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Abstract: Lattice structures have excellent mechanical properties and can be designed by changing
the cellular structure. However, the computing scale is extremely large to directly analyze a large-size
structure containing a huge number of lattice cells. Evaluating the equivalent mechanical properties
instead of the complex geometry of such lattice cells is a feasible way to deal with this problem. This
paper aims to propose a series of formulas, including critical structural and material parameters, to
fast evaluate the equivalent mechanical properties of lattice structures. A reduced-order model based
on the finite element method and beam theory was developed and verified by comparing it with
the corresponding full model. This model was then applied to evaluate the equivalent mechanical
properties of 25 types of lattice cells. The effects of the material Young’s modulus and Poisson’s
ratio, strut diameter, cell size, and cell number on those equivalent mechanical properties were
investigated and discussed, and the linear relationship with the material parameters and the non-
linear relationship with the structural parameters were found. Finally, a series of analytical-fitting
formulas involving the structural and material parameters were obtained, which allows us to fast
predict the equivalent mechanical properties of the lattice cells.

Keywords: reduced-order model; lattice structure; equivalent mechanical properties; Young’s modulus;
shear modulus; Poisson’s ratio

1. Introduction

Lattice structures, emerging with additive manufacturing, have become a new kind of
“star structure”. The expected structural physical properties can be obtained by changing
the cell structures and array mode [1–3], which implies that the requirements on material
properties can be greatly lowered. Lattice structures have many excellent mechanical and
thermal properties, such as light weight, large specific strength, and stiffness, and thermal
insulation, which allows the lattice structures to gather more and more attention and have
broad application prospects in the industry [4–6].

The mechanical performances of lattice structures depend on not only the materials
but also the geometry, such as the strut dimensions [7,8], volume fraction [9,10], topology as
well as array mode [11–13]. Hajnys et al. [14] designed and tested several lattice structures
with different cellular structures and array modes and found that the tetragon vertex lattice
structure showed excellent mechanical properties. Han et al. [15] prepared Co–Cr alloy
porous scaffolds with cubic close-packed (CCP), face center cube (FCC), body center cube
(BCC) and spherical hollow cube (SHC) cells by SLM technology and evaluated their
compression properties. The results showed that the compressive modulus and strength of
FCC, BCC, SHC, and CCP scaffolds were in descending order. In terms of the influence of
the lattice volume fraction on the mechanical properties, Hazeli et al. [16] optimized the
volume fraction of porous lattice structures (PLS) using finite element analysis to obtain the
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maximum compressive strength A critical need existing in engineering, is to improve the
usability of a structure under the insurmountable limitation of materials. To meet this need,
many efforts have been done to understand the effects of the geometry-related quantities
on the performances of lattice structures and optimize the performance of interest. Xu
et al. [17] designed six types of graded lattice structures, combining the simple cubic cell,
body-centered cubic (BCC), and edge-centered cubic cell and found the structures with
appropriately placed cells could significantly reduce the von Mises stress. Liu et al. [18]
studied the mechanical performance of the BCC cell by finite-element simulation and
compression tests, in which the shear band formation was suppressed by optimizing the
strut shape. Han et al. [19] presented a study in which the compressive strength, modulus
of elasticity, absorbed energy, and fracture behavior of the lattice structure can be fine-tuned
by designing the volume fraction and size grading. Bai et al. [20] designed an AFCC (all
face-centered cubic) cell, which showed a much higher elastic modulus and yield strength
than the BCC cell. With more functional needs of a structure in a certain application, many
ingenious and novel cells and lattice structures have been designed and validated, such
as the tetrakaidecahedron lattice structure with good compressive and energy-absorption
properties [21]; the spherical-node-body-centred-cubic (SNBCC) cell [7] and graded-strut
body-centred cubic (GBCC) cell [22], with less stress concentration and good stiffness; the
layered slice and rod-connected mesh structure (LSRCMS), with good biological properties
in bone implants [23]; and the continuous graded gyroid cellular structure (GCS) with
novel deformation and mechanical properties [24].

A lattice structure used in engineering usually includes a huge number of cells, and
the performances of interest are usually some equivalent mechanical properties. However,
analyzing this structure directly is very time-consuming and even unaffordable due to the
complex geometry of the cells. Consequently, obtaining equivalent properties of lattice
cells is very useful for designing a large-size lattice structure [25–27]. The critical theory
for the equivalent properties of lattice cells is to develop effective reduced-order models
and formulas, which can fast predict the equivalent properties. Tancogne-Dejean et al. [28]
derived an analytical expression for the macroscopic elastic stiffness tensor of BCC using
strain energy-based homogenization. Červinek et al. [29] presented several computational
approaches to quasi-static compression loading for the BCC lattice structure, based on
the Timoshenko beam theory and Euler–Bernoulli beam theory, and their accuracies were
validated by experiments and finite-element simulations. Wang et al. [30] developed a
reduced formula to predict the mechanical properties of porous function gradient scaffold
(PFGS) structures, which involves elastic modulus, yield strength, and porosity.

Mechanical performances of lattice structures are very concerned with engineering.
However, the computational cost to analyze a large-size design containing a huge number
of lattice cells is extremely high. Therefore, a reduced but accurate-enough model predicting
the equivalent mechanical properties would be of great significance and usefulness to such
designs. This paper aims to develop a mechanical reduced-order model for lattice structures
and contribute a series of analytical formulas involving critical structural and material
parameters to fast predict the equivalent mechanical properties. Those formulas would
greatly reduce the computing scale of mechanical analysis of large-size structures with a
huge number of lattice cells and then expedite the design and optimization procedures
for engineers.

2. Modeling and Validation
2.1. Mechanical Reduced-Order Model

Lattice structures usually consist of a huge number of properly arrayed cells, such as
the BCC lattice cell shown in Figure 1a. For a kind of lattice structure, in which the struts
are in a rod-like shape and usually with a relatively large aspect ratio (ratio of length to
diameter), this geometric characteristic allows us to develop a reduced-order model to
evaluate the mechanical properties of the lattice structures. A beam-element theory was
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applied to develop the mechanical reduced-order model, which is then used to evaluate
the equivalent mechanical properties of lattice cells.
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Figure 1. (a) A BCC lattice structure and (b) a beam element placed in the natural coordinate system.

Figure 1b shows a three-dimensional beam element placed in the natural coordinate
system, for which three kinds of deformation behaviors, including axial displacement,
torsion, and pure bending, are considered, and the generalized displacement qe and
generalized force Pe at the end nodes of the element are given as:

qe = [u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2]
T

Pe = [Px1 Py1 Pz1 Mx1 My1 Mz1 Px2 Py2 Pz2 Mx2 My2 Mz2]
T (1)

where u, v, w, and θ denote the components of displacement and flexural angle, respectively,
and P and M represent the components of concentrated force and moment, respectively.
Applying the principle of virtual work:

δUe − δWe = 0 (2)

where the virtual work of the stress is given as:

δUe = δεTσ = δqeT
(∫

Ωe
BTDBdV

)
qe (3)

and of the generalized node force as:

δWe = δqeTPe (4)

we have the local stiffness equations as:(∫
Ωe

BTDBdV
)

qe = Pe (5)
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Here, D is the stiffness matrix of the material, and B is the geometric matrix, which is
given as:

Be = Bt =
1
L
[
−1 1

]
(6)

for the axial displacement and torsion and

Bb = −y
[

12x−6L
L3

6x−4L
L2 − 12x−6L

L3
6x−2L

L2

]
(7)

for the pure bending in Oxy surface, similar to the bending in Oxz.
The left-hand side term of Equation (5) can yield the stiffness matrix of a beam

element in the natural coordinate system, in which the axial displacement stiffness matrix is
given as:

K∗e =
EA
L

[
1 −1
−1 1

]
(8)

and torsion stiffness matrix as:

K∗t =
GJ
L

[
1 −1
−1 1

]
(9)

and the pure bending stiffness matrix in the Oxy surface as:

K∗b =
EIz

L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (10)

Here, E and G are Young’s modulus and shear modulus of the used material, respec-
tively; L is the strut length; A, J, and Iz are the cross-sectional area, torsion constant, and
second moment of the area with respect to the natural z-axis, respectively, and A = πD2/4,
J = πD4/32, and Iz = πD4/64 for a circular cross-section. Assembling the aforementioned
local stiffness matrices, we have the total local stiffness matrix K* of the beam element
in the natural coordinate system, undertaking a transformation of coordinates using a
transformational matrix T, and further obtaining the stiffness matrix of the beam element
in the global system as:

Ke = TTK∗T (11)

where T is a rotation matrix determined by the pose of the beam element. Assembling each
element stiffness matrix, we have the stiffness matrix K of the lattice structure and then the
global linear equations K·q = P, solving these equations to finally obtain the displacement
and flexural angle of each node.

2.2. Accuracy Verification

Since the effectiveness of the beam theory depends on the aspect ratio of the struts in
lattice cells, the accuracy of the reduced-order model is verified by comparing the computed
mechanical responses of a lattice cell with different aspect ratios with those computed
by the corresponding full model (a finite element model with solid elements). Here, the
mechanical responses to compression and shear loadings on a BCC cell, for instance, with
the aspect ratio of 5, 10, and 20 and a fixed dimension of 10 × 10 × 10 mm3, as shown in
Figure 2, are computed and compared. For the compression loading, a given displacement
w = −10−5 m is applied to the top four nodes, and the displacement freedom of the bottom
four nodes along the z-direction is limited; for the shear loading, u = w = 10−5 m is given to
the nodes on the top and the right surfaces, respectively, and the opposite displacement
loadings are applied to the opposite corresponding surfaces. Both models use the material
with Young’s modulus E0 = 110 GPa and Poisson’s ratio µ0 = 0.34, and the full model is
computed by using C3D8R solid elements on a mesh resolution with an averaged grid



Materials 2022, 15, 2993 5 of 20

size of 0.15 D (D denotes the strut diameter of the cells). The code of the reduced-order
model is homemade and runs on the MATLAB 2019B software, and the full model for
comparison verification is computed by using the ABAQUS 6.14-4 software. The computer
is configured as the processor of Intel(R) Core(TM) i5-7200UCPU@2.50GHz 2.71GHz and
RAM of 12GB.
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Table 1 lists the computed compressing forces and shearing forces of the reduced-order
model and the full model, as well as the differences between them. Taking the full model
as the benchmark, the reduced-order model shows 5.98% and 4.56% differences in the
compressing and the shearing tests with an aspect ratio of about 5, respectively, and the
differences are reduced to 1.25% and 1.18% when the aspect ratio is about 10 and further
reduced to 0.68% and 0.67% when the aspect ratio is about 20. The results indicate that the
reduced-order model can give an excellent evaluation of the mechanical responses of lattice
structures with a large aspect ratio.

Table 1. The computed compressing and shearing responses of the reduced-order model and the
full model.

Loading Aspect Ratio 5 10 20

Compressing
Force(N)

Full model 7.135 0.4257 0.02647
Reduced-order model 6.708 0.4204 0.02629

Absolute error (N) 0.427 0.0053 0.00018
Relative error 5.98% 1.25% 0.68%

Shearing
Force(N)

Full model 27.801 1.697 0.1044
Reduced-order model 26.534 1.677 0.1051

Absolute error (N) 1.267 0.081 0.0007
Relative error 4.56% 1.18% 0.67%

3. Equivalent Mechanical Properties

The mechanical response of a lattice structure depends on the cell topology, structural
parameter, used material, and even the number of arrayed cells. Meanwhile, the equivalent
mechanical properties usually show as anisotropic due to the asymmetric cell structure
even though the used material is isotropic. In this section, we evaluated the equivalent
mechanical properties of 25 types of lattice cells given in Figure 3 (their nomenclatures are
listed in Appendix A) and investigated the effects of the material Young’s modulus and
Poisson’s ratio, strut diameter, cell size, and the number of arrayed cells on the equiva-
lent Young’s modulus, shear modulus, and Poisson’s ratio. According to the structural
symmetry, these cells can be divided into two categories: cubic-symmetry structure (includ-
ing BCC, VC, VBCC, OC, TCC, RC, FPT, ECC, FECC, AFCC, TC, BCCT) and transverse
isotropic structure (including BCCF, FCC, FCCZ, FBCC, FFC, VFC, FC2R, TAC, RD, BCCZ,
BCCE, THC, BCCD).
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3.1. Method of Numerical Experiments

The equivalent Young’s modulus, shear modulus, and Poisson’s ratio of a lattice
structure can be evaluated by carrying out compression and shear tests in three dimensions.
Performing the compression test in the i-dimension can yield Young’s modulus Ei and
Poisson’s ratio µij, and the shear test in the i-j plane can yield the shear modulus Gij.
Figure 4 shows the schematics of the compression test in the z-dimension and shear test in



Materials 2022, 15, 2993 7 of 20

the x-z plane, respectively, and thus the equivalent Young’s modulus Ez, Poisson’s ratio µzx
and µzy, and shear modulus Gzx can be calculated as follows:

Ez =
F/(Lx Ly)

w/Lz

µzx = u/Lx
w/Lz

µzy =
v/Ly
w/Lz

Gzx =
F/(Lx Ly)

α+β

(12)

where Lx, Ly, and Lz are the size of the lattice structure in the x-, y-, and z-dimension,
respectively, and u, v, and w denote the average displacements in the corresponding
dimension, and α and β are the shear deformations. F denotes either the total compressing
force or the total shearing force on a loading surface. The displacement loading was applied
in the same way introduced in Section 2.2, to the compression and the shear tests, and let
both the compression strain and shear strain be smaller than 0.2%. Additionally, Figure 4
only shows a lattice structure with one cell. However, these numerical experiments will be
carried out on a lattice structure with much more cells because the equivalent mechanical
properties are not always independent of the number of cells. This issue will be examined
and discussed in detail in the following section.
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3.2. Effect of the Number of Lattice Cells

Most equivalent mechanical properties, or at least some of their components, depends
on the number of lattice cells due to the mass distribution that must be non-homogeneous,
as a consequence, the equivalent mechanical properties can change with the number of
cells even though the used material is isotropic and the cells are arrayed periodically.
However, the value of the equivalent mechanical properties always tends to be stable with
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the increase in the number of lattice cells, owing to the mass distribution usually being
more homogeneous in a lattice structure with more cells. In this section, the mechanical
tests are carried out on the lattice structures with cells from 1 × 1 × 1 to 10 × 10 × 10,
where the displacement loading is set to 10−5 m, the cell size is 10 × 10 × 10 mm3, the strut
diameter is 1 mm, and Young’s modulus of the used material (TC4 for example) is 110 GPa
and Poisson’s ratio is 0.34.

The equivalent Young’s modulus, shear modulus, and Poisson’s ratio of the given
25 cells are evaluated from the corresponding lattice structures with different numbers of
cells. Figure 5 shows the changes of the equivalent mechanical properties with the size of
the lattice structures (only shows the representative ones). Figure 5a shows the tendency
of Young’s modulus, Ez for example, presenting three kinds of characteristics: going up
and then becoming stable (including BCC, BCCF, FC2R, TCC, ECC, THC, TC, BCCD, and
BCCT), dropping down and then becoming stable (including VC, FCC, FCCZ, VBCC, FBCC,
VFC, RD, RC, FPT, BCCZ, BCCE, FECC, and AFCC), and keeping unchanged (cells FFC,
OC, and TAC). The equivalent Poisson’s ratio also presents those characteristics of Young’s
modulus, as shown in Figure 5b. For example, µzx of FCC, FCCZ, VBCC, RD, FPT, BCCZ,
AFCC, and THC are positive, and increase and then become stable with the increase in the
lattice size, while µzx of BCC, BCCZ, FBCC, FC2R, TCC, RC, ECC, BCCZ, TC, BCCD, and
BCCT drop down and then they tend to be stable. Moreover, µzx of VC, FFC, VFC, OC, TAC,
and FECC are insensitive to the lattice size. Furthermore, the equivalent Poisson’s ratio can
also be greater than one, zero, and even negative [31,32], such as FC2R (µzx and µzy) and
RD (µyz and µxz) are greater than one, VC (µxy, µxz, µyx, µyz, µzx, and µzy), VFC (µxz, µyz,
µzx, and µzy), TAC (µxz, µyz, µzx, and µzy), and FECC (µxy, µxz, µyx, µyz, µzx, and µzy) are
zero, and FCC (µxy, and µyx), FCCZ (µxy, and µyx), FBCC (µxy, and µyx), FFC (µxy, and µyx),
FC2R (µxy, and µyx), and RD (µxy, and µyx) are negative. These indicate that the equivalent
Poisson’s ratio mostly depends on the structure of the cell itself rather than the Poisson’s
ratio of the used material, but not for all. This issue will be examined in the next section.
The shear modulus, as shown in Figure 5c, also presents those characteristics of Young’s
modulus, such as Gzx, for example, of BCC, BCCF, VBCC, FC2R, TAC, TCC, BCCZ, BCCE,
TC, BCCD, and BCCT increase and then become stable with the increase in the lattice size,
VC, FCC, FCCZ, FBCC, VFC, RD, RC, FPT, ECC, FECC, AFCC, and THC decrease and
then become stable, and FFC and OC remain unchanged. Additionally, the tendencies of
the shear modulus in the same cell can be different, such as Gzx and Gxy in FBCC. The
conclusion that the equivalent mechanical properties of lattice structures can vary with the
number of cells was also claimed in [33,34], and the specific relationship greatly depends on
the cellular structure. However, all of the equivalent mechanical properties are converged
with the increase in the lattice size, yielding essentially stable Young’s modulus, Poisson’s
ratio, and a shear modulus at 8 × 8 × 8. The reason is, that the boundary effect becomes
weaker and the structure becomes more homogeneous in the macro perspective as the
number of cells becomes larger. Thus, the number of cells 8 × 8 × 8 is used to examine the
further effects on the mechanical properties in the next.

3.3. Effect of Material Properties

To examine the effect of material properties on the equivalent mechanical properties,
we sweep Young’s modulus E0 of the used material from 80 to 160 Gpa and Poisson’s ratio
of µ0 from 0.2 to 0.8 in the lattice structures with 8 × 8 × 8 cells.

The equivalent Young’s modulus, Poisson’s ratio, and shear modulus are computed
by the reduced-order model, and their responses to the material Young’s modulus are
shown in Figure 6 (only shows cells 1 to 8, and the characteristics are similar for the rest).
The results indicate that both the equivalent Young’s modulus and shear modulus are
varied linearly with the material Young’s modulus E0, and the equivalent Poisson’s ratio
is almost independent of E0. These results are consistent with the beam theory, where the
global stiffness equations K·q = P can be derived as (E0K0)·q = P, where K0 excludes the
material Young’s modulus, and as a consequence, the equivalent Young’s modulus and
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shear modulus linearly depend on the material Young’s modulus, which thus yields an
independent equivalent Poisson’s ratio.
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Unlike the material Young’s modulus, the material Poisson’s ratio µ0 cannot be sepa-
rated linearly from the global stiffness matrix due to the material shear modulus included
in the torsion stiffness matrix. Consequently, the effect of material Poisson’s ratio µ0 on
the equivalent mechanical properties could be complex. We analyzed all the equivalent
Young’s moduli, shear moduli, and Poisson’s ratio but found that those mechanical prop-
erties of most of the given 25 cells are insensitive to the material Poisson’s ratio except
FCC (Gxy), FCCZ (Gxy), FFC (Gxy), TAC (Gyz and Gzx), RD (µxy, and µyx), FECC (Gxy, Gyz,
and Gzx), and THC (Ex, Ey, µyx, µyz, µxy, and µxz), as shown in Figure 7. Even though the
range of the material Poisson’s ratio in the numerical tests was intentionally extended
substantially, 0.2 to 0.8, the largest relative variations are not more than 12% (such as FCC
(Gxy), FFC (Gxy), and THC (µyz)). Actually, Poisson’s ratio of most engineering materials is
smaller than 0.5 and usually around 0.3~0.35 (such as Al, Mg, Ti, and their alloys), in which
the relative variations of the equivalent mechanical properties of all the examined lattice
structures are less than 1%. The global stiffness matrix implies that the material Poisson’s
ratio affects the equivalent mechanical properties via the torsion behavior [35,36], however,
the torsion load is usually much smaller than tension, compression, and bending loads in
the given 25 cells, and as a consequence, the influence of the material Poisson’s ratio on the
equivalent mechanical properties is very limited.
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3.4. Effect of Cell Dimensions

In this section, the effects of strut diameter (D) and cell size (a) on the equivalent
mechanical properties were examined. In the study of the strut diameter, the equivalent
Young’s modulus, shear modulus, and Poisson’s ratio of the given 25 cells are computed
on the lattice structures with 8 × 8 × 8 cells and a cell size of 10 × 10 × 10 mm3 as well
as a swept diameter from 0.5 to 2 mm. The dependence of the equivalent mechanical
properties on the strut diameter was summarized and the representative ones of which
are shown in Figure 8. The equivalent Young’s modulus and shear modulus, as shown
in Figure 8a,b, present a roughly exponential rising tendency with the increase in strut
diameter. The situation of the equivalent Poisson’s ratio, shown in Figure 8c, is rather
complex, and it can go up, drop down, and even keep at zero with the increase in the strut
diameter. The exact relationship between the equivalent mechanical properties and the
strut diameter is complex and depends on the cell structure. However, this relationship can
also be analyzed from the global stiffness matrix K, where the axial displacement stiffness
matrix Ke∞D2, torsion stiffness matrix Kt∞D4, and pure bending stiffness matrix Kb∞D4.
Consequently, the equivalent Young’s modulus and shear modulus are the functions of
the square to the fourth power of the strut diameter. This relationship was also presented
in [29], where the fitted compressive modulus of BCC is proportional to the strut diameter
to the power of 3.5788.
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In the study of the cell size, the numerical experiments were done on the 8× 8× 8 lattices
structures with a cell size of 10 × 10 × 10 mm3 and 20 × 20 × 20 mm3, respectively, and
where the ratio of the strut diameter to the cell size is fixed, that is, keeping γ = D/a
unchanged. We computed all the equivalent Young’s moduli, shear moduli, and Poisson’s
ratio of the given 25 cells, and found the equivalent mechanical properties were unchanged
if the cell structure was magnified proportionally. Figure 9 shows the computed total
loading forces under a displacement loading of 10−5 m of the 25 types of lattice structures.
The results show that all the total loading forces in both the compression and shear tests
on the lattice structures with a larger cell size are just twice as much as those on the lattice
structures with a smaller cell size. Consequently, the equivalent Young’s modulus, shear
modulus, and Poisson’s ratio are the same according to Equation (12). These indicate that
the equivalent mechanical properties depend on the ratio of the strut diameter to the cell
size instead of the cell size.
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3.5. Summary of Equivalent Mechanical Properties

Summarizing the above examinations, we have found: that the equivalent Young’s
modulus and shear modulus linearly depend on the material Young’s modulus E0 and are
insensitive to the material Poisson’s ratio µ0; the equivalent Poisson’s ratio is insensitive to
the material properties; all the examined equivalent mechanical properties are the function
of the ratio of the strut diameter to the cell size γ, and the equivalent Young’s modulus and
shear modulus are the functions of the square to the fourth power of γ. Table 2 summarizes
the data and formulas of the equivalent Young’s modulus, shear modulus, and Poisson ratio
of the given 25 cells. The instances of the listed 25 cells are computed on the corresponding
8 × 8 × 8 lattice structures with a cell size of 10 × 10 × 10 mm3 and γ = 0.1 and using the
material with Young’s modulus E0 = 110 GPa, Poisson’s ratio µ0 = 0.34. The formulas of the
equivalent Young’s modulus and shear modulus are given in a form of E0(bγc) according
to the aforementioned summaries and that of the equivalent Poisson’s ratio is given in
the form of a quadratic polynomial. The parameters of those formulas are determined by
fitting the data of the equivalent mechanical properties, which are computed using γ from
0.05 to 0.2 and E0 from 80 to 160 GPa.

Table 2. The equivalent Young’s modulus, shear modulus, and Poisson’s ratio of the listed 25 types
of cells.

Name Cell Type An Instance of Ei, Gij, and µij Formulas of Ei, Gij, and µij

BCC
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Ex = Ey = Ez = 29.2 MPa
Gxy = Gyz = Gzx = 665 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.494

Ex = Ey = Ez = E0
(
2.58γ3.991)

Gxy = Gyz = Gzx = E0(0.6358 γ2.023)
µxy = µxz = µyx = µyz = µzx = µzy = −0.7048γ2 + 8.22× 10−3γ + 0.4999
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 Ex = Ey = 76.1 MPa, Ez = 80.6 MPa
Gxy = 3.61 MPa, Gyz = Gzx = 688 MPa
µxy = µyx = −0.886, µxz = µyz = 0.916,

µzx = µzy = 0.968

Ex = Ey = E0(4.968 γ3.893), Ez = E0(6.793 γ3.976)
Gxy = E0(0.3285 γ4), Gyz = Gzx = E0(0.6304 γ2.002)

µxy = µyx = 4.529γ2 + 1.061γ− 1.035
µxz = µyz = −3.676γ2 − 0.758γ + 1.027

µzx = µzy = −2.549γ2 − 5.936× 10−2γ + 0.9991
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Table 2. Cont.

Name Cell Type An Instance of Ei, Gij, and µij Formulas of Ei, Gij, and µij
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Ex = Ey = 444 MPa, Ez = 1.17 GPa
Gxy = 3.61 MPa, Gyz = Gzx = 689 MPa
µxy = µyx = −0.358, µxz = µyz = 0.367,

µzx = µzy = 0.969

Ex = Ey = E0
(
0.653γ2.213), Ez = E0

(
1.938γ2.266)

Gxy = E0(0.3286 γ4), Gyz = Gzx = E0(0.6329 γ2.003)
µxy = µyx = 1.772γ2 + 0.1609γ− 0.3918

µxz = µyz = −1.162γ2 − 7.312× 10−2γ + 0.3853
µzx = µzy = −2.554γ2 − 6.028× 10−2γ + 1
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Ex = Ey = Ez = 1.41 GPa
Gxy = Gyz = Gzx = 672 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.267

Ex = Ey = Ez = E0
(
1.482γ2.065)

Gxy = Gyz = Gzx = E0
(
0.6781γ2.047)

µxy = µxz = µyx = µyz = µzx = µzy = −0.3254γ2 − 1.052× 10−3γ + 0.27
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Ex = Ey = 432 MPa, Ez = 318 MPa
Gxy = 672 MPa, Gyz = Gzx = 1.36 GPa

µxy = µyx = −0.386, µxz = µyz = 0.893,
µzx = µzy = 0.654

Ex = Ey = E0(1.661 γ2.639), Ez = E0(2.442 γ2.953)
Gxy = E0

(
0.6748γ2.045), Gyz = Gzx = E0

(
1.275γ2.015)

µxy = µyx = 2.046γ2 + 1.526γ− 0.5568
µxz = µyz = −2.551γ2 − 1.223γ + 1.038

µzx = µzy = −1.27γ2 − 1.504× 10−2γ + 0.6685

FFC

Materials 2022, 15, x FOR PEER REVIEW 15 of 23 
 

 

FCCZ 

444 MPa, 1.17 GPa
3.61MPa, 689 MPa

0.358, 0.367,
0.969

x y z

xy yz zx

xy yx xz yz

zx zy

E E E
G G G
μ μ μ μ

μ μ

= = =

= = =

= = − = =

= =

 

2.213 2.266
0 0

4 2.003
0 0

2

2 2

2 2

= = (0.653 ), = (1.938 )

(0.3286 ), = (0.6329 )

1.772 0.1609 0.3918

1.162 7.312 10 0.3853

2.554 6.028 10 1

x y z

xy yz zx

xy yx

xz yz

zx zy

E E E E E

G E G G E

γ γ

γ γ

μ μ γ γ

μ μ γ γ

μ μ γ γ

−

−

= =

= = + −

= = − − × +

= = − − × +

 

VBCC 

1.41GPa
672 MPa

0.267

x y z

xy yz zx

xy xz yx yz zx zy

E E E
G G G

μ μ μ μ μ μ

= = =

= = =

= = = = = =

 

2.065
0

2.047
0

2 3

= = = (1.482 )

= = = (0.6781 )

= = = = = = 0.3254 1.052 10 0.27

x y z

xy yz zx

xy xz yx yz zx zy

E E E E

G G G E

γ

γ

μ μ μ μ μ μ γ γ−− − × +

 

FBCC 

432 MPa, 318 MPa
672 MPa, 1.36 GPa

0.386, 0.893,
0.654

x y z

xy yz zx

xy yx xz yz

zx zy

E E E
G G G
μ μ μ μ

μ μ

= = =

= = =

= = − = =

= =

 

2.639 2.953
0 0

2.045 2.015
0 0

2

2

2 2

= = (1.661 ), = (2.442 )

= (0.6748 ), = = (1.275 )

2.046 1.526 0.5568

2.551 1.223 1.038

1.27 1.504 10 0.6685

x y z

xy yz zx

xy yx

xz yz

zx zy

E E E E E

G E G G E

γ γ

γ γ

μ μ γ γ

μ μ γ γ

μ μ γ γ−

= = + −

= = − − +

= = − − × +

 

FFC 

68.2 MPa, 72.2 MPa
3.37 MPa, 612 MPa

0.890, 0.917,
0.970

x y z

xy yz zx

xy yx xz yz

zx zy

E E E
G G G
μ μ μ μ

μ μ

= = =

= = =

= = − = =

= =

 

3.896 3.977
0 0

4 2.002
0 0

2

2

2 2

= = (4.486 ), = (6.096 )

= (0.3065 ), = = (0.5605 )

4.686 1.028 1.037

3.815 0.7287 1.027

2.585 6.217 10 1.002

x y z

xy yz zx

xy yx

xz yz

zx zy

E E E E E

G E G G E

γ γ

γ γ

μ μ γ γ

μ μ γ γ

μ μ γ γ−

= = + −

= = − − +

= = − − × +

 Ex = Ey = 68.2 MPa, Ez = 72.2 MPa
Gxy = 3.37 MPa, Gyz = Gzx = 612 MPa
µxy = µyx = −0.890, µxz = µyz = 0.917,

µzx = µzy = 0.970

Ex = Ey = E0(4.486 γ3.896), Ez = E0
(
6.096γ3.977)

Gxy = E0(0.3065 γ4), Gyz = Gzx = E0(0.5605 γ2.002)
µxy = µyx = 4.686γ2 + 1.028γ− 1.037

µxz = µyz = −3.815γ2 − 0.7287γ + 1.027
µzx = µzy = −2.585γ2 − 6.217× 10−2γ + 1.002
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Ex = Ey = 40.0 MPa, Ez = 1.96 GPa
Gxy = 687 MPa, Gyz = Gzx = 8.17 MPa

µxy = µyx = 0.972,
µxz = µyz = µzx = µzy = 0

Ex = Ey = E0
(
3.372γ3.976), Ez = E0

(
1.779γ2)

Gxy = E0(0.6248 γ2), Gyz = Gzx = E0(0.7424 γ4)
µxy = µyx = −2.548γ2 − 4.335× 10−2γ + 1.002

µxz = µyz = µzx = µzy = 0

OC
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Ex = Ey = Ez = 847 MPa
Gxy = Gyz = Gzx = 617 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.327

Ex = Ey = Ez = E0(1.091 γ2.155)
Gxy = Gyz = Gzx = E0

(
0.6161γ2.042)

µxy = µxz = µyx = µyz = µzx = µzy = −0.6344γ2 − 4.878× 10−3γ + 0.3335
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Ex = Ey = 113 MPa, Ez = 499 MPa
Gxy = 221 MPa, Gyz = Gzx = 938 MPa

µxy = µyx = −0.667, µxz = µyz = 0.404,
µzx = µzy = 1.79

Ex = Ey = E0(2.881 γ3.426), Ez = E0(18.53 γ3.588)
Gxy = E0

(
0.373γ2.274), Gyz = Gzx = E0

(
0.9711γ2.058)

µxy = µyx = −4.467γ2 + 5.661γ− 1.183
µxz = µyz = 0.7961γ2 − 1.553γ + 0.5501
µzx = µzy = −7.469γ2 − 2.167γ + 2.078
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Table 2. Cont.

Name Cell Type An Instance of Ei, Gij, and µij Formulas of Ei, Gij, and µij

TAC
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 Ex = Ey = 35.6 MPa, Ez = 864 MPa
Gxy = 611 MPa, Gyz = Gzx = 3.30 MPa

µxy = µyx = 0.972,
µxz = µyz = µzx = µzy = 0

Ex = Ey = E0(2.997 γ3.976), Ez = E0(0.7854 γ2)
Gxy = E0(0.5554 γ2), Gyz = Gzx = E0(0.2995 γ4)
µxy = µyx = −2.548γ2 − 4.335× 10−2γ + 1.002

µxz = µyz = µzx = µzy = 0

TCC
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Ex = Ey = Ez = 233 MPa
Gxy = Gyz = Gzx = 221 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.472

Ex = Ey = Ez = E0(16.92 γ3.894)
Gxy = Gyz = Gzx = E0(9.213 γ3.638)

µxy = µxz = µyx = µyz = µzx = µzy = −2.442γ2 − 7.929× 10−2γ + 0.5043

RD
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Ex = Ey = 350 MPa, Ez = 46.7 MPa
Gxy = 38.2 MPa, Gyz = Gzx = 61.3 MPa
µxy = µyx = −0.001, µxz = µyz = 1.79,

µzx = µzy = 0.240

Ex = Ey = E0(13.13 γ3.589), Ez = E0
(
4.054γ3.985)

Gxy = E0
(
3.475γ4), Gyz = Gzx = E0(4.656 γ3.943)

µxy = µyx = 8.664× 10−3γ2 + 7.869× 10−4γ− 1.194× 10−3

µxz = µyz = −8.908γ2 − 2γ + 2.08
µzx = µzy = −0.6939γ2 − 1.654× 10−2γ + 0.2484

RC
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Ex = Ey = Ez = 1.85 GPa
Gxy = Gyz = Gzx = 91.1 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.280

Ex = Ey = Ez = E0(5.899 γ2.551)
Gxy = Gyz = Gzx = E0(7.484 γ3.966)

µxy = µxz = µyx = µyz = µzx = µzy = −1.171γ2 − 0.6424γ + 0.3554

FPT
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 Ex = Ey = Ez = 1.52 GPa
Gxy = Gyz = Gzx = 99.2 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.280

Ex = Ey = Ez = E0(2.481 γ2.26)
Gxy = Gyz = Gzx = E0(4.506 γ3.681)

µxy = µxz = µyx = µyz = µzx = µzy = −1.387γ2 + 6.922× 10−2γ + 0.2865

ECC
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Ex = Ey = Ez = 809 MPa
Gxy = Gyz = Gzx = 694 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.353

Ex = Ey = Ez = E0(1.313 γ2.258)
Gxy = Gyz = Gzx = E0

(
0.6907γ2.04)

µxy = µxz = µyx = µyz = µzx = µzy = −0.7528γ2 − 5.295× 10−2γ + 0.3656
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Ex = Ey = 38.4 MPa, Ez = 1.12 GPa
Gxy = 668 MPa, Gyz = Gzx = 666 MPa
µxy = µyx = 0.956, µxz = µyz = 0.017,

µzx = µzy = 0.493

Ex = Ey = E0
(
3.115γ3.964), Ez = E0

(
1.301γ2.108)

Gxy = E0
(
0.6367γ2.021), Gyz = Gzx = E0(0.6481 γ2.03)

µxy = µyx = −2.913γ2 − 0.2487γ + 1.009
µxz = µyz = 0.8434γ2 + 0.1373γ− 0.005075

µzx = µzy = −0.6905γ2 + 1.904× 10−4γ + 0.5001
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Table 2. Cont.

Name Cell Type An Instance of Ei, Gij, and µij Formulas of Ei, Gij, and µij
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Ex = Ey = 1.13 GPa, Ez = 316 MPa
Gxy = 670 MPa, Gyz = Gzx = 669 MPa
µxy = µyx = 0.017, µxz = µyz = 0.956,

µzx = µzy = 0.266

Ex = Ey = E0
(
1.38γ2.13), Ez = E0

(
0.5266γ2.269)

Gxy = E0
(
0.6772γ2.047), Gyz = Gzx = E0

(
0.649γ2.029)

µxy = µyx = 0.8479γ2 + 0.1378γ− 0.005096
µxz = µyz = −2.905γ2 − 0.2565γ + 1.01

µzx = µzy = −0.3219γ2 − 2× 10−5γ + 0.2689
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(
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Ex = Ey = 255 MPa, Ez = 701 MPa
Gxy = 46.6 MPa, Gyz = Gzx = 87.9 MPa
µxy = µyx = 0.177, µxz = µyz = 0.274,

µzx = µzy = 0.754

Ex = Ey = E0(8.42 γ3.535), Ez = E0(14.06 γ3.316)
Gxy = E0(3.938 γ3.976), Gyz = Gzx = E0(6.794 γ3.949)

µxy = µyx = −0.6159γ2 − 0.3588γ + 0.2184
µxz = µyz = −1.347γ2 − 0.2496γ + 0.3123
µzx = µzy = −1.574γ2 − 2.13γ + 0.9796
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Ex = Ey = Ez = 590 MPa
Gxy = Gyz = Gzx = 267.8 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.414

Ex = Ey = Ez = E0(13.16 γ3.369)
Gxy = Gyz = Gzx = E0(8.602 γ3.521)

µxy = µxz = µyx = µyz = µzx = µzy = −1.091γ2 − 1.11γ + 0.5348
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902 MPa, 239 MPa
667 MPa, 669 MPa
0.923, 0.036,
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x z y
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2.158 2.372
0 0
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2
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= = (1.171 ), = (0.5031 )

= = (0.6464 ), = (0.6686 )

2.718 0.4805 0.9977
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 Ex = Ez = 902 MPa, Ey = 239 MPa
Gxy = Gyz = 667 MPa, Gzx = 669 MPa
µxy = µzy = 0.923, µxz = µzx = 0.036,

µyx = µyz = 0.293

Ex = Ez = E0
(
1.171γ2.158), Ey = E0

(
0.5031γ2.372)

Gxy = Gyz = E0
(
0.6464γ2.029), Gzx = E0

(
0.6686γ2.042)

µxy = µzy = −2.718γ2 − 0.4805γ + 0.9977
µxz = µzx = 0.8618γ2 + 0.2626γ + 0.001442

µyx = µyz = −0.3554γ2 + 5.31× 10−3γ + 0.2956
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Table 2. Cont.

Name Cell Type An Instance of Ei, Gij, and µij Formulas of Ei, Gij, and µij

BCCT
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Ex = Ey = Ez = 1.10 GPa
Gxy = Gyz = Gzx = 669 MPa

µxy = µxz = µyx = µyz = µzx = µzy = 0.292

Ex = Ey = Ez = E0
(
1.225γ2.089)

Gxy = Gyz = Gzx = E0
(
0.6686γ2.042)

µxy = µxz = µyx = µyz = µzx = µzy = −0.3519γ2 − 3.986× 10−4γ + 0.2957

The first two columns present the cells’ name and their structures. The third column shows an instance of
the equivalent Young’s modulus, shear modulus, and Poisson’s ratio of the listed 25 cells computed on the
corresponding 8 × 8 × 8 lattice structures with a cell size of 10 × 10 × 10 mm3 and γ = 0.1 (D/a, the ratio of strut
diameter to cell size) and using the material with E0 = 110 GPa (Young’s modulus), µ0 = 0.34 (Poisson’s ratio). The
fourth column gives the analytical-fitting formulas and the data, which are computed using γ from 0.05 to 0.2 and
E0 from 80 to 160 GPa. The goodness-of-fit R2 ∈ [0.9987, 1] for the equivalent Young’s modulus Ei, R2 ∈ [0.9996, 1]
for the equivalent shear modulus Gij, and R2 ∈ [0.9992, 1] for the equivalent Poisson’s ratio µij.

4. Conclusions

This work evaluated the equivalent Young’s modulus, shear modulus, and Poisson’s
ratio of 25 types of lattice cells using a beam-theory-based reduced-order model, and
examined the effects of cell number, cell dimensions, and Young’s modulus and Poisson’s
ratio of the used material on the equivalent mechanical properties. The conclusions of this
work are summarized as follows:

(1) A reduced-order mechanical model for a rod-like lattice structure was developed,
and its accuracy was validated by comparing it with the solid-element full model,
showing a relative difference smaller than 1.25% at the aspect ratio larger than 10.

(2) The values of the equivalent mechanical properties change with the increase in the
number of cells but tend to be stable at about 8 × 8 × 8 cells.

(3) The equivalent Young’s modulus and shear modulus are linearly dependent on the
material Young’s modulus but insensitive to the material Poisson’s ratio.

(4) The equivalent Young’s modulus and shear modulus are the functions of the strut
diameter, and the power of which is 2 to 4.

(5) Analytical-fitting formulas of the equivalent Young’s modulus, shear modulus, and
Poisson’s ratio of the 25 types of lattice cells were systematically given, which would
be very useful to expedite the design and optimization procedures of structures
containing a huge number of lattice cells.

We have been aware of the fact that the developed reduced-order model regards the
strut of lattice cells as an ideal beam element, while lattice structures made by additive man-
ufacturing technologies are often non-ideal and contain certain geometric defects [37], such
as non-ideal node shape, variable cross-section, and non-homogeneous microstructures,
which could greatly affect the mechanical performances of lattice structures. Additionally,
the equivalent mechanical properties were evaluated by homogenization procedures in this
paper, while the homogenization procedures are relatively simple. The aforementioned
issues are worth more effort to develop a more applicable model in engineering and carry
out more complex mechanical tests for lattice structures in the future.
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Appendix A

List of nomenclatures and abbreviations:

Symbols and abbreviations Denotation and full name
E Young’s modulus (GPa/MPa)
µ Poisson’s ratio
G Shear modulus (GPa/MPa)
L Size of the lattice structures (m)
u Displacement in x direction (m)
v Displacement in y direction (m)
w Displacement in z direction (m)
θ Flexural angle (rad)
P Nodal load (N)
M Nodal moment (N/m)
D Strut diameter (mm)
a Cell size (mm)
γ Ratio of strut diameter to cell size
BCC Body-centered cubic
BCCF BCC with face-center
VC vertex cubic
FCC face-centered cubic
FCCZ FCC with vertical strut in z-axis
VBCC VC with BCC
FBCC FCC with BCC
FFC Face-face center cubic
VFC Vertex-face center cubic
OC Octahedron cubic
FC2R Face center cubic with 2 rectangles
TAC Tri-axis cubic
TCC Tetrahedral center cubic
RD Rhombic dodecahedron
RC Rhombicuboctahedron
FPT Flat-plate tesseract
ECC Truncated hexagonal cubic
BCCZ BCC with vertical strut in z-axis
BCCE BCC with the edge
FECC Face-edge-centered cubic
AFCC All face-centered cubic
THC Truncated hexagonal cubic
TC Truncated cuboctahedron
BCCD BCC with double-axis
BCCT BCC with tri-axis
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