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Messenger RNA (mRNA) has emerged as a critical global technology that requires global joint efforts from
different entities to develop a COVID-19 vaccine. However, the chemical properties of RNA pose a
challenge in utilizing mRNA as a vaccine candidate. For instance, the molecules are prone to degradation,
which has a negative impact on the distribution of mRNA among patients. In addition, little is known of
the degradation properties of individual RNA bases in a molecule. Therefore, this study aims to investi-
gate whether a hybrid deep learning can predict RNA degradation from RNA sequences. Two deep hybrid
neural network models were proposed, namely GCN_GRU and GCN_CNN. The first model is based on
graph convolutional neural networks (GCNs) and gated recurrent unit (GRU). The second model is based
on GCN and convolutional neural networks (CNNs). Both models were computed over the structural
graph of the mRNA molecule. The experimental results showed that GCN_GRU hybrid model outperform
GCN_CNN model by a large margin during the test time. Validation of proposed hybrid models is per-
formed by well-known evaluation measures. Among different deep neural networks, GCN_GRU based
model achieved best scores on both public and private MCRMSE test scores with 0.22614 and 0.34152,
respectively. Finally, GCN_GRU pre-trained model has achieved the highest AuC score of 0.938. Such pro-
ven outperformance of GCNs indicates that modeling RNA molecules using graphs is critical in under-
standing molecule degradation mechanisms, which helps in minimizing the aforementioned issues. To
show the importance of the proposed GCN_GRU hybrid model, in silico experiments has been contacted.
The in-silico results showed that our model pays local attention when predicting a given position’s reac-
tivity and exhibits interesting behavior on neighboring bases in the sequence.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The first announced case of a novel coronavirus disease
(COVID-19) was reported in December 2019 in Wuhan, China (Jin
et al., 2020), which preceded the COVID 19 outbreak. Subsequently,
the COVID-19 pandemic has had a continued immense impact on
people’s lives around the world (Zhang and Ma, 2020; Arba et al.,
2020; Bong et al., 2020). At the time of writing this paper, the glo-
bal death toll of COVID-19 is at a staggering 1.36 million deaths
and more, not including excess morbidity from the pandemic itself.
Furthermore, the number of new cases each day is increasing by
620,000 globally (Esteban Ortiz-Ospina Max Roser, H2020). The
global catastrophe has brought about an unprecedented effort to
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Fig. 1. Diagram of different RNA loop structures. Covalent bonds are indicated by
straight line segments, while jagged lines indicate H-bond base pairing (Lyngsø and
Pedersen, 2000).
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develop, approve, and distribute a vaccine against the novel virus
in record time (Chung et al., 2020; Lazarus et al., 2020). Notably,
the vaccination preparation process typically takes between 10
and 15 years (International Federation of Pharmaceutical
Manufacturers, 2020). However, in the case of COVID 19, it is being
accelerated to a timeframe of a year (Jeyanathan et al., 2020). Great
appreciation has been given for the extraordinary support and col-
laboration across industry, academia, and governments across the
globe. Such accelerated efforts motivate researchers to participate
in vaccine production that serves the entire world.

Out of such initiatives to produce an effective vaccine, messen-
ger RNA (mRNA) vaccines have taken the lead as the fastest vaccine
candidates for COVID-19; currently however, it faces key potential
limitations (Wang et al., 2020). One major challenge is in designing
stable mRNA molecules under appropriate conditions. Conven-
tional vaccines (seasonal flu shots) are packed in disposable syr-
inges and shipped under refrigeration worldwide, but this is
quite impossible for mRNA vaccines (Pardi et al., 2018). For
instance, researchers have observed that RNA molecules tend to
degrade spontaneously. For instance, a single cut can render the
mRNA vaccine unusable, which is considered to be a severe limita-
tion. Currently, little is known of the details of where the RNA
backbone is most likely to be affected. Consequently, the current
mRNA vaccines against COVID-19 must be prepared and shipped
under intense refrigeration (Table 1) and are unlikely to reach
more than a tiny fraction of human beings on the planet unless
they can be stabilized. Particularly, the available knowledge on
the stability profiles of the mRNA COVID-19 vaccine candidates
in development is being updated regularly (Crommelin et al.,
2021). Table 1 shows the latest shelf-life and temperature storage
conditions released by three vaccine manufacturers (Modera,
Pfizer-BioNTech, and CureVac). At the time of writing this paper
(March 22, 2021), such information has been given solely by
vaccine manufacturers, with no confirmation from regulatory
authorities. However, the storage requirements during manufac-
turing, shipping, and at the end-user site are clearly essential char-
acteristics of the mRNA vaccine drug product because they provide
a competitive (dis)advantage.

Such candidates have been reported to be effective with a
percentage of � 90% (Loftus et al., 2020). In contrast to traditional
vaccines, which are composed of inactivated or attenuated compo-
Table 1
mRNA COVID-19 Vaccine Candidates in Development: Current Stability Profile, Dose, and

Sponsor Stability in
Frozen State

Stability
at 2 �C–
8 �C

Stability at
Room
Temperature

Dose (Injection
Volume); Dosin
Schedule

Pfizer-BioNTech �80 �C to
�60 �C, up to
6 months

Up to
5 days

Up to 2 h (up to
6 h after
dilution)

100 mg (0.5 mL
day 1, day 29

Moderna �20 �C, up to
6 months

30 days Up to 12 h 30 mg (0.3 mL)
day 1, day 21

CureVac � 60 �C, at
least 3 months

At least
3 months

Up to 24 h 12 mg (no
information); d
1, day 29
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nents of the pathogen itself, the mRNA vaccine provides a template
for the cellular synthesis of a viral component. The mRNA mole-
cules are structures, as illustrated in Fig. 1, wherein bases loop back
on one another to form bonding interactions with linearly distant
bases.

The development of these RNA sequences is comparatively less
costly and time-consuming because it avoids the challenging
purification processes of proteins (Jackson et al., 2020). However,
mRNA vaccines are a novel technology and encounter unique chal-
lenges because of their chemical structure. In particular, mRNA
molecules are known to degrade spontaneously over time (van
Hoof and Parker, 2002). In a laboratory setting, RNA is generally
stored in specialized freezers kept at �80 �C (Fabre et al., 2014).
Thus, from a logistical perspective, this temperature preference
poses a substantial hurdle in the successful administration of such
an RNA-based vaccine. For instance, such freezers are not readily
available, and the degradation of a single base could render the
vaccine useless. Since Pfizer/BioNTech and Moderna’s latest effec-
tiveness announcements, the logistical challenges of distributing
their vaccines at these requisite temperatures have been of great
interest and concern (Ducharme, 2020). Relatively little is known
of the tendencies for specific bases to degrade (OpenVaccine.
Openvaccine: Covid-19 mrna vaccine degradation prediction.
Stanford University, Eterna, Sept, 2020). Motivated by this prob-
Dosing Schedule (Status March 22, 2021).

g
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lem, this study aims to improve the stability of mRNA vaccines
during the shipping and transportation process by predicting the
mRNA base-resolution degradation of RNA at each base of an
RNA molecule through local characteristics using hybrid deep
neural network (DNN) algorithms. Two types of deep hybrid neural
network algorithms will be investigated and evaluated to achieve
this aim. However, maintaining a continuous supply of high-
quality, reliable, safe, and affordable medications is a critical com-
ponent of a good health system (Juvin, 2019). The main contribu-
tions of this work are summarized as follows.
1.1. Contribution

In this study, the authors explored the hybridization of GCN and
GRU models in the mRNA degradation field to predict the stability/
reactivity and degradation risk of mRNA sequences. As per the
authors’ knowledge, there is no such works that use a hybrid
GCN-GRU model in this field. Second, this study emphasizes on
the efficiency and effectiveness of the hybrid GCN-GRU model by
comparing the proposed model with GCN_CNN. An intensive
experiment was conducted in this work based on the Stanford
COVID-19 mRNA vaccine dataset. Third, we validated the proposed
DL-based hybrid models of COVID-19 mRNA vaccine degradation
through well-known evaluation metrics such as mean columnwise
root mean squared error (MCRMSE) and Area Under the Curve
(AUC).

The rest of the paper is organized as follows. Section 2 gives an
overview of the methodology and the dataset description. Results
are discussed in Section 3, while model analysis and validation
are given in section 4. The conclusion and the future work are pro-
vided in Section 5.
2. Related Works

Artificial intelligence and machine learning, particularly deep
learning, have resulted in significant advances in a wide range of
contexts of science and engineering due to their capacity to thor-
oughly understand features. The most profound impact has been
on vaccine discovery (Keshavarzi Arshadi et al., 2020). Recent
advances in deep learning techniques such as GCN, GRU and CNN
have enabled the modelling of DNA and RNA sequences. AI can
be used to combat the COVID-19 pandemic and generate solutions
in a variety of fields, including drug research, vaccine development,
public communication, and integrative medicine (Ahuja et al.,
2020).

Recurrent neural networks (RNNs) were utilized in the early
days of machine learning (or deep learning) to deal with data rep-
resentations in directed acyclic graphs (Frasconi et al., 1998). Later,
as a generalization of RNNs, Graph Neural Networks (GNNs) (Gori
et al., 2005) are developed to process general directed and undi-
rected graphs. Convolutional neural networks (CNNs) are then
designed to handle data representations from a spatial domain to
a graph domain. Graph convolutional networks (GCNs) are the
methods created in this regard, and they are divided into two cat-
egories: spectral approaches and non-spectral approaches. GCNs
have shown cutting-edge performance in a variety of complex
mining tasks (for example, semi-supervised node classification
and sequence prediction) (Hamilton et al., 2017; Kipf and
Welling, 2016).

Based on the extensive research conducted, only two similar
studies have been done so far. Authors in (Singhal, 2020) have pro-
posed three single-DL methods (LSTM, GRU, and GCN) to predict
mRNA vaccine degradation. The authors claimed that among the
three methods developed GRU performed the best with an accu-
racy of 76%. The critical drawback of (Singhal, 2020) work is that
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a single algorithm has limited accuracy and cannot capture the
mRNA degradation features. Additionally, authors in (Singhal,
2020) did not consider the stability of the vaccine, unlike our pro-
posed study that suggested two-hybrid DNN models and con-
ducted extensive experimentation to predict the RNA sequence
degradation. Besides, the experiments that show a general reactiv-
ity score, degradation likelihood prediction after incubation at
10pH with magnesium, and degradation likelihood prediction at
a temperature of 50 �C with magnesium were not provided.

Similarly, authors in (Qaid et al., 2021) proposed a bidirectional
GRU integrating with the LSTM model. This model has been tested
and evaluated with the same benchmark dataset provided by Stan-
ford University scientists. However, only the MCRMSE score was
reported, and no further experimentation was conducted on tem-
perature storage conditions which is a vital element to evaluate
the effectiveness of their model.
3. The proposed approach

This section provides the dataset description and the pre-
processing techniques used. It also illustrates the proposed
methodology and the deep learning algorithms utilized in this
study.
3.1. Dataset collection and pre-processing

3.1.1. Dataset description (Sequence, loop type, and base pairing)
In September 2020, Das Lab at Stanford Biochemistry and

Eterna partnered to sponsor a Kaggle competition focused on
RNA degradation problems (OpenVaccine. Openvaccine: Covid-19
mrna vaccine degradation prediction. Stanford University, Eterna,
Sept, 2020). To achieve the goals of the current study, the authors
used their published dataset of 3029 RNA sequences, which are
annotated with base-wise information relevant to degradation.
Each sequence in the training set comprises 107 bases. The data
include base identities (A, G, U, C) and secondary structure infor-
mation indicating which bases are paired with each other. This
pairing is denoted by a string of opening and closing parentheses,
where matching pairs indicate paired bases at those indices. Addi-
tionally, the data provide a prediction of the RNA loop structure
type in a base resolution according to the local characteristics of
the sequence structure, including bulge, hairpin loop, paired stem,
etc. following the results of the bpRNA prediction algorithm in
(Lorenz et al., 2011). Fig. 1 shows prototypical examples of these
loop structures (Watters and Lucks, 2016), and Table 2 shows the
three-input data used in this study.

The labels of the dataset are a set of reactivity, and the degrada-
tion values are measured experimentally in different conditions at
each base. Reactivity is measured using SHAPE-Seq and features
the structural flexibility of the nucleotide (Seetin et al., 2014).
The degradation rates are measured using MAP-Seq under four
conditions and feature the likelihood of degradation in each condi-
tion (Yan et al., 2020). The dataset includes five metrics of reactiv-
ity and degradation, as listed in Table 3. However, this study
focuses on evaluating the first three metrics, namely, reactivity,
deg_Mg_ph10, and deg_Mg_50C, as ruled by the Das Lab competi-
tion. Motivated by this we focused on these three matrices to con-
duct a fair comparative analysis with the related works. Thus, this
study will develop a multi-task network that takes the RNA
sequence information as input and produces three predictions at
each base: reactivity, deg_Mg_pH10, and deg_Mg_50C. The perfor-
mance of the proposed model will be evaluated on two test sets,
including a public test set and a private test set (defined by the
original Kaggle competition). Moreover, the proposed approach
performance will be evaluated using Mean Column-wise Root



Table 3
Reactivity labels and their descriptions. The first three metrics are the predicted
outputs of our proposed models, while the last two are not evaluated.

No Output Label Description

1 reactivity General reactivity score.
2 deg_Mg_pH10 Likelihood of degradation after incubation at high pH

with magnesium.
3 deg_Mg_50C Likelihood of degradation at high temperature with

magnesium.
4 deg_pH10 Likelihood of degradation after incubation at high pH

(pH 10).
5 deg_50C Likelihood of degradation at high temperature (50 deg

C)

Table 2
Three-input data used in this study and their examples.

Input Label Example

sequence GGAAAAGCUCUAAUAACAGGAGA
structure . . ... . ..((((((.......)))).))..
predicted_loop_type EEEEESSSSSSHHHHHHHSSSSBSSX

Fig. 3. Data augmentation technique using Pseudo-labeling.
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Mean Squared Error (MCRMSE), which has been used in ‘‘OpenVac-
cine: COVID-19 mRNA Vaccine Degradation Prediction” competi-
tion. The MCRMSE evaluation matrix is described in Equation (1).

MCRMSE ¼ 1
Nt

XNt

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yij � ŷij
� �2

vuut ð1Þ

where Nt is the number of columns/tasks (i.e., reactivity/stability,
deg_Mg_pH10, and deg_Mg_50C) and (yij, ŷij) ground-truth and
predicted values for reactivity type and RNA sequence at a specific
base, respectively.

3.1.2. Features engineering
Both proposed hybrid model (GCN_GRU and GCN_CNN) model

begins by extracting features using feature engineering, then uses
a sequence input to predict the mRNA sequences responsible for
degradation by predicting three reactivity values for each location
in the sequence. Categorical features (sequence, structure, and pre-
dicted loop type) are the types of features extracted by features
engineering. First, categorical features are stored, and an embed-
Fig. 2. Steps in the base technique for the encoding of
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ding layer is used to capture relationships in sequences that would
otherwise be challenging to captured. Then, as shown in Fig. 2,
feature extraction is used to extract categorical features utilizing
statistical and mathematical calculations.
3.1.3. Data augmentation with pseudo labeling
Given the limited training data, the authors in (Lee, 2013) tried

to use pseudo labeling to leverage additional, non-labeled data for
training. Pseudo-labeling is a data augmentation technique that
uses unlabeled and labeled data during the training; it is a semi-
supervised learning algorithm. The process is shown in Fig. 3. We
first train the network on the labeled data for 20 epochs. Then
we introduced the unlabeled data by mixing training on unlabeled
and labeled batches. The authors used two types of unlabeled data
for pseudo labeling. First, we used the end of the sequences (bases
68 to 107) of the training set. After training the network on labeled
data for 20 epochs, we started using unlabeled data. For each
epoch, we compute the loss on the labeled and unlabeled parts
using the pseudo labels. The pseudo labels were computed by a
forward pass of the unlabeled data in the network at the state
obtained from the previous epoch. This procedure is repeated for
every epoch after the 20th. The exception is that for every 1 out
sequence, structure, and expected loop type data.
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of 10 epochs, we go back to training only on labeled data. Second,
we used the private test set sequences as unlabeled data. After
training the network on labeled data for 20 epochs, we trained
the model for 2 epochs on unlabeled data alone, followed by 5
epochs on labeled data. Therefore, we used a ‘‘save and load”
method to prevent the pseudo labeling from deteriorating the
model performances too much. At the end of each pseudo labeling
section, we compared the current model with the model right
before the pseudo labeling. If the current loss is higher than the
loss before pseudo labeling by 0.04, the authors did not accept
the current model and reloaded the model’s weights before the
pseudo labeling section.

3.1.4. Aggregator functions selection approach
Because there are various forms of aggregator functions in

GraphSAGE, the need to evaluate such functions is urgent. Thus,
an experiment was conducted to examine three aggregator func-
tions (mean, convolution, and LSTM (Cho et al., 2014) whereby
their performance was compared in RNA degradation prediction.
The mean aggregator takes the average of neighboring nodes and
concatenates it with the original node embedding. On the other
side, the LSTM aggregator feeds the embeddings of the neighboring
nodes sequentially to the LSTM and concatenates the final output
with the original node embedding. For LSTM and mean aggrega-
tors, the node embeddings after concatenation are fed into a linear
layer to reduce it to the original dimension. Lastly, the convolution
operation aggregates over the neighboring nodes (including the
node itself) and passes the result to a linear layer for the final
embedding. Based on the comparison of different aggregate func-
tions, the authors extracted the node embeddings from the GCN
and then passed it to the Gated Recurrent Units (GRU) (He et al.,
2016), which is a variant of the Recurrent Neural Network (RNN).
The output from the GRU is fed into a fully connected layer to make
the final prediction.

3.2. Candidate Deep Model Training and Optimization

3.2.1. Baseline convolutional neural network model
At the beginning, the authors implemented a simple baseline

model that would give a lower performance bound. It consisted
of a simple convolutional neural network (CNN) algorithm with
two 1D convolution layers followed by two fully connected layers
(Naseer et al., 2021). This model encoded small window size fea-
tures (21) around each base in the sequence and predicted the
three outputs: reactivity, deg_Mg_pH10, and deg_Mg_50C. Based
on the observation, the authors noted that the performance of
the first baseline model is sensitive to the selected window size.
The model’s prediction is limited to a local window of neighboring
bases along the primary sequence. Thus, the authors designed a
second baseline model, whereby the sequence and structure of
the entire RNA molecule were encoded as input to the CNN algo-
rithm. Thus, the model could leverage global sequencing informa-
tion during the prediction process by considering the sequence,
loop type, and base pairing of each base in the RNA sequence as
one-hot encoded and concatenated final input. The inputs are
passed to three convolution layers, which apply average pooling
in windows of all three. All the layers apply batch normalization,
rectified linear units, and dropout. The CNN’s final output is passed
to a linear layer to predict the RNA degradation rates at each base.

3.2.2. Graph Convolutional Network (GCNs)
As illustrated above, the proposed 1D convolution-based base-

line only aggregates information from neighboring bases along
the primary sequence of the molecule. However, the mRNA mole-
cule structure holds bases that loop back on one another to form
bonding interactions with linearly distant bases, as depicted in
7423
Fig. 4. To reflect a more realistic 3D structure, the RNA molecules
can be represented as graphs, where the nodes represent the infor-
mation of each base, and the edges represent bases adjacent or
paired by bonding interactions (Duvenaud et al., 2015). Traditional
CNNs cannot operate directly on graphs because of their irregular
structure. Thus, a generalized form of the CNN called graph convo-
lutional network (GCN) was developed for this specific purpose
(Hamilton et al., 2017; Naseer et al., 2021). According to
(Duvenaud et al., 2015), GCN is an attractive architecture to infer
RNA structures, and has been used several times in the literature.

In the implementation stage, the sequence, loop type, and base
pairing information are used to generate the embedding for each
node after passing the integer encoded input to an embedding
layer, as shown in Fig. 4. The edges are represented using adja-
cency matrices calculated from the secondary structure. We used
a type of GCN architecture called GraphSAGE. GraphSAGE
(Hochreiter and Schmidhuber, 1997) is an instance of GCNs devel-
oped for representational learning. Instead of learning node
embeddings directly, GraphSAGE learns the aggregator function
and computes the node embeddings by applying the aggregator
function to the neighboring nodes. In our application, we trained
GraphSAGE in a supervised fashion. The node embeddings were
extracted from the GCN and fed to another neural network to make
the final prediction.

The proposed hybrid model architecture is shown in Fig. 4. The
graph embeddings generated by GCNs can be fed into a GRU, and
we refer to this architecture as the GCN_GRU architecture. As an
alternative, we also experimented by using CNNs on top of the
graph embeddings and passed the CNN’s output to a fully con-
nected layer to make the prediction. This model is referred to as
the GCN_CNN architecture, and we tried CNN architectures with
and without residual connections (Kingma and Ba, 2017) between
layers. In addition to varying the model components, we also
experimented with the number of GCN layers (K). The number of
GCN layers, K, affects how the node embedding is generated. For
instance, when K = 2, the node embedding is generated by aggre-
gating all neighbors located at most two edges apart. However, this
is issue considered a multi-task learning problem. We also experi-
mented with weight loss by assigning higher weights for explicitly
evaluated tasks (this will be further explained in section 3). The
aggregator functions are also trained jointly with the RNA degrada-
tion prediction. Therefore, the node embeddings are a representa-
tion of the sequence and structure of each base. A GCN is used to
compute a graph embedding for each node. The node embeddings
are then passed through a GRU (or CNN) and a fully connected
layer to make the final reactivity prediction.

3.3. GCN_GRU Model Enhancement Using Pretrain Node Embedding
Technique.

The size of the training set is relatively small. Only 2096 exam-
ples are used in training after filtering measurements with a low
signal-to-noise ratio. Therefore, we also experimented on pretrain-
ing the node embedding in an auto-encoder (Lee, 2013) fashion
using the sequences in the training set and the 3000 sequences
in the test set. The node embeddings of the GCN layer were fed into
a fully connected network to reconstruct the original sequences
and structures (i.e., base pairing and loop types). The Mean Squared
Error (MSE) between the input and the reconstruction was used as
the auto-encoder loss function. After the auto-encoder converged,
the node embeddings were extracted to initialize the node embed-
dings in the GCN_GRU architecture.

Synthesizing the proposed model performance in terms of pub-
lic and private test scores helps us quantify whether the proposed
model will accurately assess the actual degradation rates of mRNA
sequences in practice. However, as with many black-box methods,



Fig. 4. Architecture of hybrid GCN_GRU model, from input sequence to reactivity prediction.
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we are also interested in understanding the proposed model’s
behavior and interpretability. With relatively small data, we can
implement statistical in silico mutagenesis (ICM) to probe our
model’s behavior. Given the computational costs of running a for-
ward pass over many mutated inputs, we restricted our analysis to
a sample of the sequences and perturbed the sequences at intervals
of 5 rather than at every base. In implementing ICM, we perturbed
the input data at every five positions in the sequence and mea-
sured the output predictions for each of the five different reactivity
and degradation measures. Fig. 5 portrays an example of this pro-
cess for a perturbation on the first nucleotide of a given sequence.
In Step 1, we select a sample of our original sequence and structure
data to work with. We sampled 250 examples from the 2000
examples in the original public training dataset for the following
analyses. In Step 2, we perturb the bases in the sequences: at every
five base positions (0, 5, 10, etc.), we change the base value to each
Fig. 5. Inference Workflow. Note that mB,N is a vector of reactivity outputs of length 107
base value it was perturbed.
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of the other three nitrogenous bases that can be used in an RNA
sequence. In our example above, because base position 0 is ‘‘A”,
we change this base to each of ‘‘C”, ‘‘G”, and ‘‘U”. With the per-
turbed sequence, the original secondary structure is no longer
valid: perturbing even a single base can have ripple effects on
the molecule’s overall structure (Danaee et al., 2018).

Thus, we must compute the secondary structure of the new per-
turbed sequence. The RNA.fold function from the Vienna RNA 2.0
package (OpenVaccine. Openvaccine: Covid-19 mrna vaccine
degradation prediction. Stanford University, Eterna, Sept, 2020) is
used to extract the predicted base pairing for the perturbed
sequence. Then, we fed the perturbed sequence and the predicted
base-pair data to bpRNA to predict the loop type of each base (van
der Maaten and Hinton, 2008). We repeated step 2 for each of the
250 sequences in the sample to have complete input data for each
of the perturbed sequences. In step 3, we take these modified
where B is the base value position perturbed (1 in the example above) and N is the



Table 6
Public and private MCRMSE test scores for GCNs with different model architectures.

Model Architecture Public test score Private test score

GCN_GRU 0.22614 0.34571
GCN_CNN 0.23275 0.35280
GCN_CNN (with residue connection) 0.22729 0.34822
GCN_GRU (weighted loss) 0.22514 0.34494
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sequences and their secondary structure annotations and feed
them into the proposed GCN_GRU model. The model outputs all
five predicted reactivity and degradation values for each modified
sequence (although, recall that the eventual evaluation is com-
puted only using the first three reactivity and degradation values).
Hence, these predicted values can be analyzed to understand the
behavior of the proposed model better.
GCN_GRU (pre-trained embedding) 0.22614 0.34152
4. Experimental results and discussion

4.1. The proposed model performance evaluation

We evaluated the proposed models based on two test sets: a
public test set and a private test set (as defined by the Kaggle com-
petition). The length of the RNA sequence in the public test is 107
while the length of the RNA sequence in the private test is 130. The
measurement of RNA degradation rates does not cover the last 39
bases in the sequence because of technological challenges. Thus,
the prediction length is 68 and 91 for the public, and private mean
column-wise root mean squared error (MCRMSE) test, respectively.
Because the test scores are MCRMSE between predictions and
labels, a lower score represents better model performance.

The results of the two baseline models are shown in Table 4.
Compared to the first baseline model that focuses only on the local
structure, the second baseline model outperforms it by a large
margin. This finding is within our expectation because the second
model contains the structure and sequence information over the
entire RNA molecule.

The test results for GCNs with different aggregator functions are
shown in Table 5. The ability of GCNs to perform convolution on
data with irregular structures helps to capture better and leverage
the structure information of RNA molecules: neighboring bases in
secondary structure (not just primary structure) can have an
immediate effect on predicted reactivity. As expected, all GCN
models outperformed our CNN-based baseline. The mean aggrega-
tor function achieved the best performance during test time. Thus,
the mean aggregator was chosen for comparing different model
architectures.

The test results for GCNs with different model architectures are
summarized in Table 6. Replacing GRU only with a CNN does not
boost our model performance. After adding residue connections
between convolutional layers, the model’s performance is compa-
rable but still slightly worse than the original GCN_GRU architec-
tures. One of the possible explanations for the performance of
the GCN_CNNmodel is that the GCN is a generalized form of CNNs.
Thus, GCN and CNN will have similar operations. On the contrary,
combining GCNs with GRUs, which operate recurrently, will add
Table 4
Public and private MCRMSE test scores for the baseline model.

Model Public MCRMSE
test score

Private MCRMSE
test score

Baseline1 0.3798 0.4727
Baseline2 (CNN over the

entire sequence)
0.30424 0.41348

Table 5
Public and private MCRMSE test scores for GCNs with different aggregate functions.

Aggregate Function Public test score Private test score

Mean 0.22614 0.34571
Conv 0.22173 0.34989
LSTM 0.23126 0.35904
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more diversity to the model architecture and better capture
sequential data.

The test results for models with different GCN layers (K) are
plotted in Fig. 6b. As the number of GCN layers increases, the test
loss also increases. We hypothesized that the small size of the
graph causes this deterioration in performance. The graph repre-
sentation of RNA molecules only contains roughly 100 nodes.
When the number of GCN layers increases, the node embedding
begins to capture more global information in favor of local infor-
mation. As a result, the model’s performance in predicting the
degradation rate at the base resolution deteriorates.

The test results for using weighted loss and pre-trained node
embeddings are shown in Table 6. As expected, assigning higher
weights for tasks evaluated during test time improved the model
performance. Pretraining, which refers to node embedding in an
auto-encoder fashion, also improved the model on the public and
private test sets. However, the improvement of the performance
on the private test set is marginal. The test results for pseudo label-
ing on the GCN_GRU architecture are presented in Table 7. We
used the GCN_GRU model with the weighted loss but without
pre-trained node embeddings as the pseudo labeling architecture.
The end of the sequences and the private test set improved the
model performances. However, pseudo labeling improvement
using the private test set is smaller than that of pseudo labeling
using the training set. This effect can be explained by the training
set sequences following a distinct distribution compared to the pri-
vate test set sequences. We discuss this observed effect in detail in
Section 4.2. This difference in the distribution could make training
the model using pseudo labels on the private test set less stable,
making it more challenging for the model to converge to an opti-
mal solution.

The related works (Metzker, 2010) have observed that measure-
ment error increased for bases at the end of the RNA sequence
because of technological challenges, and thus, only the measure-
ments of the first 68 bases are reported. The predictions are trun-
cated to the first 68 bases for all the models to calculate the loss,
which is the mean squared error (MSE) between the predictions
and ground truth. All models were trained using batch gradient
descent with a learning rate adapted via Adam optimizer (Hinton
and Salakhutdinov, 2006). The proposed deep models were also
trained with five-fold cross-validation, and the prediction was
the average of all folds. The MSE performance evaluation of the
GCN_GRU model during training and validation is shown in
Fig. 6a. The gap between training and validation loss does not indi-
cate over-fitting because we stopped the model when the valida-
tion loss did not decrease for a certain number of epochs.
Stopping the model earlier led to worse performance during test
time.

Additionally, it is often beneficial to summarize the ROC curve
insights of a model to a single scalar value that indicates the mod-
el’s output. One of these common techniques is the region under
the ROC curve, known as the AUC. The AUC reduces the effects of
the ROC curve to a single value and illuminates mathematical
insights into the success of the model. AUC is equal to the probabil-
ity that a randomly chosen positive sample will be classified higher
than a randomly chosen negative instance by the classifier. The
AUC values for the models built in this study are presented in



Fig. 6. Performance evaluation: (a) GCN_GRU model using mean squared error (MSE) during training and validation; (b) Public and private test losses for the model with a
different number of GCN layers.

Table 7
Public and private MCRMSE test scores for GCN_GRU architecture using pseudo
labeling.

Approach Public test score Private test score

GCN_GRU (before pseudo labeling) 0.22514 0.34494
Train set - bases 68 to 107 0.22345 0.34113
Private test set - bases 1 to 91 0.22434 0.34368
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Table 8. The highest AUC value of 0.938 was achieved by the
GCN_GRU pre-trained model, while the model developed with
GCN_CNN with residue connection obtained the lowest ratings at
0.838. For three more DNN-based models, the scores obtained dif-
fered from the two performance values. The three models achieved
an AUC rate of 0.928, 0.925, and 0.844 for GCN_GRU weighted loss,
GCN_GRU, and GCN_CNN, respectively.
4.2. Model performance benchmarking

The proposed model has been tested according to benchmark
the different proposed model based on the conditions given in
Table 1. The proposed GCN_GRU model outperformed the
GCN_CNN model by a large margin on both private and public
tests. To better understand the model performance, we calculated
the MSE and plotted the labels versus predictions for each task. The
MSE for the reactivity, the degradation rate with Mg at pH = 10,
and the degradation rate with Mg at 50 �C are 0.087, 0.255, and
0.125, respectively. From the MSE scores, we observed that the
proposed model performed much better in predicting reactivity
than predicting degradation rate with Mg at pH = 10. Thus, per-
forming task-specific optimizations, such as stopping some tasks
early or training a separate model to only predict degradation rates
at pH = 10, may be beneficial. As shown in Fig. 7, the GCN model
generally underestimated the degradation rate and rarely pre-
dicted any degradation rate of more than 5. In the training exam-
ple, bases with a degradation rate of more than 5 appeared with
Table 8
Receiver operating characteristic (AUC) score for the
proposed models’ architectures.

DNN Model Architecture ROC-AuC

GCN_GRU 0.925
GCN_CNN 0.844
GCN_CNN (with residue connection) 0.838
GCN_GRU (weighted loss) 0.928
GCN_GRU (pre-trained embedding) 0.938
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a low frequency (less than 0.2 %), which explains why the proposed
model barely predicted any high degradation rate.Fig. 8.

During our experiment, a consistent performance gap between
the public test set and the private test set was observed, similar to
whatwas observed in the Kaggle competitionmodels. TheMCRMSE
on the private test set is 0.12 higher than that on the public test set.
The measurement of degradation rates is up to 91 bases in the pri-
vate test set and is only up to 68 bases in the public and training sets.
Thus, the authors hypothesized that bases 69–91 in the private test
set would have a higher loss, contributing to the private test set’s
worse performance. We calculated the MCRMSE scores and plotted
labels versus predictions for thefirst 68bases andbases 69–91 in the
private test set, respectively. Surprisingly, as shown in Fig. 6, our
model performed better on bases 69–91 than in the first 68 bases.
The MCRMSE for the first 68 bases is 0.405, and the MCRMSE for
the bases 69–91 is only 0.317. Thus, the later bases do not contribute
to the worse performance on the private test set.

Therefore, the authors hypothesized that the sequences of the
two test sets are distinct, which contributes to the gap in perfor-
mance. We analyzed the training sequences, public test set, and
private test set using dimension reduction techniques following
the suggestions from the Kaggle posts. We encoded the sequences
as an array of integers and performed t-SNE dimensionality reduc-
tion on them. The sequences of the private test set are truncated to
107 bases to ensure they have the same dimension as that in the
training and public test sets. The result of the t-SNE reduction on
sequences is plotted in Fig. 9. We found that the private test
sequences were sequences that perform a completely different dis-
tribution compared to the training and public test sets. Although
we truncated the sequences in the private test set, all sequences,
including the training, public, and private test sets, are not com-
plete RNA molecules and were truncated before they were
released. Thus, we believe the distribution difference contributes
to the worse performance on the private test sets. We believe that
data augmentation techniques are necessary to further improve
the model and help it generalize better on the private test sets.

Additionally, a key important argument is that reducing the
length of the poly(A) tail can have beneficial and significant roles
in cell biology and vaccine production as observed in this study.
Short poly(A) tails are needed in embryos to repress translation
until the appropriate stage of development is reached (Subtelny
et al., 2014). Furthermore, short poly(A) tails that tend to denote
mRNAs are essential for early development and may be used to
control translation in a dose and time-dependent manner (Gohin
et al., 2014). Thus, the optimal length of poly(A) was considered
in this study and is reported to be 250.



Fig. 7. General reactivity score (Left), degradation likelihood prediction after incubation at 10pH with magnesium (middle), and degradation likelihood prediction at a
temperature of 50 �C with magnesium.

Fig. 8. Predictions results of private test score; (a) The first 68 bases in the private test set and (b) Bases 69–91 in the private test set. The green represents the general
reactivity score, the orange represents the likelihood of degradation after incubation at high pH with magnesium, and the blue denotes the likelihood of degradation at high
temperature with magnesium.

Fig. 9. t-SNE reduction on the sequences in the training set, public test set, and private test set.
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5. Model analysis and validation

5.1. Inferential analysis

We can prove the model from several different angles to cap-
ture the model’s behavior and understand where the model sees
necessary signals for its prediction task and how bases at different
positions can affect the model’s attention. We break down our
inference tasks into three buckets: point to point analysis, point
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to sequence analysis, and sequence to point analysis. We restricted
our focus to a single reactivity metric (reactivity) from the overall
five available in each analysis. Each of these analyses could be
extended to the other reactivity metrics as well.

5.1.1. Point to point analysis
In point-to-point analysis, we aim to understand the effect the

original base at position B has on its reactivity. The effect is nor-
malized by the predicted reactivity values that position B could
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have in all its perturbations. Once the proposed ICM has been run,
we have a L � 4 � S � 5 � L multi-dimensional array, where L is the
sequence length (107) and S is the number of sampled sequences
(250). To understand the effects of base position B on its reactivity,
we must compute the original normalized reactivity, which is the
original reactivity normalized by the reactivities of all perturbed
reactivities at position B. To put it more concretely, we compute
the following mean:

hB ¼ 1
4

X
N

l Bð Þ
B;N ð2Þ

where m is the vector of reactivity values, the B in superscript is the
index of m, the B in the subscript is the base position we have per-
turbed, and N is the modified base value perturb to. The original
reactivity at position B is normalized as follows:

dB;O ¼ l Bð Þ
B;O � hB ð3Þ

where O is the original reactivity value at position B. We display a
sampling of the sequence reactivity profiles produced using this
method. The other sequences displayed similar behavior to the
sequences displayed here.

During the experiments, each sequence expressed noticeably
different normalized effects across their bases. The effects for
sequence 135, for example, oscillate between slightly below 0 to
0.4 for most of its positions, but position 75 expressed a large effect
size, at around 1. Meanwhile, several base positions in sequence 20
have a noticeable effect size relative to 0, with position 20 and
position 75 producing the most pronounced effects.

Interestingly, the profiles of both sequences revealed a large
effect size at 75. To investigate this behavior, we averaged the
absolute normalized effect of each sequence, and the result is dis-
played in the ‘‘Average Absolute Normalized Effect” plot (bottom of
Fig. 10). The average absolute effect confirmed this pattern: posi-
tion 75 appears to have an outsized effect on its reactivity value
relative to other bases, whose averaged effect mellows below 0.4.
Fig. 10. Absolute average base to sequence reactivity plot: (a) effects at position
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Another noticeable pattern is the behavior between the 85th and
100th positions. In most of the sequences, position 80 has a low
effect, position 85 has a slightly higher effect than does position
80, position 90 has more significant effect than does position 85,
position 950s effect drops compared to position 90, position 1000s
effect drops to nearly 0, and finally position 105 has a very slightly
larger effect size than position 100. Recall that in our training data,
we do not have reactivity values for base positions higher than 68.
Thus, the patterns that we see for position 75 and above may sim-
ply be artifacts of our model and our data construction. Upon fur-
ther examination of position 75, we found that the original base
pair was uracil (U) for all 2096 training sequences, which likely
led to a more significant perturbation effect than that in other
bases. In general, it appears that our model suggests that only a
few positions have a large effect (in magnitude) on their reactivity
values, while many of the positions in the sequence, especially near
the middle, have minimal effect on their reactivity scores.

5.1.2. Point to sequence analysis
In point to sequence analysis, we aim to understand the effect of

changing the base value at position B on the rest of the sequence’s
reactivity values and how they vary by the base value we perturb
B. To understand how perturbing base values at position B affects
the whole sequence, we compute the average absolute base to
sequence effect for every possible perturbation at position B.
Specifically, for position B, we compute the 250 sequence reactivity
profiles for all four possible perturbations. We average the absolute
reactivity profile over the 250 sequences for each perturbation, and
thus, we are essentially looking at the effect that perturbing posi-
tion B to base value N has on average upon the reactivity values of
the entire sequence. In concrete terms, the following for perturba-
tion of position B to base value N was computed as follows:

KB;N ¼ 1
250

X
i

KiBN ð4Þ
25 base; (b) at effects position 85 base; and (c) effects at position 100 base.
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where,

KiBN ¼ l jð Þ
B;N

���
���

n oi

j¼1;...;107
ð5Þ

where i is the sequence number, B is the base position we are per-
turbing, N is the base value we perturb to, and j is the position in the
sequence. Thus, KB, N is the vector of average absolute reactivity
effect for perturbing base position B to base value N. We show a
sampling of the results below. Each plot overlays KB, N for N = A,
C, G, U for a select few positions B. Note that the positions for which
we have selected plots show patterns similar to their relative neigh-
bors’ average absolute base to sequence profiles.

Fig. 10 shows that positions and the sequence have some simi-
lar features and some markedly different features. All positions
have tapering effects; that is, the influence of a given position B
on reactivity values of positions far away from B is negligible.
Changing the base value of position 25, in particular, has steep
effects on very close neighbors, with the effect tapering off very
quickly as we move away from position 25 in either direction. posi-
tion 100 reflects a similar pattern. However, position 85 appears to
sustain its effect more sharply because it results in spikes of reac-
tivity for bases more than 15 positions away. Generally, these pat-
terns show the model does not appear to influence changing one
base located very far.

Interestingly, the effect size also differs. While positions 25 and
85 appear to have relatively similar effect sizes, around 0.3 to 0.4
absolute effect on reactivity, position 100 appears to much larger
magnitude of effect size, reaching 0.8 when perturbed to U. For
perturbations to other bases, however, its effect size is comparable
to that of positions 25 and 85. This analysis suggests that the
model has a ‘‘short-term” attention span; that is, the model does
not tend to use information from positions far away from B when
predicting the reactivity value of B.

5.1.3. Sequence to point analysis
In sequence to point analysis, we aim to understand the effect of

perturbing the sequence located some distance (offset) away from
a given position in the sequence. Precisely, we measure the reactiv-
ity at position B after perturbing bases +/� offset away from that
position. The authors computed the effect of the perturbation by
subtracting the non-perturbed (old) value from the perturbed
(new) value. These relative effects were computed in a sliding win-
dow fashion across all base positions in a sequence. We group
these effects by the offset and the base type (U, C, A, or G) that
the base was perturbed. We can then compute the mean effect of
perturbations at the offset for all base positions and sequences.
The results are displayed in Fig. 11.
Fig. 11. Experimental results analysis for a sequence to base. Each figure describes the
describes the mean absolute difference, whereas the right figure describes just the mea
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As depicted in Fig. 11 (left), the perturbations with small offsets
have the most significant average absolute effect, with the maxi-
mum effect realized when perturbing the reference base itself (off-
set = 0). The effect dissipates as the offset increases in magnitude,
meaning that moving the perturbation further and further away
corresponds to a decrease in the average effect. This makes sense
intuitively because the chemical properties of a base distant in lin-
ear sequence will, on average, have a smaller effect on the chemical
properties of the reference base. This result serves primarily as a
sanity check that the model behaves as we might expect it.

Fig. 11 (right) depicts the mean raw difference in the predicted
perturbation. We notice that the mean raw effects of perturbing
bases beyond about +/� 25 are near zero, which suggests that
the absolute effect observed (left) at those offset values may sim-
ply be noise-amplified by the absolute value. However, within an
offset of magnitude 10, we do see a noisy effect on the reactivity.
Interestingly, we see a variable effect based on the perturbation
type. On average, perturbations to U and A (red and purple traces)
appear to have a local destabilizing effect (increase the base’s reac-
tivity), while perturbations to C and G appear to have local stabiliz-
ing effects. This finding confers a biological understanding of RNA
base pairing. Bases G and C form a base-pair bond with three
hydrogen bonds, whereas bases A and U form a base-pair bond
with two hydrogen bonds. Thus, a perturbation to A or U nearby
has the likely effect of decreasing the number of base pair bonds
by one, which has a destabilizing effect. Conversely, a perturbation
to G or C nearby has the likely effect of increasing the number of
base pair bonds by one, which has a stabilizing effect. Although
these observations are preliminary, it is encouraging, because it
indicates that our model appears to understand these differences
in base pairing despite never being ‘‘taught” the underlying chem-
istry of the base pair bonding.

5.2. Model complexity

The recent success of neural networks has sparked renewed
interest in sequence-based prediction and drug discovery research.
Deep learning’s success in a wide variety of fields is due to the
rapid development of computational resources (e.g., GPU), the
large training data availability, and the DL effectiveness in extract-
ing latent representations from data (e.g., texts (Akbar et al., 2021),
video, and image (Muneer et al., 2021).

Encouraged by the CNNs success in the computer vision field, a
wide number of methods are being developed concurrently that
redefine the concept of convolution for graph data. These tech-
niques are referred to as convolutional graph neural networks
(ConvGNNs). ConvGNNs and recurrent graph neural networks
effect of perturbing a base, offset bases away from the reference. The left figure
n difference.
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(RGNN) are closely related. Rather than iterating over node states
using contractive constraints, ConvGNNs address cyclic mutual
dependencies structurally by employing a set number of layers
with varying weights in each layer. Since GCN (Singhal, 2020) over-
came the barrier between spectral and spatial approaches, spatial-
based methods have grown in popularity in recent years due to
their remarkable efficiency, flexibility, and generality. To improve
the ConvGNNs training efficiency, several methods have been pro-
posed in the literature, such as

GCN (Singhal, 2020) is frequently essential to save the entire
graph’s data and intermediate transitions in memory. However,
the full-batch training technique for ConvGNNs is greatly affected
by the memory overflow problem, which is magnified when a
graph has millions of nodes. GraphSage (Hamilton et al., 2017) pre-
sents a batch-training method for ConvGNNs in order to save
memory. It samples a tree rooted at each node using a fixed sample
size by recursively expanding the root node’s vicinity by K steps.
GraphSage calculates the root node’s hidden representation for
each sampled tree by hierarchically aggregating hidden node rep-
resentations from bottom to top. A different work suggested by
(Giulini and Potestio, 2019) uses CNN for structural analysis of pro-
teins in molecule, and the network-based method takes less than
5 min to process the full training set and predict the appropriate
eigenvalues on a single-core CPU.

As shown in Table 9, GCN (Singhal, 2020) is the baseline that
conducts full-batch training. GraphSage saves memory by sacri-
ficing time efficiency as a cost. Meanwhile, when K and r increase,
the time and memory complexity of GraphSage increases exponen-
tially. However, in our suggested hybrid model, we used Graph-
Sage, which requires significantly less computational memory
than CNN. Complexity reduction is critical for deploying large
CNNs models in mRNA sequence degradation with limited hard-
ware and energy resources.

5.3. Comparison with the literature

To predict the COVID-19 mRNA vaccine degradation, we were
unable to find any research contribution that has been evaluated,
but we have compared our contribution with the two recently pro-
posed models for mRNA reactivity prediction. However, authors in
(Singhal, 2020) have suggested three single-DL methods (LSTM,
GRU, and GCN) to predict mRNA vaccine degradation. The authors
reported that among the three methods developed GRU performed
the best with an accuracy of 76%. However, the critical drawback is
that a single algorithm has limited accuracy and cannot capture the
mRNA degradation features. Additionally, the authors did not con-
sider the stability of the vaccine and only showed the reactivity
prediction, unlike our proposed study that suggested two hybrid
DNN models and conducted extensive experimentation to predict
the RNA sequence degradation and the stability affect was consid-
ered by analyzing B cell epitopes present in the mRNA with a dif-
ferent position. This proves the significance of the model from
several different angles to capture the model’s behavior and under-
Table 9
Comparison of the time and memory complexity of ConvGNN learning models.

Complexity GCN (Singhal,
2020)

GraphSage
(Hamilton et al.,
2017)

CNN (Giulini and
Potestio, 2019)

Time O Kmdþ Knd2
� �

O rKnd2
� �

N/A

Memory O Kndþ Kd2
� �

O srKdþ Kd2
� �

N/A

Where n denotes the number of nodes in total. The total number of edges is denoted
by m. The number of layers is denoted by K. The batch size is denoted by s. r is the
number of neighbors that each node is sampled. For simplicity, the dimensions of
the node’s hidden features, represented by d, remain constant.
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stand where the model sees necessary signals for its prediction
task and how bases at different positions can affect the model’s
attention.

Additionally, authors in (Qaid et al., 2021) proposed a bidirec-
tional GRU integrating with the LSTM model. This model has been
tested and evaluated with the same benchmark dataset provided
by Stanford University scientists. However, only the MCRMSE score
was reported, and no further experimentation was conducted on
temperature storage conditions and vaccine stability, which is a
vital element to evaluate the model behavior and its effectiveness.
This key limitation makes the model suggested in (Qaid et al.,
2021) not practical for accurately predicting the vaccine stability
under real storage conditions and during temperature excursions.
Therefore, a further comparison is conducted in the next section
with the top state-of-the-art Stanford models.

5.4. Comparison with the Winning Models from Kaggle

The mRNA dataset used in this study is derived from a Kaggle
competition, whichwas launched on 11 September 2020 and lasted
26 days. However,we have conveniently compared ourmodel’s per-
formance to others from the competition. Many of the top-
performing competitors have released informal write-ups describ-
ing their approaches and general architectures. In Fig. 12, we com-
pare the proposed best hybrid model’s performance (the GCN with
GRU model) against the top-three performing models based on
MCRMSE measure to ensure fair comparative analysis since this
measure was used in ‘‘OpenVaccine: COVID-19 mRNA Vaccine
Degradation Prediction” competition. We observed that our best
model outperformed the winning models from the Kaggle competi-
tion, although only by 0.04MCRMSE on the private test set. Notably,
many of the leading models achieved very similar loss scores
(around 0.34 overall), and the difference from 1st to 10th place is
marginal (0.00375). This observation suggests that the top-
performing models maxed out their performance at around the
same level.Whatmight account for the gap in performance between
ourbestmodel and thebestmodels of theKaggle competitionwould
be interesting to explore. As a disclaimer, we observed that because
wewere not participating directly in the competition,weprioritized
constructing and interpreting the proposedmodels rather than only
improving the proposed scores on the Kaggle leaderboard.

Nevertheless, a comparison of the different approaches is also
useful. Many of the top competitors have reported basing their
final models on an architecture released about midway through
the competition: ‘‘AE pretrain + GCN + Attention.” This architecture
uses a graph convolutional network fit with attention modules. Its
weights are pre-trained using an auto-encoder-like and unsuper-
vised process wherein inputs are reconstructed.
Fig. 12. Comparison of our top-performing model (far right) against the three top-
performing models from the Kaggle competition.
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After random dropout in the sequence, we observed that this
approach is similar to what we performed when pretraining the
node-embedding in the GCN. Indeed, pre-training the model to
recover details of the RNA sequence appears to benefit training.
We also note the addition of attention in this architecture. Future
work could investigate the benefits of using attention with our
model architecture. Another general theme of the top-performing
models is extensive and creative data augmentation. As mentioned
earlier, the overall dataset is relatively small, and thus, data aug-
mentation strategies would be essential to avoid pitfalls like over-
fitting. Fig. 9 shows that the private test set is distributional
distinct from the training and public test sets and thus, any meth-
ods that successfully augment training data to account for this dif-
ference would benefit model generalization to the private test set.
Competitors have reported various data augmentation strategies
such as pseudo labeling, inverting the sequence, and perturbing
the RNA sequence at various base pairs. Future work could investi-
gate robust and effective methods for data augmentation in RNA
structure data.

6. Conclusions

We investigated the utility and interpretability of hybrid deep
neural network architectures for the relevant problem of predict-
ing mRNA sequence degradation. We find that GCNs consistently
outperformed standard CNN architectures for the task of base-
wise reactivity prediction. However, in silico vaccine prediction
and design had a high efficacy value and emphasized vaccine sta-
bility considering B-cell and T-cell epitopes. Two-hybrid DNN algo-
rithms were proposed in this research. These algorithms used the
AI-based approach to rapidly predict mRNA base-resolution degra-
dation of RNA at each base of an RNA molecule, thereby imple-
menting a new method for achieving much higher speed and
efficiency in silico vaccine design. The aim is to predict the possible
vaccine mRNA degradation directly without having to perform a
large number of different predictions. We can avoid at least 95 per-
cent of unnecessary predictions by allowing the machine to evalu-
ate and predict the reactivity using this AI-based approach.
Additionally, increasing the availability of ground truth data,
rational data augmentation strategies, and a better understanding
of distributional shifts across different datasets would be most
beneficial in developing and training better models. Despite exist-
ing data and modeling challenges, inference and preliminary inter-
pretation of the proposed trained model still provided valuable
insights. When predicting a given position B, we found that the
model focuses on the identity of relevant bases near B’s vicinity.
The proposed approach allows a researcher to predict base-wise
reactivity, degradation at high temperature, and pH with magne-
sium for a new virus and verify its quality in less than an hour.

Additionally, the model can recover without prior knowledge,
the effects of physical and chemical differences or properties in
base pair bonding characteristics (i.e., the H-bond count in G-C ver-
sus A-U). These preliminary investigations suggest a well-trained
model with access to a representative dataset could provide valu-
able clues to researchers working to understand essential mRNA
degradation factors. In future, we aim to incorporate the improved
therapeutic efficacy of mRNA COVID-19 vaccine. Finally, a well-
trained model may guide engineering insights into the process of
developing synthetic mRNA molecules.

7. Data Availability Statement

The proposed model source code is available on https://git-
lab.com/hackshields/rna-paper, and the dataset used in this study
also available on https://www.kaggle.com/c/stanford-covid-vac-
7431
cine. We expect researchers to add new ideas to take this model
in interesting directions.
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