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THE BIGGER PICTURE Conspiracy theories are widespread. So far, research in this area has been focused
on psychological, sociological, and political science perspectives. Brain processes facilitating formation of
conspiracy theories are largely unknown. In neural systems, a meme may be represented by a quasi-stable
associativememory network attractor state. Creation of memeswith numerous fake associations distorts re-
lations between stable memory states. Simulations of neural network models trained with competitive
Hebbian learning (CHL) on stationary and non-stationary input data show the formation of distorted memory
states. In non-stationary situations, rapid learning with high plasticity followed by stepwise decrease of plas-
ticity leads to many states with overlapping attraction basins, distorting patterns in associative memory.
Such system-level models may be used to understand conditions under which memplexes with distorted
memory patterns arise, representing deeply settled conspiracy beliefs.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY

Memetics has so far been developing in social sciences, but to fully understandmemetic processes it should
be linked to neurosciencemodels of learning, encoding, and retrieval of memories in the brain. Attractor neu-
ral networks show how incoming information is encoded in memory patterns, how it may become distorted,
and how chunks of informationmay form patterns that are activated bymany cues, forming the foundation of
conspiracy theories. The rapid freezing of high neuroplasticity (RFHN) model is offered as one plausible
mechanism of such processes. Illustrations of distorted memory formation based on simulations of compet-
itive learning neural networks are presented as an example. Linking memes to attractors of neurodynamics
should help to give memetics solid foundations, show why some information is easily encoded and propa-
gated, and draw attention to the need to analyze neural mechanisms of learning and memory that lead to
conspiracies.
INTRODUCTION

Conspiracy theories are part of a much wider subject: formation

of beliefs, creation of memes, distorted memories, twisted

worldviews, or in general investigating ways in which learning

fails to represent the data faithfully. In recent article by Seitz

and Angel ‘‘Belief formation – A driving force for brain evolu-

tion,’’1 the authors write: ‘‘The topic of belief has been neglected

in the natural sciences for a long period of time’’. They divide

beliefs into empirical, relational, and conceptual, discussing

large brain areas involved in the formation of beliefs. Bayesian

models of belief propagation are used to model details of

perceptual processes and relate them to connectomes.2 The

artificial neural network community has focused on faithful

learningmethods, but there is another, neglected side of learning

and memory formation. When the training data are not learned
This is an open access article under the CC BY-N
perfectly, what types of errors may one expect, and how will

they influence the performance of an artificial system? Can anal-

ysis of artificial systems help to understand how biological brains

learn incoming information, transforming it into memes that are

likely to be transmitted in a distorted form to other brains? The

world view that we use to guide our behavior is based on a

network of associative memory states. Consolidation of new

memory states in the neocortex may occur quite quickly if they

are well connected to other memory states.3 Several lines of

research lead to this conclusion: animal studies, association of

places with items in mnemotechnics, behavioral studies on the

use of schemas for rapid learning, and building of cognitive

maps. Neural models of schemas and sequences of associa-

tions may be based on attractor states in neural networks.4

Each episodic or semantic memory state is based on activations

of synchronized, distributed networks of brain regions. It is
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encoded in relation to the existing activation patterns and may

be modified when new patterns are learned.

Using functional magnetic resonance imaging (fMRI) evoked

by natural movies, Huth et al.5,6 have created a ‘‘semantic atlas,’’

showing patterns of brain activations for categories of hundreds

of objects and actions. These patterns are evoked by stimuli that

provide sufficient cues to recall specific objects, such as body

parts, animals, furniture, or types of actions. This process may

be described using the language of dynamical systems for net-

works of elements representing neurons. The Hopfield network7

was the simplest associative memory model encoding informa-

tion in activation patterns of network nodes. In such recurrent

networks, internal feedback changes activity patterns with

time; this process is referred to as neurodynamics. All kinds of

memory states (semantic, episodic, procedural, and working)

are called attractors of neurodynamics4 because initial patterns

of neural network activations are attracted by the network dy-

namics toward one of the quasi-stable memory patterns. Usually

only a small subset of neurons are highly active in each pattern,

synchronizing their activity sending signals through strong

mutual connections. In biologically motivated attractor net-

works, memory states are not stable, and neural noise, fatigue,

and other processes lead to desynchronization, decrease activ-

ity of some neurons, and recruit others, forming different neural

patterns. Transitions between neural patterns define trajectory

of brain state changes in the space of neural activations. In arti-

ficial systems we can visualize it to observe neurodynamics of

model networks8 and transform it to dimensions that are mean-

ingful at the mental level.9 fMRI scans provide snapshots of the

whole brain activation with temporal resolution of about 1 s

and spatial resolution of about 1 mm, while measurement of

electric potentials using electroencephalographic or magneto-

encephalographic techniques provides millisecond temporal

resolution but spatial resolution that is less than 1 cm.

Seitz et al.10 presented a general theoretical model of forma-

tions of empirically grounded and metaphysical beliefs. In their

view, the process of attraction is described by the verb

‘‘believing,’’ and the endpoint, the final activation quasi-stable

state, is called a ‘‘belief’’ and is interpreted as amental construct.

Beliefs are based on sensory perception and attribution of a per-

sonal value in an emotionally loaded process. High-level formula

relates beliefs to incoming signals, ambient noise, current and

previous valuation, learning, and prediction errors. Changes of

neural activation in real brains depend on current knowledge

schemas, history of previous activations (priming), general

emotional state, specific context cues that invoke memories,

and many other factors. Transitions that happen frequently in-

crease probability of association between different activation

patterns11 and may not only create strong associations but

distort or even completely blend different memories, creating

false memories.12,13 Understanding abnormal belief formation

in neuropsychological disorders is an important challenge,14

but neuropsychiatry needs precise hypotheses and models at

the level of neural networks.

In some cases, memories may become easily activated in

various contexts, leading to false associations and schemas

that develop into conspiracy theories. While there is a large

body of literature on conspiracy theories written by historians,

philosophers, psychologists, sociologists, or political scientists
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(Routledge has a whole series of books on conspiracy theories;

see also the review by Douglas et al.15), our understanding of the

brain mechanisms is completely lacking. The best explanations

that we have relate beliefs in conspiracy theories to personality

traits, mental disorders, or the need to find a simple satisfactory

explanation.

Memetics, introduced in the 1976 book The Selfish Gene by

Richard Dawkins,16 tried to explain cultural information transfer

and persistence of certain ideas in societies. Memes may be un-

derstood as sequences or information structures that tend to

replicate in a society. Despite great initial popularity of memetic

ideas, and the desperate need of mathematical theories to un-

derpin social science, theories connecting neuroscience and

memetics have never been developed. The Journal of Memetics

was discontinued in 2005 after 8 years of electronic publishing.

Memetic ideas were relegated into a set of vague philosophical

and psychological concepts of little interest to neuroscience. In

evolutionary computing, memetic ideas have inspired many

new developments, combining global search with focus on inter-

esting local regions.17 The Memetic Computing journal was es-

tablished in 1989, a whole series of books on Advances in

Memetic Algorithms. Studies in Fuzziness and Soft Computing

is published by Springer. Research on memetic computing is

focused on optimization problems, while here we are interested

in the process of formation of memories.

The lack of efforts to understand distortions of information

transmission and memory storage in biological learning systems

is certainly related to the lack of theoretical models, and to the

experimental difficulties in searching for memes in brain activity.

McNamara18 has argued that neuroimaging technology may be

used to trace memes in the brain and to measure how they

change over time. Following Heylighen and Chielens’19 memo-

type and mediotype distinction, they propose to distinguish

i-memes, internal activation of the central nervous system,

from the external transmission/storage of information structures,

the e-memes existing in the world (for example, created by mar-

keting, or variousmedia advertisements). One should distinguish

clearly abstract information structure of memes, and their imple-

mentation in the brain or in artificial cognitive system. Internal

representations of i-memes are created by forming memory

states that link neural responses resulting from e-meme percep-

tion to behavioral (motor) responses that are necessary for

replication of memes, linking sensory, memory, and motor sub-

systems in the brain. Sets of memes formingmemeplexes deter-

mine world views, including culture, values, and religions, pre-

disposing people to accept and propagate selected memes.

Brain research has made a great progress in understanding

schemas in the last decade.20 Perhaps the time is ripe to make

some progress along these lines to link the concept of memes

with memory mechanisms that facilitate their spread. This could

have very important social and educational implications.21

In the fascinating book Why People Believe Weird Things,

Michel Shermer writes about 25 fallacies that lead people to

believe in conspiracy theories and other bizarre things.22 Brains

are predisposed to perceive various observed patterns asmean-

ingful information (pareidolia), search for explanations and form

theories, referring to the long-term episodic and semantic mem-

ory. The conceptual framework that is needed to interpret new

observations, including memes, is activated by various cues
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that invoke memory associations. Memes that are strongly en-

coded certainly influence most mental processes. Observations

that agree with established individual beliefs will lead to strong

activations of brain networks, thanks to the mutual co-activa-

tions of memeplex patterns, creating additional memes that

make the whole memeplex even stronger. Contradicting argu-

ments, facts, or observations will arouse only transient weak ac-

tivations of brain networks and will be ignored. Worse than that,

mentioning or presenting anything that may retrieve memes will

only increase their influence, contributing to stronger encoding

and easier arousal of false associations. The ‘‘levels of process-

ing’’ paradigm in memory research has now found support in

neuroimaging of deep and shallow episodic memory encoding,

modulated by a number of neurotransmitters and linked to

emotional arousal.23 Research on forgetting shows that retrieval

of competing memory traces may lead to interference and sup-

pression of weaker patterns.24 If conspiracy memes are already

deeply encoded, theywill distort formation ofmemory for contra-

dicting facts. Although these facts may briefly activate brain

patterns, the presence of strong memes will redirect these

activations away toward conspiracy memes, preventing their

understanding in a broader context.

Science systematically tries to falsify hypotheses by performing

experiments, but, from the evolutionary perspective, falsification

is simply too dangerous. In slowly changing environments, stabil-

ity of beliefs is more important, even at the price of wide accep-

tance of meaningless taboos and superstitions. Even today,

educational systems inmost countries donot encourage skeptical

thinking. Religious leaders and conservative politicians strongly

oppose instating skepticism into the educational system, in fear

of destabilization of established world views. There is little or no

penalty for accepting false beliefs by individuals. Mutual support

within groups of believers gives a boost to distorted views of real-

ity, leading to bizarre conspiracy theories.

The discussion presented above shows that fake news and

conspiracy theories tap into basic brain mechanisms of memory

and learning. The complexity of the belief formation processes

has discouraged scientists from approaching this important

problem. Obviously, no simple computational model is going

to explain all facts related to formation and preservation of hu-

man beliefs, and in particular of conspiracy theories. This should

not discourage us from forming testable hypotheses based on

neurodynamics. After all, simple neural network models intro-

duced by Hopfield7 and Kohonen,25 despite being only loosely

inspired by neurobiology, have found a number of applications

in computational psychology and psychiatry. The central role

of large-scale neural dynamics as a basis for understanding

brain processes is now well recognized.26,27 The two main goals

of this paper are thus to show that memetics may be based on

solid theoretical foundations grounded in neurodynamical

models, and that learning using simple memory models may

help to understand the process of formation of conspiracy the-

ories. Although only simple competitive learning models are

used in this paper, it should open the road toward application

of more complex neural models that link memetics with neuro-

science. Of course, psychological and social factors prepare

the neural system for specific action, but, as Sapolsky stressed

in his book, ‘‘you can’t begin to understand things like aggres-

sion, competition, cooperation, and empathy without biology.’’28
The next section introduces memetics and discusses repre-

sentation of information in the brain. It includes an attempt to

define memes in a similar way to how genes are defined. It is fol-

lowed by a section on competitive learning models of memory

formation. These models are used to illustrate some mecha-

nisms of memory distortions. Final conclusions and remarks

about implications of network simulations for the theory of mem-

etics are presented in the final section.

MEMETICS AND INFORMATION IN THE BRAIN

Subjective information
Ultimately all thoughts and beliefs result from neurodynamics.

The flow of neural activation through neural systems is deter-

mined by many biological factors, including brain connectivity,

concentration of neurotransmitters, emotional arousal, priming

effects, and brain stem activity. Information is acquired and inter-

nalized in the brain through direct observation of patterns in the

world, including communication with people and animals, and

indirectly through various media, texts, and physical symbols

of all sorts. Brains provide material support for mental pro-

cesses, understanding and remembering symbols, ideas, and

stories. Memes are units of information that spread in cultural en-

vironments, information granules that prompt activation of pat-

terns in brains molded by particular subculture. Therefore the

same information may become a meme in some brains, and

may be ignored by other brains.

Understanding is a process that requires association of new

information with what has already been learned. New things

are learned on the basis of what is already known by the system.

This is a general principle behind brain activity: information gain

should be measured as a change induced in cognitive sys-

tems.29 Patterns are encoded in memory depending on the

context, sequence of events, attention devoted to these pat-

terns, association with known facts, properties of already en-

coded information, and general mental state during the encoding

process. The definition of Shannon information as entropy does

not capture the intuitive meaning of the value of information for

the cognitive system. The amount of optimal restructuring of

the internal model of the environment (optimal in the minimum

length description sense30) resulting from new observation (i.e.,

a new meme added to the memeplex) is a good subjective mea-

sure of the quantity of meaningful information carried out by this

observation. Pragmatic information that captures the subjective

meaning of information is based on the difference between algo-

rithmic information before and after observation is made.29 Itti

and Baldi used a similar idea to define the amount of surprise,

measured as the relative entropy or Kullback-Leibler (KL) diver-

gence, between the posterior and prior distributions of beliefs

in Bayesian models.31

Memes as patterns of brain activity
Organisms replicate preserving most of their properties thanks

to genes that are copied with great precision during cell divi-

sions. However, the way from genes to phenotypes is long and

indirect. Many factors may influence the final development. At

some stage, the replication process is facilitated by, or may

even require, ‘‘extended phenotype,’’32 specific environment,

or constructions such as nests, burrows, or hospitals. In The
Patterns 2, November 12, 2021 3
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Selfish Gene,16 Richard Dawkins introduced the idea of memes

using analogy with genes: depending on the cultural environ-

ment, some ideas, news, melodies, videos, or behaviors are

imitated and replicated. This process has some properties that

are analogous with biological evolution: inheritance, mutation,

variation, cooperation, and competition. Memetics emerged as

a field of study in the 1990s to explore such analogies. Although

categorization of various phenomena into discrete units may be

criticized, phenotypes of some organisms may also be very

diverse, with large numbers of species belonging to one family,

such as 10 million arthropods or thousands of nudibranchs

that have unique forms. Cultural phenomena may look quite

different, but the mechanism of their proliferation may be based

on memes that have certain structures. Dawkins sees the dis-

covery by Lorenz of imprinting, a behavior pattern, as akin to

an anatomical organ.32 He quotes the suggestion of his

colleague N.K. Humphrey that memes should be ‘‘physically

residing in the brain’’, and are not only metaphors. However,

attempts to create a scientific theory of memes as neural

processes have not been successful.

Memes are hard to objectively characterize or measure. In

1981, C.J. Lumsden and E.O. Wilson wrote a book33 on co-evo-

lution of genes, minds, and culture, explaining how genes and

epigenetic rules determine perceptions and influence cultural

evolution, and how they lead to development of specific cogni-

tive functions, including various types of memory, explaining

social behavior. They have used the term ‘‘culturgene’’ (in later

writings, Wilson himself used ‘‘meme’’) to describe the process

of gene-culture translation using a mathematical model similar

to models in population genetics. One of the goals was to estab-

lish ‘‘causal connections between semiotics and biology.’’

Memes were linked to the nodes of semantic memory. In his

next book, Consilience (1998), Wilson wrote,34 ‘‘If the connec-

tions can be established empirically, then future discoveries con-

cerning the nodes of semantic memory will correspondingly

sharpen the definition of memes. Such an advance will enrich,

not replace, semiotics.’’

The concept of a genehas significantly changed in recent years.

Genes, once defined as sequences of DNA base pairs that code

proteins, are now understood as distributed DNA and RNA

templates, with exons on different chromosomes, ‘‘encoding a

coherent set of potentially overlapping functional products.’’35

Precise definition of a gene is difficult because they are structures

of partially mutable, highly organized molecular matter living in

specific network of complex processes. They exist because a

highly specialized environment facilitates their replication. Strong

coupling of all elements in this environment makes the concept of

a gene rather fuzzy: it is not a simpleDNA sequencebut a complex

pattern in the whole network of processes, active only in certain

situations controlled by epigenetic factors. The whole system is

responsible for replication of information.

In memetics, information structures that reflect part of mental

content based on a network of memes are called memeplexes.

They evolve in response to enculturation and exposure to

observed patterns. Specific cultural behaviors, learned con-

cepts, wordmeanings, collocations, or phrases describing ideas

may be treated asmemes. Some are very rare and difficult to ac-

quire, while others spread quickly with ease. Mental content can

be much wider than just the network of memes. Memetics
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should position itself in respect to the theory of communication,

language acquisition, and neural theories of learning.

Consider now a representation of a meme in the brain of an in-

dividual. It is a memory pattern recalled frequently, a state of the

whole brain network that arises inmany contexts.Wilson thought

that it is a node in the semantic memory, but it does not have

properties that define semantic information that arises from

filtering of episodic memory. Semantic information is learned

slowly and is remembered for a long time, while memes are

quickly acquired and may be soon forgotten. Semantic mem-

ories are based on well-established pathways of brain activa-

tions, allowing us to understand meaning of words and con-

cepts.36,37 They provide conceptual framework for general

understanding of the world. Conceptual spaces have been intro-

duced by G€ardenfors38 as a geometric framework for represent-

ing information at the conceptual level, bridging symbolic and

neural representations. Concepts are characterized in terms of

perceptual and abstract qualities that are treated as separate

dimensions. Features are defined as subsets along one or

more dimensions, and concepts that have many features form

convex shapes in conceptual spaces. This approach has been

quite successful in cognitive science, and similar ideas have

been developed in cognitive linguistics. Fauconnier wrote a

book on mental spaces39 and another book with Turner on con-

ceptual blending.40 However, such conceptual models ignore

the neurobiological basis of memory.

Concept learning in real brains is a result of complex neurody-

namics and changes of neuronal pathways due to neuroplastic-

ity. Conceptual or mental spaces, although highly influential, are

not the best simplification of this process. An alternative has

been offered by clusterization of neural activation patterns that

may be represented by fuzzy prototypes rather than combination

of features.41 Mental events are not restricted to concepts, they

are shadows of neurodynamics, metaphorically speaking.9

Episodic memories are learned quickly, invoke associations

that induce chains of mutations, and depend on cultural environ-

ment and social interactions. Semantic memory is largely

restricted to concepts, states that are deeply entrenched in the

brain networks, and have associated phonological representa-

tion. Episodic memory recalls brain state at the time of actual

experience, and involves imagery, emotions, and behavior, all

aspects of experience. Events are memorized without the need

for repetition, especially in the case of emotional arousal that in-

creases neuroplasticity. Episodic memories are mental events

linked together in experiential spaces. Recently, a new model

of spatial and non-spatial memory spaces based on topological

schemas of representations of events derived from neuronal

spiking activity has been formulated.42 Such models may bridge

the conceptual and neural levels of brain processes.

Memes may be considered at several levels: as abstract units

of cultural information, that exist physically in electronic or

printed media, called e-memes by McNamara.18 Information

becomes a meme only if some brains are ready to store it as

i-memes, and transmit it further. While almost all work in mem-

etics has been focused on e-memes, this paper is an attempt

to define and understand formation of i-memes.

Using the language of neurodynamics a meme is defined as a

quasi-stable associative memory attractor state, with robust

attractor basin. Brain activation A(w) prompted by stimulus w
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(a word, set of words, seeing a symbol) may rapidly evoke acti-

vation corresponding to meme A(w) / A(M(w)). The same

attractor state may be activated by many different stimuli,

including purely internal activations. For simple visual percepts,

such as shapes of objects, similarity between brain activations

A(M) in the inferotemporal cortical area have been directly

compared, using fMRI neuroimaging, with the similarity of the

shapes of these objects.43 Significant similarity has also been

found in the fMRI patterns of whole-brain activity when people

perceive and think about specific objects,5,6,44 showing how

meaning of concepts is encoded in distributed activity of the

brain. Such encoding may be used for brain-based vector repre-

sentation of the semantic meaning in natural language process-

ing (NLP) algorithms.45 Similarity between memes correspond-

ing to perceived objects Mi5Oi, may be roughly compared

with some measures of similarity between object properties.

Therefore, similarity between brain activities A(M1) and A(M2)

that represent two memes M1 and M2 evoked by objects

O1,O2 (percepts, cues, words) should be directly related to

some measures of object similarity:
Sa(A(M1),A(M2)) � So(O1,O2).
 (Equation 1)

McNamara18 hopes to detect the signature patterns of new

memes by analyzing the neurodynamics of learning novel

name-action associations for abstract category names, looking

at the changes of the brain connectivity profiles. This may be a

useful strategy for abstract categories, or for simple percepts,

but general search for signatures of memes using neuroimaging

techniques will be very difficult. Activation patterns may signifi-

cantly differ for individual people, depending on their meme-

plexes. For the same person, distribution of fMRI activations

may change at different times of the day. Transcranial magnetic

stimulation (TMS) disrupting the function of the left inferior frontal

gyrus has already been used to alter belief formation in favor of

remembering more bad news.46 Such brain stimulation may be

used to change acceptance of memes that would normally be

ignored.

Memes are difficult to extract from the whole network of brain

activities. They exist as transient patterns in neurodynamics.

Memory patterns arise due to the functional connectivity of neu-

rons. In this dynamic process, brain regions that may be physi-

cally connected in a direct or an indirect way exchange informa-

tion forming synchronized global states. Connectomics is still a

new field, developing methods to describe details of structural

and functional connectivity, and network neuroscience is using

this knowledge to create dynamical models of cognitive and af-

fective processes.47 Structural brain connectivity is formed by

genetics and developmental processes, and, thanks to neuro-

plasticity, shaped by life experiences, learning processes, social

interactions, and culture.

Understanding how brain connectivity and other factors

encode beliefs, filter incoming information, distort it, and trans-

mits it further is certainly a grand challenge. Complex information

processing in the brain has not yet been understood in sufficient

detail to allow for development of comprehensive theories of

such processes. Techniques based on fMRI do not offer suffi-

cient temporal resolution, while electroencephalography and
related techniques do not offer spatial resolution to follow pre-

cisely dynamical changes during mental processes. However,

some insights based on simple memory models may be gained.

New information added to the memeplex (existing pool of inter-

acting memes, or attractor states) becomes distorted, changes

the memeplex, and is replicated further. Once a set of distorted

memory states is entrenched, it becomes a powerful force,

attracting and distorting all information that has some associa-

tionwith these states, creating even broader basins of attractors.

Encoding of information in this way enhances the memeplex and

is one of the reasons why conspiracy theories are so persistent.

Concepts in brains and in computers
In the NLP field, word meaning is approximated using correla-

tions between co-occurrence with several adjacent words.

Vectors storing these correlation coefficients C(w) represent

wordsw by averaging overmany contexts restricted to a specific

meaning of a given word (this requires annotation of large text

corpora). From the human point of view, faithful representation

of word meaning should require similar ordering of distances

D(C(w1),C(w2)) between vectors C(w1),C(w2) representing words

w1, w2, as shown by dissimilarities DSa(A(w1), A(w2)) between

brain activations A(w) when concepts associated with these

words are invoked:
DSa(A(w1),A(w2)) � D(C(w1),C(w2))
 (Equation 2)

Each vector C(w) attempts to approximate the meaning of the

word that is encoded in the distribution of brain activity.44,45

Without priming effects48 and association of words with existing

memory patterns, only a very coarse representation is possible.

Brain activations strongly depend on context, and therefore the

distance function D(C(w1),C(w2); cont) should be context depen-

dent. Thewhole process is dynamic, with spreading of neural ac-

tivations responsible for priming related concepts and providing

feedback that becomes part of the new pattern encoding. Mean-

ing is thus connected to the activation of many subnetworks in

the brain, memory of sensory qualities, and motor affordances.

A dynamical approach to the NLP vector model has not yet

been fully developed, although some steps in this direction

have been made.36 Despite our efforts (Duch, unpublished) to

describe dog breeds in terms of skin, head, and body features

derived from databases and semi-structured texts describing

dogs, it was not possible to categorize accurately dog breeds

only by their features. Using images (or just silhouettes) of

dogs leads to more accurate and faster identification of dog

breeds. Brain activity evoked by hearing or reading words

evokes internal imagery at a high level of invariant, multimodal

object recognition. Similarity functions between objects

So(O1,O2) based only on correlations between verbal descriptors

cannot do justice to estimations of similarity of brain activations.

Finer discrimination may require recall of lower-level sensory

qualities, referring to particular shapes, colors, movements,

voice timbre, or tastes. Vector representation based on word

correlations does not reflect essential properties of the percep-

tion-action-naming activity of the brain,49 and it does not even

contain structural description in terms of object features or

phonology. More details on word representation in the brain
Patterns 2, November 12, 2021 5
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and its relation to the vector model may be found in Binder

et al.45 Words have phonological representations that serve as

labels pointing to internalized knowledge about their meaning.

Representation of percepts arising from sensory imagery is a

minimal requirement for NLP systems capable of semantic inter-

pretation of concepts.

Competitive learning models are introduced next and then

used to illustrate the process of learning that leads to memes

based on distorted relations.

COMPETITIVE LEARNING AND WEIRD BELIEFS

Conspiracy theories have serious consequences for politics,

especially environmental policies, with the anti-vaccine

movement becoming a threat to global health. They facilitate

growth of political extremists and dangerous religious sects.22

Conspiracy theories are investigated mainly by sociologists

and psychologists, focusing on hidden networks controlling po-

litical and economic factors that are poorly understood. Instead

of analyzing why and how brains form weird, distorted views of

reality, they invent vague concepts and construct theories that

are impossible to connect with brain research. While there are

many psychological reasons for formation of such beliefs, so

far there have been no attempts to create a cognitive theory sup-

ported by computational models, capable of generating testable

hypotheses. In the past, secret societies were rather rare, but

nowmedia try to stir controversy discussing genetically modified

organisms, vaccines, AIDS, miracle cures, unidentified flying ob-

jects, prophecies, assassinations, airplane crushes, and other

such issues, despite plausible explanations based on scientific

arguments or on common-sense consensus.

The language of memetics is descriptive and does not help to

explain deeper reasons why some information become memes

and others are forgotten.16,50 Conspiracy theory may be treated

as a memeplex that is easily activated by various pieces of

information, giving it meaning consistent with the memeplex re-

sponses. From a neurobiological perspective, learning requires

adaptation, changing functional connectivity, and adjusting

the physical structure of the brain. Learning is thus energy

consuming, and requires effort that should be carried out only

when there are potential benefits. Simple explanations of com-

plex phenomena thus have a great advantage even when they

are quite naive, as long as they do not lead to behaviors that

are obviously harmful or significantly decrease chances for

reproduction. Evolutionary Darwinian adaptations are estab-

lished only after several generations and have noticeable influ-

ence on human beliefs only if they affect large subpopulations.

Evolutionary factors explain slow changes in approaches to

human freedom, caste and racial divisions, abandonment of

slavery, attitudes toward children (selling children into slavery

continued until the nineteenth century), etc.Why do somepeople

easily fall for conspiracy theories and other stay skeptical? The

field of neural networks, aiming at achieving perfection in

learning, paid little attention to distortions of learning and its

effects on memory states.

There are many scenarios that may lead to formation of dis-

torted views of observations, and it is not possible to create a

neural model that takes into account all factors identified in the

literature on this topic. Slow and steady environmental pressures
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lead to changes of attitude and may redefine the whole world

view. Here I will focus on a rather common situation that arises

as the result of rapid decrease in neuroplasticity. Emotional

arousal coming from the uncertainty of important information

(e.g., rumors that something potentially life threatening has

happened) leads to confusion and strong anxiety (the rumors

may not be true; it is not clear what has really happened). High

emotions and stress are linked to release of large amounts of

neurotransmitters and neuromodulators from the brain stem

nuclei, through the ascending pathways, activating serotonin,

norepinephrine, acetylcholine, and dopamine systems. Strong

arousal increases brain plasticity, facilitating rapid learning of

all potentially relevant cues.51 Emotionally salient stimuli evoke

selective attention, adding more brain states that are closely

linked to those that have initially been created. Such states arise

when input signals partially overlap, and they share some prop-

erties, either related to perception or associations recalled from

memory. In attractor networks, similar states share a subset of

active neurons. In the visualizations below, each brain state is

represented by a small circle, and similarity of brain patterns is

represented by distance between the circles that repre-

sent them.

Information that arouses emotions and strong neuroplasticity

leads to rapid learning. Priming effects48 direct attention to

search for more information on the same topic, sharing some

features (activating similar brain regions) with the initial informa-

tion. Dynamical systems perspective on behavioral priming in

attractor networks has been presented in Krpan.52 After some

time, emotions subside, arousal will lessen, sources of neuro-

transmitters will be depleted, and neuroplasticity will decrease.

Thus, the recipe to create amemeplex based on distorted beliefs

is, first, priming by uncertain information and strong emotional

arousal, followed by selective memorization of information that

matches initial impression, and decrease of neuroplasticity that

may result from information overload. A short period of acute

stress may potentiate learning, but, when it lasts longer, neuro-

plasticity decreases. The brain network is left with a memeplex

based on selected memories frozen in its associative memory.

All future information related to the initial event will be associated

and interpreted in view of what has been memorized at that

period, setting foundations for conspiracy theory.

This scenario may be reproduced in many unsupervised

competitive learning neural models,25 including adaptive reso-

nance theory (ART) models that regulate neuroplasticity using

the vigilance parameter.53,54 Many other competitive learning

models based on Hebbian learning have been presented.55

The DemoGNG 2.2 Java package, written by Bernd Fritzke and

Hartmut S. Loos,56 implements winner-take-all learning in self-

organizing map (SOM), competitive Hebbian and hard competi-

tive learning, neural gas, growing neural gas, growing grid, and

other algorithms.57 In all these algorithms, activity of units repre-

senting neurons is compared with the input, and those units with

the best match adapt their parameters, increasing their activa-

tion. Neurons in the neighborhood of a winner are also allowed

to adapt, depending on their distance from the winner. If there

is no clear match, constructive algorithms add new neurons,

allowing the network to grow.

The rapid freezing of high neuroplasticity (RFHN) model

described here is based on the following assumptions:
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d Emotions and uncertain stressful situations at the begin-

ning of learning lead to high neuroplasticity.

d High neuroplasticity is imitated in the model by large

learning rates (due to the primary neurotransmitters), and

by a broad neighborhood of the winner neuron for each

input pattern (due to the diffuse neuromodulation and vol-

ume learning).

d The network tries to reflect associations between input

vectors, adapting neuron parameters (usually codebook

vectors) to approximate distribution of information con-

tained in the presented input vectors.

d Sudden decrease of the uncertainty and emotional arousal

is mirrored by the decrease of learning rates and neighbor-

hood sizes, leading to distortions of complex relations

between input items.

d Slow forgetting that follows rapid freezing is based on

memory reactivations, and contributes to the retention of

memory states represented by the highest number of neu-

rons only, forming clusters of nodes with large and strong

basins of attraction that link many states.

d Clusters of neurons that are frequently activated and thus

easily replicated represent memes.

d Conspiracy theories are characterized by memplexes,

numerous strong memes, with many neurons encoding in-

formation that has never been presented, forming dis-

torted associations between facts.

As a result, these networks do not reflect real observations.

The role of emotions in susceptibility to fake news has been veri-

fied in a recent experiment.58 The RFHNmodelmay be simulated

using several competitive learning models. In fact, all such

models show similar behavior; therefore, only the results of

SOMs25 and the neural gas model with competitive Hebbian

learning (NG-CHL)56 are shown below for illustration.

The basic idea of competitive learning is to approximate the

activity of neural cell assemblies by neurons (units) that serve

as codebook vectors W(t). They represent receptive fields,

adapting to the probability density of the incoming signals.

Each neuron receives input signals and competes with other

neurons using the winner-takes-most (or takes all) principle,

leaving only a small subset of active units that are updated.

The winning neural assembly is represented by a vector W(c) (t)

and a small group of vectors in its direct neighborhood O(c).

SOM starts with a fixed two-dimensional grid of neurons.

Learning proceeds by identifying themost similar codebook vec-

tor to the current observation X(t), and updating the codebook

vector and vectors in its immediate physical neighborhood ac-

cording to the formula:

For ci˛ð0Þ
WðiÞðt + 1Þ=WðiÞðtÞ+ hðri; rc; tÞ

�
XðtÞ �WðiÞðtÞ� (Equation 3)

where the neighborhood is usually assumed to be Gaussian:

hðr; rc; t; ε;sÞ = εðtÞexp�� kr � rck2
�
s2ðtÞ� (Equation 4)

The size of this neighborhood is decreased from the initial

value of dispersion si to the final value sf according to the

formula:
sðtÞ = si

�
sf

si

�t=tmax

(Equation 5)

The maximal age tmax determines the annealing schedule. The

learning rate is similarly decreased by:

εðtÞ = εi

�
εf

εi

�t=tmax

(Equation 6)

The SOMmodel has been used with success in many applica-

tions; for example, it works quite well, in comparison with other

neural models, for explanation of details of orientation and ocular

dominance columns in the visual cortex.59

The NG-CHL algorithm does not have such fixed initial grid to-

pology as does SOM, and new neurons are recruited for encoding

input patterns. At each adaptation step, a connection between the

winner and the second-nearest unit is created, if it does not

already exist. The newly created or existing selected edges are re-

freshed receiving age = 0, while the ages of other edges

emanating from the winner neurons are increased by 1. The refer-

ence age is gradually changed from Ti to Tf according to:

TðtÞ = Ti

�
Tf

Ti

�t=tmax

(Equation 7)

Edges that are not refreshed for more than T(t) steps are

removed. This simulates the forgetting mechanism.

The following computational experiments have been done to

illustrate the RFHN model:

d Training SOM and NG-CHL on stationary data concen-

trated in two distinct areas, with initial high plasticity and

rapidly decreasing learning rates.

d Training SOM and NG-CHL on non-stationary data from

observations that move and suddenly change, with initial

high plasticity and rapidly decreasing learning rates.

d Retraining the model after malformation of relations has

already occurred, using temporally increased plasticity.

The number of neurons in the brain is extremely large, so it is

instructive to check how the number of network nodes in simula-

tions will affect distributions. For the stationary experiments,

10,000 nodes have been used, with initial parameters randomly

distributed, and signals coming from two separated circular areas.

This should represent two alternative situations that are moni-

tored. For the non-stationary situation, all parameterswere initially

concentrated in the rectangular patch, simulating situations in

which restricted domain has already been learned and is stable.

Then the patch moves across the whole domain, providing new

input patterns (observations) from the areas it covers. When the

edge of the domain is reached, the patch jumps to the other side.
CONSPIRACIES AND MEMORY DISTORTIONS

The algorithms used here are stochastic, so results may differ

after each run. This is actually desired, because exposing a
Patterns 2, November 12, 2021 7



Figure 1. SOM network learning slowly
stationary uniform samples drawn from
double circles approximates these two
circular distributions correctly
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group of people with similar memplexes will also lead to different

changes. At this level of modeling, only qualitative results may be

expected. Each fragment of information (signal, or chunk) is rep-

resented by a dot in figures below. Associations between these

fragments determine mutual distance in graphs, reflecting simi-

larity of encoded information chunks in the neural model. Chunks

of information that appear in the same context (or batch of

signals provided as input) become strongly associated.

Stationary situation
Perfect representation of all signals should cover two distinct

circular areas (Figure 1). A good solution that requires slow

learning with 500,000 steps is shown below. The domain and

relations (represented by edges) of input patterns are repre-

sented fairly well.

Training 1003 100 SOM network, with initial si = 5, sf = 0.01, εi
= 1, εf = 0.001, for 10,000 steps, did not pull all parameters of

neurons toward the data area. Despite high density of neurons,

some gaps have been left and were not removed by further re-

training. This effect comes from the dynamics of learning with

shrinking neighborhoods. There is a greater chance for neurons

near the edge to be pulled toward high-density areas by many

neurons that are selected as winners than to be pulled toward

the data in the gap area. Moreover, in the space where no sam-

ples ever appeared, many neurons are placed, and this will lead

to false associations and confabulations (Figure 2). These effects

are randomdue to the stochastic nature of learning. The resulting
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map has the same character, although details differ every time it

is simulated.

The NG-CHL model with initial high plasticity and rapidly

decreasing learning rates has also produced big gaps and

high-density areas, as seen in Figure 3. Forgetting parameters

have been set to edgei = 20 and edgef = 200. Further retraining

with fast forgetting creates even bigger gaps. Many input

patterns are therefore associated with high-density clusters

acting as memes. Associations with other input patterns are

based more on stereotypes (clusters) rather than faithful obser-

vations.

Non-stationary situations
Information that reaches us through media or social networks is

fragmented. If it is interesting or emotionally exciting, more sour-

ces are searched for. Learning in non-stationary situations is

much more difficult and therefore distortions in representation

are much stronger. In the figures below, a dark rectangle moves

randomly across the whole area and the training data that should

be learned appear only inside its area.

Using the same parameters as for the stationary case, SOM

started with high plasticity that was rapidly decreased in

10,000 steps. The map in Figure 4 shows very strong concentra-

tion of nodes that point to the initial patterns. The network did not

learn much during the later part of the training. It has ignored

most of the facts coming after the rapid learning period, creating

one big sink for all associations. Such a network will interpret
Figure 2. SOM network learning the same
distribution as in Figure 1, with fast decrease
of plasticity, covers areas where no samples
appeared and leaves large gaps in the
data space



Figure 3. The neural gas model with fast decrease of plasticity creates even stronger distortion of original distribution than the SOM map
in Figure 2, leaving many gaps and covering empty space densely
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most input data as similar to what it has seen in the critical period

of high plasticity.

Further training with increased plasticity may somehow repair

the distorted view, although, even after a very long training

(Figure 5), a strong meme that has been formed in the center is

still present. A large basin of attraction for this meme will lead

to its frequent activation even by irrelevant input patterns. After

additional 100,000 steps with slow annealing of the central sink

may disentangle to some degree, providing a distorted, but

more diversified, map.

The NG-CHL algorithm may also create completely distorted

representation. After 40,000 steps with rapid decrease of plas-

ticity, it has created two separate memplexes, each with several

strong memes that are used to interpret all incoming patterns

(Figure 6).

Maps created with rapid decrease of high plasticity are quite

unstable. In Figure 7, another solution is shown with four larger

memeplexes that completely distort the view of the input pat-

terns. It is quite difficult to create faithful representations of input

patterns for non-stationary signals. Very long training times with

several hundred-thousand iterations are needed to achieve this.

Although central beliefs may be similar within a group of conspir-

acy believers, a number of subgroups may emerge.

In rapidly changing situations, it is much more likely that a dis-

torted view will be learned instead of a faithful representation of

reality. Gaining experience in changing environments obviously

takes more time, as can be observed in many domains such

as medicine, where initial background knowledge is slowly

structured into high competence by the working environment.

CONCLUSIONS

Belief formation may be investigated at the biological and psy-

chological levels. Predispositions for accepting distorted views
of reality may come as a side effect of education and life experi-

ences and therefore are rather hard to investigate. Accepting

simple explanations is rewarding and creates pleasant feelings

of understanding. Complex explanations require a lot of effort

and a long time to understand them fully. A simple (although

inadequate) explanation is always better than to have no expla-

nation at all, saving energy required for learning and creating a

(false) impression of reducing uncertainty. Many papers have

been written on this subject from a psychological perspective.15

The European Union supports European Cooperation in Science

and Technology (COST) networking action on Comparative

Analysis of Conspiracy Theories (COMPACT), which gathers re-

searchers in history, sociology, psychology, and political sci-

ences interested in conspiracy theories.60

From a biological perspective, beliefs have been defined as

‘‘the neural product of perception of objects and events in the

external world’’14 or ‘‘the neuropsychic product of funda-

mental brain processes that attribute affective meaning to

concrete objects and events and of an affirmative internal af-

fective state reflecting personal meaning,’’10 but what are

these fundamental brain processes, and why do people

believe in conspiracy theories? Because mechanisms of

memory formation in the brain work the way they do. Neuro-

dynamics helps to understand the conditions under which

large basins of attraction, called memes, are created in mem-

ory networks, and how and why they form memplexes that

lead to the distorted associations. This is an important step

toward linking memetics with theoretical and experimental

brain science. Perhaps patterns of brain signals correspond-

ing to memes can be measured,18 and computer simulations

should help to define most suitable experimental conditions.

With the advent of highly detailed brain simulations and neuro-

imaging techniques, we should be able to understand pre-

cisely the mechanism behind false memory formation.
Patterns 2, November 12, 2021 9



Figure 4. SOM with rapidly decreasing plasticity for non-stationary distribution
Samples come here from a moving square (seen in the left corner) and with very slow learning are uniformly distributed in the whole rectangle, but fast learning
leads to completely distorted associations.
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However, it should be possible to repeat the experiments on

artificial distributions with maps based on texts in some

restricted domain. Each network node will represent than a

word, and distances between words will be based on their
10 Patterns 2, November 12, 2021
similarity in a given context. Such models should allow for

semi-realistic analysis of formation of distorted world views.

What lessonscanwedraw fromcomputationalexperimentswith

competitive learning? The RFHN model presented here is very
Figure 5. Non-stationary case, neural gas
map as in Figure 4, followed by long, slow
training (100,000 steps) only partially
recovers uniform distribution, leaving large
concentration of the codebook vectors in the
middle



Figure 6. In the non-stationary case, neural gas created two densely connected structures and did not encode signals from many areas
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simple, but it seems that all types of competitive learning models

show similar behavior. More complex models with high-dimen-

sional input patterns almost certainly will have even bigger prob-

lems with faithful representation of input patterns using the rapid
freezing of neuroplasticity scenario, and will lead to large attractor

basins that can be interpreted as memes. Slow learning leads to

faithful representations, but, if the information is false (for example,

frequently repeated inmedia), itmay also end in conspiracy theory.
Figure 7. Another neural gas map for non-
stationary case, showing how unstable such
learning may be

Patterns 2, November 12, 2021 11
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A lie repeated10,000 timesbecomes truth, as in the famousBig Lie

propaganda technique.On theother hand,after formationofmem-

plexes, slow long learning may lead to some improvement of the

veracity of information represented, especially if neuroplasticity is

enhanced by emotional arousal.

Although factors that contribute to the individual mental state

and influence formation of memories are very diverse, people

that subscribe to specific subcultures share many common

beliefs and contribute to replication of specific memes. In such

subcultures, memes, units of cultural transmission, may become

viral because they complement already existing episodic mem-

ories, extending memplexes that are common in such popula-

tions, adding new, easily excitable elements strongly associated

with already memorized memes. Creation of such realistic

models is a big challenge.

The contributions of this paper are 2-fold. First,memetics theory

has been developed in social sciences but a link to neuroscience

has been missing. Linking memes to attractors of neurodynamics

should help to give memetics solid foundations. Second, analysis

of formation ofweird beliefs is very important, but so far there have

been nomodels of brain processes that could explain the creation

of such beliefs. Simulations presented here should draw attention

to the need for analysis of the type of distortions that are common

in neural networks.Of course,more complex neuralmodelswill be

needed to allow for predictions that could be compared with the

results of neuroimaging and behavioral experiments, but even

such coarse models based on competitive learning networks

may serve as an illustration of putative processes responsible for

formation of various conspiracy theories. Our next step is to

perform such simulations on real data from the newspapers. Other

computational models, such as ART53 and associative self-orga-

nizing network (ASON), that havebeen used to explain emergence

of falsememories61canbeused tomodelmemesand formationof

conspiracy theories. A lot of information aboutmemory distortions

from cognitive, psychiatric, neuropsychological, neurobiological,

and sociocultural perspectives is in the book Memory Distortion,

edited by D. Schacter.62
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