with 95% con-
fidence interval did not cross the null hypothesis. In contrast, a
gene was defined as a down-regulated gene if SMD < 0.5 with
95% confidence intervals did not exhibit an invalid line cross.

2.2.2. SVM-RFE algorithm for gene ranking
As one of the most widely used backward elimination algo-

rithms, SVM-RFE works by iteratively removing the ‘‘worst” gene
until the predefined size of the final gene subset is reached [29].
The feature ranking score as the ranking criterion was calculated
by the coefficients of the weight vector in each dataset according
to the following computing steps:

Inputs:

Training dataset Xi;Yif gNi¼1
Output:
Feature ranked list R.

Initialize:
Subset of surviving features,S ¼ 1;2; � � �n½ �
Feature ranked list R, R ¼ ½�
While S is not empty, do:
1). Restrict the features of Xi to the remaining S
2). Train SVM to get weight vectorsx ¼ P

iaiYiXi, i=1,2,3, . . .,N
3). the ranking score of i-th feature is defined as

{i ¼ xið Þ2; i = 1,2,3, . . .,N
4). Find the feature with the smallest ranking criteria

f ¼ argmin {i
� �

5). Add feature index f to R, R ¼ ff g [ R
6). Eliminate the feature index f from S, S ¼ S



Fig. 1. A working mechanism of the MSPJ. The RPBs represents robust potential biomarkers.

H. Yin, J. Tao, Y. Peng et al. Computational and Structural Biotechnology Journal 20 (2022) 3783–3795
Where N is the number of training samples, Xi is the i-th training
sample, Yi encodes the class label of Xi, S is the surviving feature
size, n is the n-th feature index, a is the SVM classifier, x is the
weight vectors, C is the ranking criteria and f is the smallest rank-
ing criterion.

2.2.3. Permutation test for the detection of DEGs
The permutation test is increasingly used to construct sampling

distributions without replacement, especially for data sets with
small sample sizes and ambiguous data distributions. Generally,
DEGs were identified by a permutation test by the following basic
steps:

The experimental group: A xE1; xE2; xE3; � � � ; xEMf };
The control group: B xC1; xC2; xC3; � � � ; xCNf };

(1) compute the difference in mean expression values between
experimental and control groups in the original

dataset:T0 ¼ A
�
�B

�

(2) randomly sampling the mixed data [A, B] into subset A0 and
B0.

(3) compute the difference in mean expression values between
experimental and control groups in the permuted

dataset:T ¼ A0� �B0�

(4) repeat steps (2) and (3) K times and evaluate all permuta-
tions, and K � MþNð Þ!
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(5) return the p-value as the p-value of DEGs when T exceeds
T0:

P ¼ 1
K

XK
i¼1

T > T0ð Þ

here, T0 is the statistic for the observation dataset, and T is the

statistic for the permutation subset. A
�
and B

�
are the mean expres-

sion values for the experimental and control groups. A0
�

and B0
�

are
the mean expression values in experimental and control groups in
the permutation dataset. The M represents the sample sizes of A,
and N represents the sample sizes of B. The K represents the permu-
tation rounds.

2.3. Datasets used to assess the performance of MSPJ

To determine the validity of the MSPJ method for DGE detec-
tion, 259 gene expression datasets (containing 94 simulated and
165 real datasets) were used with different sizes generated by
DNA microarray or RNA-seq platforms.

2.3.1. Simulated datasets
To test the stability of feature selection methods, several simu-

lated gene expression datasets (including microarray and RNA-seq
data) were utilized. Microarray datasets (log2-ratios) were simu-
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lated using the madsim package in R [30] and RNA-seq datasets
were generated using the SPsimSeq package [31].

2.3.2. Real datasets
A number of real datasets with various sample sizes were

applied to further compare MSPJ with established methods. These
gene expression datasets were mainly collected from Gene Expres-

sion Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The
detailed information for all gene expression datasets is provided
in Table A.1.

2.3.3. Data preprocessing
Before DEG detection, raw *.cel files for the microarray datasets

were read for RMA normalization and the generation of gene
expression data matrices [32]. Then, the genes with low expression
values in all samples (threshold < 0.1) were removed in subsequent
analyses of each dataset [33]. To reduce sample error resulting
from random sampling, the original datasets and subsets were fur-
ther normalized by the upper quantile method using the prepro-
cessCore package [34]. All computations were implemented in
the R environment (v4.0.0).

2.4. Comparison with classical methods for gene selection

Ten methods were used for a comparative analysis with the
newly developed MSPJ method, including five DEG identification
methods (limma [35], significance analysis of microarrays (SAM)
[36], T-test, Wilcoxon’s test, multtest [37]) and five gene rank-
based methods (RankProd [38], signal noise ratio (SNR),
minimum-redundancy-maximum-relevance (mRMR) [39], genetic
algorithm (GA) [40], random forest (RF) [41]).

Those ten methods have been widely used, and can be catego-
rized into three main types: filter, wrapper, and embedded
approach. Among of them, Limma, SAM, T-test, Wilcoxon’s test,
multtest, mRMR, RankProd and SNR were the well-known filter
approach algorithms [42]. GA was applied as a wrapper feature
selection method, and RF was known as an embedded method
[43,44]. The gene expression matrices were used to identify DEGs
by each of these 11 methods independently. The DEG identification
methods provided directly a subset of genes, and the feature rank-
ing methods provided the ranking. Genes were considered as DEGs
when the adjusted p-value was below 0.05 or the arbitrary rank
was in the top 30%. A gene set enrichment analysis of gene ontol-
ogy (GO) terms was implemented using clusterProfiler with an
adjusted p-value cutoff of 0.05 [45]. The Jaccard index was used
to evaluated consensus DEGs and the related GO terms identified
by different methods.

The Jaccard index was defined as follows: J A;Bð Þ ¼ j A\BA[B j, where
A and B represent the DEGs or related GO terms identified by two
methods, respectively.

2.5. Application of a classification algorithm for method assessment

Prediction modeling plays an important role in algorithm
assessment by classifying experimental and control cases. In this
study, the SVM algorithm was implemented using the R package
e1071, and selected to assess the stability of biomarkers fromMSPJ
and conventional methods [46]. The top ten biomarkers were
selected to construct the SVM classifier. The nested 5-fold cross-
validation strategy was applied to partitioning the training-test
datasets and calculating the evaluating indexes. The classification
accuracy was used to assess the classification performance of gene
features from training datasets. The area under the receiver oper-
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ating characteristic (ROC) curve (AUC), specificity, sensitivity, and
accuracy were used to evaluate the performance of the MSPJ and
conditional methods using the pROC package [47].
3. Results

3.1. The type i error control in simulated datasets

The type I error rate was calculated as the proportion of simu-
lations where non-DEGs tested positively, i.e., the false positive
rate (FDR). The sample size of all simulated datasets was limited
to a maximum of 30 samples, and all non-DEGs were false positive.
To better compare feature selection methods based on hypothesis
testing, the DEGs were identified using a nominal p-value cutoff of
0.05. As for gene rank-based methods, the DEGs were identified by
an arbitrary rank (the preset DEGs number). In most cases, keeping
the FDR < 10% is a conservative approach for a well-calibrated test.
Under baseline conditions for 20 microarray simulation datasets,
only three methods (MSPJ, SAM, and multtest) performed quite
well and even in maintained FDR < 5% (Fig. 2A). The RF algorithm
performed reasonably well but with the FDR of > 10%. However,
limma, T-test, RankProd, and Wilcoxon’s test called around half
non-DEGs. The GA, mRMR and SNR methods had a totally different
gene list in simulation datasets.

As for the simulated RNA-seq datasets, all methods maintained
the FDR of > 5% (Fig. 2B). For each of SNR, mRMR, MSPJ, SAM, and
Wilcoxon’s test, the median FDR value is simultaneously less
than < 30% in most datasets. Of which, SAM has a high upper-
quantile, and limma, multtest, T-test, and RankProd showed an
FDR of approximately 50%. The FDR values of GA and RF were much
higher than those of other methods. It was noted that MSPJ method
applied to small datasets showed better performance with respect
to type I error control than those of 11 classical methods both in
microarray and RNA-seq datasets.
3.2. The time consuming and memory usage in simulation datasets

The complexity algorithms may result in high computational
cost during the massive iterations of feature identification, espe-
cially as the search strategies drift towards more exhaustive [48].
Hence, the time consuming and memory usage of 11 methods were
evaluated using the simulation datasets. The detailed score of time
consuming and memory usage were normalized across the differ-
ent methods. For each method, the mean value of time consuming
or memory usage obtained from three repeated experiments. The
time and memory scores were shifted and scaled to r = 1 and
l = 0, and then applied the unit probability density function of a
normal distribution on these values to get the scores = 1-scores
and back into [0,1] range [49].

In the Fig. 2C, all methods have consistency in the time consum-
ing and memory usage both in microarray and RNA-seq technolo-
gies. Most of filter methods spend less memory and time than the
wrapper and embedded methods in different samples and gene
size. In terms of time consuming, limma, SNR, SAM and T-test were
rarely influenced by sample and gene size. The time consuming of
Wilcoxon’s test, mRMR, multtest and RF increased with sample and
gene size. The RankProd, MSPJ and GA spend more time consuming
on both microarray and RNA-seq technologies. As for the memory
usage, multtest, limma, mRMR, SNR, Wilcoxon’s test and T-test
achieved low memory usage. The memory usage of wrapper
method (GA and MSPJ) was less than filter methods (SAM and
RankPrond) and embedded method RF.

https://www.ncbi.nlm.nih.gov/geo/


Fig. 2. (A) Type I error control for 11 methods applied to small simulated microarray datasets. (B) Type I error control for 11 methods applied to small simulated RNA-seq
datasets. For each method, the box plot represents the values obtained from 20 experiments. All samples in simulated datasets were<30 and contained 6000–20000 genes. (C)
The rank of time consuming and memory usage for 11 methods applied to simulated microarray and RNA-seq datasets.
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3.3. Comparative analysis of DEG detection from real datasets

To compare different methods for identifying DEGs, three data-
sets with known properties were utilized (Table 1). The Benjamini
and Hochberg procedure was applied to statistical tests with no
adjustment, like the MSPJ, T-test, and Wilcoxon’s test. As an
adjusted p-value of < 0.01 was the criterion for DEG detection
methods. The top 30% of genes were considered statistically signif-
icant for the gene rank-based methods. The identification of unique
and common DEGs, gene set enrichment analyses, and AUC analy-
ses for different sample sizes are important analysis types for a
comprehensive evaluation.

Large-scale datasets (163 datasets with different sample sizes)
were utilized to assess the robustness of gene selection methods.
Detailed sample information was provided in Table A.1.
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3.3.1. Assessment of the application of eleven methods to small
datasets

The 11 individual gene selection methods were applied to two
real datasets to identify DEGs. The GA, RF, and mRMR methods
yielded the most unique DEGs; however, the intersection of DEGs
obtained by other methods in microarray data was small (as shown
in Fig. 3A). The MSPJ method generated the highest number of
genes compared with the DEGs identified methods. The MSPJ,
limma, SAM, RankProd, T-test, and Wilcoxon’s test generated more
shared DEGs. For RNA-seq datasets, the number of DEGs identified
by different methods were similar to those of the microarray data-
sets (Fig. 3B). The GA and RF methods detected more total and
unique DEGs and generated similar results. Apart from DEG counts,
the Jaccard scores were used to evaluate DEGs identified using dif-
ferent methods. Jaccard scores closing to 0.5 (between 0.4 and 0.6)



Table 1
Summary of real datasets.

Technique Accession number Sample size Gene numer Size per class Organism Ref.

Microarray GSE16515 20 12,937 10:10 Human [50]
RNA-seq PMID: 21179090 18 9,300 12:6 Fly [51]
Microarray GSE10072 107 12,937 58:49 Human [52]
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indicated that similar unique and common DEGs were detected by
two methods. Jaccard scores for comparisons between MSPJ and
limma, SAM, T-test, and Wilcoxon’s test were all within 0.40–
0.60 for the microarray datasets (Fig. 3C). The Jaccard scores for
comparisons between MSPJ and limma, SAM, T-test, and Wil-
coxon’s test fell in 0.42 � 0.55 for RNA-seq datasets (Fig. 3D). Over-
all, the DEGs from MSPJ, limma, SAM, T-test and Wilcoxon’s test
methods were very similar; however, the Jaccard scores for com-
parisons between MSPJ and other four methods were closer to
0.5 than those of comparisons in other methods.

The Jaccard scores of GO terms were consistent with those of
the DEGs enriched by different methods. MSPJ-derived DEGs gen-
erated more unique and common biological functions in compar-
isons with ones of SAM, T-test, and Wilcoxon’s test (Jaccard
score: 0.55–0.60) for microarray datasets, as shown in Fig. 3E.
For RNA-seq datasets, there existed similar results according to
biological functions (Jaccard scores of 0.55 � 0.58) (Fig. 3F). The
AUC values revealed that MSPJ, limma, RankProd, T-test and Wil-
coxon’s test outperformed other methods in DEG discovery for all
datasets (Fig. 3G and H).
3.3.2. Good performance of MSPJ revealed by testing on large-scale
datasets

We next compared various methods for analyses of large-scale
datasets, 123 microarray datasets and 40 RNA-seq datasets were
tested. After identifying DEGs using diverse methods, the Jaccard
score was computed to evaluate consensus with respect to DEGs
and GO enrichment. Overall, the similarity between the methods
was not significant for DEG identification both in microarray and
RNA-seq datasets.

In microarray datasets, mRMR, SNR, MSPJ, RF, RankProd and GA
had higher Jaccard scores than those of other methods for all sam-
ple sizes (Fig. 4A). But around 10 to 40 samples, SNR, mRMR, MSPJ,
and RF had higher Jaccard scores than those of the other methods.
Each method retained its independence for DEG detection on dif-
ferent sample sizes, except RankProd had high Jaccard scores
around 20 to 40 samples. For GO terms, most methods showed
similar trends in Jaccard scores, while T-test, GA, and limma
showed a decrease as the sample size increased (Fig. 4B). Of note,
RF, SAM, RankProd, and MSPJ showed high Jaccard scores for sam-
ple sizes between 20 and 30. According to Jaccard scores for DEGs
and functional enrichment, only RF and MSPJ stayed on top of the
momentum under 30 sample sizes. Consistency among the
detected DEGs does not fully reflect the advantages and disadvan-
tages of different methods; accordingly, we evaluated the discrim-
inant ability of the model based on the top 10 DEGs between
experimental and control groups in the DNA microarray datasets.
The top 10 DEGs from five DEG identification methods were ranked
by the p-value. Several indices should be considered for the classi-
fication and prediction of biomarkers, such as AUC, specificity, sen-
sitivity, and accuracy. For these four indices, MSPJ and SNR showed
good performance with small sample sizes (Fig. 4C–F). Then, Rank-
Prod, RF, and GA showed similar trends with respect to sample
size, behind MSPJ and SNR.

In RNA-seq datasets, SNR, limma, MSPJ, and T-test had higher
Jaccard scores than those of the other methods for around 12 to
60 samples (Fig. 5A). For GO terms, MSPJ, and RankProd showed
higher Jaccard scores than those of the other methods with sam-
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ples size between 12 and 50 (Fig. 5B). According to Jaccard scores
for DEGs and functional enrichment, only MSPJ kept the higher Jac-
card for around 12 to 50 samples. Similarly, according to four
indices (AUC, specificity, sensitivity, and accuracy), MSPJ, limma,
T-test and SNR showed good performance with sample size
between 12 and 70 (Fig. 5C–F).
3.3.3. Robustness of MSPJ for DEG identification in small datasets
To explore the stability of the performance of MSPJ for feature

retrieval in small size datasets, the impact of sample size was
investigated by computing overlap in DEGs and GO terms between
subsets and the original dataset for 11 methods. Six sub-datasets
with 10%, 20%, 30%, 40%, 50%, and 60% of samples from each of
two groups were generated by random sampling, and the random
sampling was repeated ten times. The average Jaccard index for
overlap in the DEGs or GO terms between subsets and the original
dataset was evaluated for 11 methods and various small sample
sizes. Except for the case where Jaccard value = 1, a high Jaccard
score (i. e., the positive value close to 1) indicates that the method
is more robust regardless of changes in sample size. AUC, speci-
ficity, sensitivity, and accuracy for different sample sizes were also
evaluated.

One example of DNA microarray dataset GSE10072 containing
107 samples, DEG identification methods were sensitive to
changes in sample size (Fig. 6A). The number of DEGs detected
by most methods increased with the sampling rate, other than
GA, SNR, mRMR and RF. Among all methods, MSPJ showed the least
variation in DEG numbers across sample rates. For most methods,
except for multtest, SNR, GA, mRMR, and RF, the Jaccard scores of
DEGs and GO terms between subsets and the original dataset
increased as the sample size increased (Fig, 6B and C). In the
assessment of the sensitivity for sample size, mRMR showed com-
plete concordance with DEG detection (Jaccard scores = 1), shown
in Fig. 6B-E. Therefore, mRMR will not be compared with other
methods in terms of the consistency of DEGs and GO terms. MSPJ
clearly showed the highest Jaccard score of DEGs for sub-datasets
in the 10–20% range. Up to 30%, MSPJ was only behind the T-test.
For GO terms, MSPJ also stably ranked high in the 10–30% range.
We also considered the retention of the top 100, 200, and 300 DEGs
by different methods with regard to sampling rate between the
sub-dataset and original dataset. For both DEGs and GO enrich-
ment terms, RankProd consistently showed the highest Jaccard
score for all sampling rates and all top-ranked genes (Fig. 6D and
E, Fig. A.1). MSPJ showed a moderate Jaccard score for DEG detec-
tion, and the Jaccard scores for MSPJ were among the top five for
the evaluation of GO terms for all top ranked genes and 10–30%
sampling rates.

Most methods consistently showed high AUC values and high
specificity in the 10–60% range, except for mRMR, multtest, GA,
SNR, and Wilcoxon’s test (Fig. 6F and G). For sensitivity, GA, Rank-
Prod, mRMR, and SNR showed decrease as the sampling rate
increased, while other methods maintained a high sensitivity
across all sample rates (Fig. 6H). Moreover, the biomarkers identi-
fied by GA, mRMR, and SNR had a lower accuracy for the prediction
of control and experimental groups than that of other methods,
irrespective of the sampling rate (Fig. 6I). Overall, MSPJ, limma,
RF, and T-test have superior performance based on four indices
for the assessment of classification and prediction.



Fig. 3. Comparison of eleven methods with small sample sizes. (A) UpSet plot of DEGs obtained by 11 methods from a microarray dataset. (B) UpSet plot of DEGs from 11
methods from the RNA-seq dataset. (C) The Jaccard scores of DEGs from the microarray dataset. (D) The Jaccard scores of DGEs from the RNA-seq dataset. (E) The Jaccard
scores of GO terms from the microarray dataset. (F) The Jaccard scores of GO terms from the RNA-seq dataset. (G) The AUC values of 11 methods for the microarray dataset.
(H) The AUC values of 11 methods for the RNA-seq dataset.
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Fig. 4. Application of different methods to large-scale microarray datasets. The value of the smoothing parameter (loess) for a curve fitting was chosen for<1,000
observations, and the generalized additive model was used for>1,000 observations. (A) The similarity of DEG analysis methods for small datasets. (B) Similarity of enriched GO
terms for DEGs identified using different methods in small datasets. When Jaccard score > 0.5, Jaccard index = 1 - Jaccard score, else Jaccard index = Jaccard score. Detailed
information is provided in Table A.2. (C)�(F) showed the AUC, specificity, sensitivity and accuracy of the top ten DEGs identified using different methods, respectively. The
detailed values are reported in Table A.3.
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Fig. 5. Application of different methods to large-scale RNA-seq datasets. The value of the smoothing parameter (loess) for a curve fitting was chosen for<1,000 observations,
and the generalized additive model was used for>1,000 observations. (A) Similarity of DEG analysis methods for small datasets. (B) Similarity of enriched GO terms for DEGs
identified using different methods in small datasets. When Jaccard score > 0.5, Jaccard index = 1 - Jaccard score, else Jaccard index = Jaccard score. Detailed information is
provided in Table A.2. (C)�(F) showed the AUC, specificity, sensitivity and accuracy of the top ten DEGs identified using different methods, respectively. The detailed values
are reported in Table A.3.
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Fig. 6. Robust DEG detection for different sampling rates in large datasets. The entire process was repeated 10 times for random sampling, and each repetition employed a
different random seed. (A) The number of discovered DEGs for different sampling rates. (B) The Jaccard scores of DEG counts for the comparison between the subset and
original microarray dataset. (C) The Jaccard scores of GO terms for the comparison between the subset and microarray original dataset. (D) The Jaccard scores of the top 100
DEGs between the subset and microarray original dataset. (E) The Jaccard scores of GO terms enriched from the top 100 DEGs between the subset and microarray original
dataset. (F)�(I) The AUC, specificity, sensitivity and accuracy of sub-sampling microarray datasets, respectively.
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4. Discussion

Owing to high experimental costs or low availability of samples,
many gene expression datasets have small sample sizes. DEG anal-
ysis methods often show poor performance when the sample size
is small [53]. The scDEA method proposed by Li et al. [54] was
developed for differential expression analyses of scRNA-seq data.
Further, the scDEA did not provide a significant advantage over
other approaches when the sample size is small. To resolve these
issues, an improved gene selection approach named MSPJ was
developed in this study by integrating meta-analysis, SVM-RFE,
and permutation test frameworks. To our knowledge, this is the
first differential expression analysis method specifically targeting
small gene expression datasets.

In this study, we compared various methods with default
parameters, as implemented in widely used packages. Ten repre-
sentative methods were used for a comparative analysis with MSPJ.
Among these, limma is often used for gene discovery by differential
expression analyses of microarray and high-throughput PCR data,
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and SAM is a frequently used nonparametric method for analyses
of microarray dataset. The T-test, multtest, Wilcoxon’s test, mRMR
and RankProd (rank product method) methods are well-
established statistical methodologies for feature selection [38].
The RankProd method is expected to be applicable to small data-
sets [55]. As a supervised machine learning approach, RF has
gained substantial popularity for feature selection [56]. The GA
approach, as an unsupervised search method, is often used to
select a set of features to discriminate between groups, especially
for classification in cases with small sample sizes [57]. Thus, RF
and GA were used as representative supervised and unsupervised
strategies for our comparative analysis. SNR is a signal–noise-
ratio based feature selection method for ranking genes [58]. Our
comparison of these distinct approaches for DEG identification
provided a general and important reference for research in the
field.

MSPJ was obviously superior to other methods with respect to
type I error control using simulated microarray datasets. Using
simulated RNA-seq datasets, MSPJ ranked highly in terms of type
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I error control, only behind SNR and mRMR. The high noise level of
RNA-seq datasets is an issue for the accurate detection of DEGs
[59]. Hence, it is reasonable that the SNR method is superior to
the MSPJ method for analyses of simulated RNA-seq datasets. Nev-
ertheless, SNR and mRMR had a quite loose on type I error control
in microarray datasets. Perez’s research indicated that mRMR algo-
rithm is not suitable for high domain feature problems [60], and
this may be the reason why mRMR kept unstable in high microar-
ray and RNA-seq dimensional data, in terms of type I error control.
MSPJ had the robust type I error control both on microarray and
RNA-seq datasets. In terms of time and memory consumption,
MSPJ did not perform well. Because it was based on meta-
analysis for 40 sub-datasets and classifier model development pro-
vided by machine learning, and the proposed method taken
slightly high computational cost for feature selection. However, it
was worth to consider exchanging more time consuming and
memory usage for robust feature detection based on small
samples.

Using real datasets for a large-scale microarray and RNA-seq
datasets, SNR and MSPJ had an outperformance in terms of similar-
ity of gene detection for <30 samples. In terms of gene enrichment
of functional entries, RankProd and MSPJ had good performance
under 30 samples. However, MSPJ and SNR were comparable and
superior to the other methods in terms of feature gene classifica-
tion and prediction both in microarray and RNA-seq datasets. In
brief, the overall results for 165 bulk datasets revealed that MSPJ
showed good performance for DEG detection under small sample
sizes.

In this study, the DEGs identified by individual methods were
also assessed with different sampling rates. In terms of DEG counts,
the rank-based methods were not included in the evaluation. For
the 10–30% sampling rate, the T-test, MSPJ, limma, and Wilcoxon’s
test detected the most DEGs. Moreover, we found that the number
of DEGs identified using MSPJ was least influenced by sample size,
while the number of DEGs obtained by other methods was more
sensitive to sample size. Furthermore, comparing the gene identi-
fication and GO terms of sub-datasets and the biomarker classifica-
tion of sub-datasets from different methods, changes in sample
size clearly had the least impact on the mRMR, T-test and MSPJ,
in the range of 10–30%. The more detailed analysis revealed that
RankProd was demonstrated the most robust DEG detection.
Although MSPJ was not the most stable with respect to gene rank-
ing, and it still outperformed many methods across different sam-
pling rates. T-test method outperformed than others in several
aspects, however, it had some serious limitations in actual scenar-
io, such as the absence of fold change values of genes between con-
trols and cases, and assumptions regarding the distribution of
datasets (normal distribution), and so on [61]. The distribution
assumption also applied to SAM and limma (normal or Poisson dis-
tribution) [35]. MSPJ had no restrictions with respect to the distri-
bution of the data and therefore could be applied to various types
of omics datasets, such as proteomics, metabolomics, and single
cell RNA-seq datasets. Moreover, the MSPJ method could be used
to visualize expression levels of each gene with estimated signifi-
cance measurements (Fig. A.2).

Overall, our results support the performance of MSPJ for DEG
identification in datasets with small sample sizes, especially those
with<30 samples. Although the datasets considered in our study
were large and included datasets from various scientific fields, it
is not, strictly speaking, representative of a ‘‘population of
datasets” and hence the results may not be generalizable. Accord-
ingly, the method does not necessarily perform better on all data-
sets and its performance is not limited to the sample sizes
evaluated. Depending on the research requirements, our method
can be an additional option for gene discovery.
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5. Conclusion

Comprehensive analyses were conducted to evaluate the per-
formance of the newly developed method, MSPJ, for analyses of
transcriptome datasets with different sample sizes, including sim-
ulated and real datasets. Our systematic large-scale comparative
analysis using 165 real datasets revealed that MSPJ showed good
average prediction performance for biomarkers, with high rates
of common and unique of DEGs and gene function identification.
The robustness to sample size enables effective DEG detection by
MSPJ. The MSPJ method described here is effective under limited
sample sizes for gene expression datasets and thus provides stable
scores. Our method can be easily applied to high-throughput tran-
scriptional datasets of any size from microarray or RNA-seq exper-
iments. It is even theoretical possible to apply the method to other
omics data types due to the free distribution (e.g., metabolomics,
proteomics, and single-cell RNA-seq).
6. Availability of data and code

All artificial datasets used to evaluate the performance of gene
selection methods were deposited in the Zenodo repository

(https://doi.org/10.5281/zenodo.6320499). The real datasets were
collected from GEO and pre-processed according to the pipeline
described in this manuscript.

All R source code for MSPJ, dataset analyses and benchmarking

in this study was released on GitHub (https://github.com/libcell/

MSPJ).
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