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Abstract: Visual simultaneous location and mapping (SLAM) using RGB-D cameras has been a
necessary capability for intelligent mobile robots. However, when using point-cloud map representa-
tions as most RGB-D SLAM systems do, limitations in onboard compute resources, and especially
communication bandwidth can significantly limit the quantity of data processed and shared. This
article proposes techniques that help address these challenges by mapping point clouds to parametric
models in order to reduce computation and bandwidth load on agents. This contribution is coupled

check for with a convolutional neural network (CNN) that extracts semantic information. Semantics provide
updates . L . . . . . -

guidance in object modeling which can reduce the geometric complexity of the environment. Pairing

Citation: Zhang, ].; Ganesh, P; a parametric model with a semantic label allows agents to share the knowledge of the world with
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human-robot cooperation. This article takes the first step towards a generalized parametric model by
limiting the geometric primitives to a planar surface and providing semantic labels when appropriate.
Two novel compression algorithms for depth data and a method to independently fit planes to RGB-D
data are provided, so that plane data can be used for real-time odometry estimation and mapping.
Additionally, we extend maps with semantic information predicted from sparse geometries (planes)
Academic Editor: Gwanggil Jeon by a CNN. In experiments, the advantages of our approach in terms of computational and bandwidth
resources savings are demonstrated and compared with other state-of-the-art SLAM systems.
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ranons Many autonomous agent tasks require robust localization and a good representation

of the environment, especially when GPS is unavailable. Mobile robots for indoor naviga-

tion often operate in structured environments hence indoor navigation focuses more on
2 generating a 2D map. For more complicated tasks, robots need more mobility to operate in
Copyright: © 2021 by the authors.  more dynamic environments such as slopes, stairs, and tunnels [1-3]. In these scenarios,
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This article is an open access article 5505 and the 3D map [4-6]. However, these sensors are quite expensive and relatively
distributed - under the terms and - fra0ile The emergence of modern consumer RGB-D sensors has had a significant impact
on the robotic research fields. They are low-cost, low-power, and low-size alternatives to
traditional range sensors, such as LiDAR [7]. RGB-D sensors also provide additional depth
information which enhances the ability of robots to sense the environment and estimate
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its structure for navigation. RGB-D cameras have been leveraged for a wide range of
research [8-11].

The motivation of our work is to construct a compact representation of maps that
can be efficiently shared among robots. Multi-agent systems have demonstrated various
applications, such as self-driving cars, warehouse robots, and so on. These applications re-
quire collaborative mapping where each agent needs to share information about their past
and current state. The use of SLAM to generate high-quality 2D or 3D maps is a classical
subject. Recent work focuses on real-time applications of SLAM in distributed environ-
ments to generate and update large-scale maps. Existing SLAM solutions endow robots
with capabilities to accurately estimate maps and their positions in these maps [12-15]. Yet,
these solutions use representations that are not efficient. In terms of computation, many
proposed algorithms either have fixed computational costs or require a complete set of
sensed data. In terms of bandwidth usage, the typical point cloud representation [8,9]
requires large bandwidth budgets to share with other robots. These two key shortcom-
ings, the high computational cost (often requiring GPU acceleration) and bandwidth
requirement, prohibit SLAM from being used in robots that have limited computational
or memory resources, e.g., light-duty UAVs and swarm-style robots. Hence, efficient
use of computational resources and communication bandwidth is critical to deploying
multi-agent systems.

Recent SLAM systems also leverage deep learning frameworks to extract high-level
information, such as semantics for use in downstream algorithms, e.g., natural language
processing [16-20]. However, these systems do not leverage the semantic information to
simplify the geometric representation of the sensed data or the SLAM map. This work
investigates methods that promise to allow this information to feedback into low-level
processing functions such as relative pose estimation and depth map sharing, or higher
level tasking.

Objects with a complex pattern in the environment can be transformed into geomet-
ric primitives and can be also reconstructed from these primitives based on some visual
rules, such as shape grammars [21], which can help address many of the aforementioned
problems. With these modeling grammars being known by robots in advance, the robots
are able to reconstruct the scene using very limited information like the model of objects
(determined by semantics) and their locations with respect to the robots. Further, the gram-
matical description of the world makes it possible to extract abstract natural language
(NL) descriptions of the world. For example, “there is a wall (associated with the shape
grammars of the wall) behind a table (associated with the shape grammars of the table)
at the position (x,y,z)”. This level of NL description not only permits natural-language-
facilitated human-robot cooperation (NLC) but also provides a compressed description
of the world. This allows closer collaboration between humans and robots which has
received increasing attention in the recent decade [22]. By using NL, human intelligence at
high-level task planning and robot physical capability at low-level task executions, such as
force, precision, and speed, are combined to perform intuitive cooperation.

Our work takes the first step in the exploration towards the goal, to enable mobile
robots to describe the world with compressed data and share maps with much less band-
width requirement. As an initial step towards this broader goal, we limit the geometric
primitives described above to planes to construct our SLAM system. We base our solution
on DVO-SLAM [10] and our previous work, compute-bound and low-bandwidth RGB-D
graph SLAM [23]. As a popular visual SLAM system, DVO performs well for RGB-D
camera tracking and building accurate maps. It was extended in [23] with a fast plane
fitting algorithm to extract surface information from scenes. A Quadtree [24] structure was
also used to compress maps into a planar representation. However, this map representation
is sparse and, thus, may contain large holes and ambiguous regions. Moreover, RGB-D
data rather than plane data were used for odometry estimation, which lacked computation
efficiency. Finally, neither RGB-D nor semantic information was available for represent-
ing the map (only geometries). In this article, we extend our previous framework for
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bandwidth and computation reduction with two novel depth compression algorithms and
one improved independent plane fitting algorithm. These efficiently provide the system
with dense plane fits. With the dense plane data available, we are able to utilize the fitted
planes to calculate the odometry and then reconstruct dense maps. To provide robots with
model information of the objects in the scene, we integrate a convolutional neural network
(CNN) into the SLAM system to extract semantic information correlated to the planes in
the environment. To summarize, the main contributions of our work are as follows:

e  Two efficient and effective compression algorithms for depth images are introduced
and implemented;

* A real-time fast plane fitting method is proposed which can fit planes independently
of the sensor intrinsic camera perimeters;

*  Areal-time odometry algorithm based on plane constraints is established;

¢ An RGB-D SLAM approach is developed which can construct and share 3D semantic
maps with much less computational cost and bandwidth requirement;

e  The potential is shown to estimate semantics from compressed geometric information
by feeding planes to an RGB-D CNN for semantic segmentation;

These contributions significantly advance the state of the art for RGB-D SLAM. Taking
advantage of one of the geometric primitives, planes, our method provides a new rep-
resentation for point clouds that can be quickly calculated and represents the data to a
similar degree of geometric accuracy using far fewer parameters. The joint effect of these
contributions allows agents with 3D sensing capabilities to calculate and communicate
compressed map information commensurate with their onboard computational and band-
width resources. Our results show the ability of the proposed method to compress a depth
image of 1 MB in real-time to as little as 144 KB. Plane fits can also be calculated inde-
pendently in real-time which enables multiple agents to efficiently share the compressed
map and build the map, which helps significantly reduce the bandwidth consumption.
The results of our experiments also demonstrate that by using plane data for odometry,
the computational cost can be saved by as many as 12 times. Additionally, our analysis
of semantic segmentation results shows the potential and benefits of extracting semantic
information from compressed geometry data. As a first step towards a generalized para-
metric/semantic model of the world, our work motivates future research on SLAM where
robots can estimate modeling information of objects from more shape primitives and share
this understanding of the world with limited communication channel capacities.

The paper is organized as follows: Section 2 reviews prior work on saving computa-
tional cost and bandwidth for SLAM systems; Section 3 briefly discusses some background
work that the proposed method is based on; Section 4 presents our solution; Section 5
analyzes the performance of the proposed method through extensive evaluation. Finally,
Section 6 concludes the paper.

2. Related Work

In this section, we provide an overview of prior work done on our contributions,
focusing on how bandwidth usage is reduced and how computational cost is saved by
state-of-the-art SLAM systems. We also review the currently used semantic segmentation
neural networks in the field, to explore the use of deep learning techniques in interpreting
geometric information.

2.1. Bandwidth of SLAM

Due to the bandwidth constraints and limited communication range, it is challenging
to share large amounts of data among the agents in a distributed SLAM system [25].
To overcome this, Montijano et al. [26] propose a distributed communication network
where every robot only exchanges the local matches with its neighbors. The algorithm
propagates local to global contexts to solve for a global correspondence [27,28] and manages
to reduce bandwidth requirements by transmitting a subsets of the map information as a
collection of sparse features. Recent research has explored the use of compact geometric
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representations like planes to reduce the map size [23,29,30]. These sparse representations
give rise to sparse map data that may however contain large holes and ambiguous regions.
Renaud et al. [31] propose a multi-agent system that reduces the required communication
bandwidth and the complexity by partitioning point clouds into parts. They then compactly
describe each part using discriminating features to efficiently represent the environment.
Cieslewski et al. [32,33] minimize bandwidth usage by running place recognition on image
frames and only sending the extracted feature vectors to the robots.

Although all of these SLAM systems work efficiently in reducing bandwidth, these
solutions suffer from multiple issues. They are either not designed for RGB-D data, or they
do not provide dense 3D maps as part of their SLAM solution. Moreover, they may not
be optimized for distributed multi-agent systems. Our bandwidth reducing solution,
in contrast, allows agents to fit planes to dense point cloud independently and to easily
compare plane fits with each other. We leverage a dense planar representation of the world,
as our first step to interpret the world with more geometric primitives.

The compression of sensed raw data is also critical for distributed visual-SLAM
systems to perform in bandwidth constraint platforms. Shum et al. [34] present a detailed
summary of image-based representations of video, textures, depth, etc. Researchers have
previously tried to apply color image-based compression techniques on depth images
but, considering that depth images are significantly different from color images, standard
color compression techniques may not be optimal. Nevertheless, several lossy schemes
which are based on color image-based compression have been proposed for compressing
depth images. For example, Krishnamurthy et al. [35] use a JPEG2000 based technique to
achieve an approximate compression ratio of 50x on depth images. Mehrotra et al. [36]
present a lossless entropy encoding algorithm that stores the inverse depth values as
integers. Wildeboer et al. [37] present an H.264 based scheme to compress depth maps
from a video sequence. Pratapa et al. [38] present a random-access depth compression
algorithm that generates a compressed depth image by partitioning the scene into three
parts and processing each part independently.

With the lack of study in this area, in this article, we introduce and implement two
novel compression algorithms for depth images. The first algorithm is an implementation
of the lossless data compression library zlib [39] on depth data, which uses a dictionary-
based compression entropy encoding scheme. The second algorithm is a novel random
access compression algorithm that implements the zlib algorithm on 8 x 8 blocks and is
described in detail in Section 4.1.

2.2. Computational Cost of SLAM

Another major challenge for current visual 3D SLAM approaches is to overcome the
burden that processing sensed RGB-D data places on the host’s available computational
resources. Centralized approaches [40-42] address computational cost by aggregating data
from multiple robots at a central server having more computational resources where SLAM
estimates can be calculated. Yet, such approaches are not viable for RGB-D data since shar-
ing these data requires prohibitively large network bandwidth. Further, this computational
model does not scale as the number of robots increases. Lajoie et al. [25] solves the SLAM
optimization problem via distributed computation approaches. In this context, robots
utilize only local computation and communication to optimize the SLAM pose graph and
estimate robot trajectories as well as environment maps. Another distributed mapping
algorithm [43] optimizes the SLAM algorithm by sharing key informative features. Recent
research [44,45] has extended this implementation as a backend to larger SLAM solutions
as a method to reduce the computational burden of solving multiple robot trajectories in
multi-agent systems.

There has also been significant interest in compact shape models to mitigate compu-
tational issues. Planes, for example, have been used in SLAM for efficient surface data
representation that can be associated and integrated with low computational complexity.
Many plane-involved SLAM solutions, however, either extend feature-based SLAM with
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the use of planar surfaces [46], or have an orthogonal assumption on the environment
which is less applicable [47]. Salas-Moreno et al. [48] build a dense planar SLAM system
using a dense ICP method to estimate sensor poses, which requires GPU for real-time com-
putation. A quaternion-based minimal plane representation is utilized by Kaess et al. [49] to
update the planes during optimization without using GPU but the system does not perform
well in real-time. Real-time CPU-only execution of dense planar SLAM algorithm succeeds
in exceeding current popular online 3D reconstruction methods in pose estimation [29],
while the computational cost can be further saved by aligning planes for loop closures
instead of searching for 3D point pairs.

Although some of these solutions can be computation-efficient, they are either not
applicable to 3D mapping scenarios in bandwidth-constrained contexts, or not designed
for multi-agent systems. In this article, to further reduce the computational complexity,
we distribute the computation burden across the SLAM system, perform plane fitting to
RGB-D data in real-time, and utilize plane representation for odometry and map building.

2.3. Semantic Segmentation Neural Networks

Assigning meaningful semantic labels to objects on the map is a non-trivial task and
there exists a great deal of prior work [50-52] on the subject. Some of the many approaches
to this are presented here for context. The first design decision is whether to generate many
labels by performing semantic segmentation or fewer with object detection and recognition.
The difference is that object detection and recognition attempts to assign a label to an entire
image or sub-image. Alternatively, semantic segmentation attempts to assign a label to
each pixel. There are advantages and disadvantages to each approach, but in this work we
are interested in making dense planar maps, so we utilize semantic segmentation.

In the context of machine learned semantic segmentation, the most well known seman-
tic segmentation network is Mask R-CNN [53] which is a large network that is available
pre-trained on a large dataset of images of everyday objects in context. Unfortunately,
the objects it is trained on are poorly represented by planes and also generally make poor
landmarks. Instead we use a modified version of the RedNet [54] architecture. RedNet
differs from Mask R-CNN in that it was intended to be used for indoor navigation and, as
such, has two branches, one for RGB images and one for depth images. These branches
extract features from their respective inputs and then merge the two data streams to per-
form the segmentation. This has the advantage that the depth images are more useful for
segmentation and extracting object edges while RGB images contain more information for
object recognition. We modify the network to use plane coefficient images and retrain on
the same dataset, but with the depth images pre-processed into plane coefficient images.
As will be discussed in the Methodology section, operating on plane images provides an
inductive bias that allows for certain classes to be more easily segmented.

2.4. RGB-D SLAM

We choose some representative state-of-the-art RGB-D systems and make a com-
parison in Table 1. Ours particularly stands out in providing bandwidth reduction and
semantic information. Additionally, in contrast to [10,49,55,56], our SLAM system has
frontend-backend separability. This allows the system to distribute computation tasks
on different CPUs or on completely distinct connected hosts, from which a multi-agent
system can benefit. Note that the discussion of bandwidth is not applicable to systems that
cannot be directly deployed in a distributed network, as those systems only run on a single
host. All of the mentioned SLAM systems can run in real-time according to their articles
while some of them require GPU acceleration. As shown in the table, we are working on
a new space in terms of bandwidth reduction and a semantic world, which makes a fair
comparison difficult. The main purpose of this article is to provide different solutions to
the ultimate goal which is making robots understand and communicate the knowledge of
the world with limited onboard resources.
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Table 1. Comparison of selected existing RGB-D SLAM with our SLAM system.

Frontend-Backend Separability Bandwidth Reduction CPU Only Local Mapping Semantic

DVO [10]
ORB-SLAM2 [9]
Bundle Fusion [55]
BAD-SLAM [56]

Dense Planar SLAM [48]
SLAM with Infinite Planes [49]
Point-Plane SLAM [57]
Ours

- v Point-Based
- v Point-Based
- Volumetric
v Point-Based

- Plane-Based
Plane-Based
Plane-Based
Plane-Based v

ENENEN

v
v v

3. Background

In this section, we provide background on key concepts of the planar semantic SLAM
which were discussed in detail in our previous publications. We will specifically focus
on giving readers background on graph SLAM and the plane fitting algorithm previously
described in [23].

3.1. Graph SLAM

Building a factor graph representation of a robot’s state is a popular technique for
solving the SLAM problem [58-64]. Factor graphs use a sparse representation of the robot’s
states to estimate the full trajectory of a robot and are ideal for compute-bound systems.
The graph SLAM problem can be formulated as estimating the posterior probability shown
in Equation (1), where a graph is constructed as the robot moves through an unknown
environment map m along a trajectory represented by the sequence of random variables
x1.7 = {X1,...,x7}. Although moving from an initial position x,, the robot acquires a se-
quence of odometry measurements uy.r = {uy, ..., ur} and perceptions of the environment
Z|.T = {le ...,ZT}.

p(x1.T, m|uy., 1.7, %) 1)

In a graph-based SLAM approach, the robot poses are represented as nodes or vertices
which relate to their position in the environment. The spatial constraint between vertices
are obtained from either the odometry measurements u; or sensor measurements z; and are
represented as edges. An edge constraint is obtained either between two consecutive robot
positions or by aligning sensor observations between two robot locations (loop closures).

Solving the posterior leads to an optimization problem over a sum of non-linear
quadratic constraints in the graph. Once the graph is constructed, we seek the configura-
tion of the graph vertices that best satisfy the set of constraints and we seek a Gaussian
approximation of the posterior distribution of Equation (1). The optimal trajectory, x*,
is estimated by minimizing the joint log-likelihood of all constraints as described by
Equation (2) [65].

X" = mxin (ngoxo + Z[xt —g(ut, xtfl)]TRfl[xt — g(ue, xp1)] + Z[Zt — h(xt, mi)]TQfl[Zt — h(xi, mi”) @)
t

t

The leftmost term, x ), x,, represents our prior knowledge of the initial pose where
), is the inverse covariance matrix associated with the initial motion. Often, x, is set
to zero, anchoring the map to the origin. The middle term describes a sum over the
motion constraints. The residual vector x; — g(u¢, x;—1), is then the difference between
the expected pose, x¢, and the pose observed by applying the motion estimate g(u¢, x;_1).
Similarly, the rightmost term describes a sum over landmark constraints. The residual
vector z; — h(x¢,m;), is then the difference between the expected landmark pose in the
global coordinate system, and the estimated global landmark pose resulting from the local
landmark measurement. R;” Land Q;l are the information matrices or inverse covariance
matrices associated with the motion constraint and the landmark constraint, respectively.

As mentioned earlier, the minimization is commonly solved using non-linear opti-
mization approaches like, e.g., Levenberg-Marquardt, Gauss—Newton, etc. It can also be
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solved efficiently by exploiting the sparse structure of the graph SLAM formulation [66],
thereby allowing the use of sparse methods, such as sparse Cholesky decomposition or
the method of the conjugate gradient. Many graph optimization libraries, such as the g?o
library [67,68], leverage these sparse methods in order to quickly optimize large graphs.

Many SLAM systems can be well described in terms of two fundamental components:
(1) the frontend and (2) the backend. The frontend tracks camera pose changes from RGB-D
images by minimizing the reprojection errors between two image pairs, which results in
a delta-pose measurement of the camera’s ego-motion and associated uncertainty [69].
The backend is responsible for large-scale map integration. The estimated camera poses
and their uncertainties are used to establish a vertex obtained from keyframe data. Edges
connect vertices using sensor data from connected keyframes. When two keyframes include
overlapping views of the same geographic map regions, the graph creates a new constraint
also called loop-closures.

One important visual SLAM implementation is direct visual odometry (DVO) [10].
DVO implements a keyframe-based approach for map building where the visual odometry
algorithm uses an RGB-D pair (keyframe) and estimates odometry between this frame and
subsequent frames. Once a certain threshold, such as distance, bearing change, or uncer-
tainty, a new keyframe is established. The 3D map which is constructed on the backend is
a collection of the keyframes pose at the time it was established.

Our previous work [23] extends DVO SLAM by adding several new capabilities.
One of the most significant new capability allows separates the frontend, and backend
components of this system into distinct applications which share information via network
communication. These components can run on the same or different CPUs or on completely
distinct hosts connected over a low-bandwidth network.

3.2. Real-Time Plane Fitting to RGB-D Data

In [23], we seek to approximate the measured depth data with 3D planar surfaces.
The planar representation for 3D scene promises to significantly reduce the size of the
RGB-D image data which serves to reduce both memory usage and computational costs.
Plane fitting is accomplished in real-time using an ultra fast-fitting algorithm proposed
in [70]. This accelerated fitting of planes is made possible by a rearrangement of the
standard plane fitting error functions for RGB-D data. Standard planar representations

adopt a form of equation aX + bY 4 cZ +d = 0 where X = Z (’7&) andY = Z (y;:y)

and Z = Z(x,y), where (x,y) is the image pixel coordinate and (cy, ¢y, fx, fy) are camera
intrinsic parameters. We substitute the 3D reconstruction equations for the variables X and
Y then simplify the resulting equation to fit directly to only the measured RGB-D depths
and, in doing so, save significant computational cost.

The re-arrangement of the terms gives

aX by ¢ 1
7 + 7 + F] + 7= 0 (©)]
In order to fit planar models to sets of 3D points, we leverage an explicit least-squares
formulation to compute the coefficients of the plane as shown by the objective function in
the equation. We rename the variables as follows a1 = 7, ap = % and a3 = 5 and solve the
explicit least squares fitting problem in Equation (4) below.

X — Cy y—cy 1
« +062< >+Dé3+
1( fx ) fy 4

Note that x;x‘:" and ¢ };y can be pre-computed from the known integer (x,y) pixel

2

floy) =Y,

(xy)

(4)

coordinates and the calibration parameters.
This equation provides us the benefit of conceiving a computational algorithm that
will fit an explicit 3D planar surface directly to the measured, i.e., perspective-projected,
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depth image values. The result of the fit depends on the camera intrinsic parameters
(fxs fy,cx, cy).The least-squares scatter matrix for this fitting approach has the form as

shown in Equation (5) below.
() () (o)

N
- B () () () ()| o
HRRCO T S
where M denotes the matrix of planar monomials formed from the 3D (X, Y, Z) surface
X;i—Cx

data having ith row M; = { % 1 } The least squares solution for the un-

X

known vectora’ = [ a7 ap a3 |isthena = (M'M) “IM!b where b is the inverse of the

measured, i.e., perspective projected, depths; b = [ Z% ﬁ } which is proportional

to the pixel disparity typically used for depth calculation in depth sensors [71].

It is important to note that none of the elements of the scatter matrix depend on the
measured depth data and, as such, this matrix requires a constant number of operations to
compute for each measured image, i.e., it can be pre-computed given the RGB-D camera

parameters. Hence, explicit plane fitting in the RGB-D range space requires only computa-

tion of the vector b = { Z% e ﬁ } for each range image and the best-fit plane is given

by a single matrix multiplication: (M‘M)~'M'b, where the value of M’b is given below:

Xi—Cx

R N N P
Mb=Y - | o 6
Lz| 5 ©

4. Methodology

The goal of the proposed approach is to efficiently and effectively compress the
knowledge of the world. This enables robots with limited resources to contribute to, and
potentially benefit from, 3D maps in a distributed 3D SLAM system. This goal is achieved
by the following modifications to the previous work [23].

* Independent fast plane fitting—a coordinate transformation is applied so that solving
the least-squares fitting problem is independent of the sensor intrinsic parameters;

e  Compression algorithm—a bitmap is used to record NaN value locations before
compressing the depth and then encode the depth with a custom dictionary-based
compression algorithm;

¢ Odometry algorithm with planes—camera transform is calculated by aligning the
compact plane fits of the point cloud instead of repetitively matching every point;

®  Semantic maps—plane images is populated to an RGB-D CNN for semantic segmen-
tation as input to show how geometries help extract semantics.

The cumulative effect of these modifications generates a new SLAM system that
advances the state-of-the-art for efficient multi-agent map building. The framework of
the overall SLAM system is shown in Figure 1, and it contains two parts: (1) the frontend
where the depth data are compressed and the camera pose is estimated, and (2) the backend
where the global semantic planar map is generated.
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Frontend.}

Compressor

Compressed depth
Plane fits (meta-data)l Pose estimate :
Local map :

Depth image

Sensor data
(RGB-D)

(plane odometry)

RGB image

Decompressor

Loop closure Depth image

I

Label fusion <— Semantic CNN

Global semantic
planar map

RGB image

Plane image
*. Backend

Figure 1. Framework of our low-bandwidth 3D planar semantic SLAM system. The frontend takes sensor data as input
then performs depth compression (Section 4.1) and plane fitting (Section 4.2) in the same time. The plane coefficients and
RGB images are used for fast camera pose estimation (Section 4.3). Local maps contain all image and plane data, as well as
camera pose and camera parameters. The backend takes as input local maps to recover the RGB, depth, and plane images
(an image of plane coefficients), and create a SLAM graph with loop closures. The semantics are predicted by a CNN and
integrated into the graph to generate a global map. Note that in our experiments the loop closure detection uses depth
and RGB images to perform the more accurate mapping. However, for fast loop closure detection, the depth data can be
replaced with plane data.

4.1. Depth Compression

When building multi-agent distributed SLAM systems, data compression plays an
important role in reducing the bandwidth budget of agents especially in visual SLAM
applications that use RGB-D sensors. Although there are very well-established and highly-
tuned algorithms to compress RGB data, not many algorithms are available for depth
images compression. Several lossy schemes that work for standard color images have been
used to compress depth images but do not perform as well. This is because the depth
images have different properties than standard color images so the compression algorithms
have unique needs to compensate for NaN values scattered through the image. This
prevents typical grid-based algorithms for compression like the discrete cosine transform
(DCT) in JPEG compression, or the wavelet transform in JPEG 2000. To overcome these
challenges, we propose two novel depth compression techniques, (1) a zlib based entropy
encoding technique and (2) a custom dictionary-based compression approach that allows
random access.

In our first approach, we leverage zlib library for lossless compression of depth
images. zlib is a free, open-source library which is used in thousands of applications
for data compression like compressing TLS connections and storing Git version control
files. However, to the best of our knowledge, no previous work has applied it to depth
compression. zlib library uses a deflate-inflate method to encode and decode data which,
in turn, uses a combination of the Lempel-Ziv-Storer-Szymanski (LZSS) algorithm [72] and
Huffman coding [73]. The LZSS is a dictionary-based algorithm that replaces recurring
bytes of data with a reference to a previously occurred byte. The algorithm uses a sliding
window-based approach to find sequences of repeated data. Then the Huffman encoding
breaks LZSS encoded data into blocks, and generates codes for each data block. The
Huffman encoding uses a statistic-based approach to encode symbols whose lengths are
based on the frequencies of occurrence. The inflate method follows similarly in reverse.

In our custom dictionary-based approach, we first adopt the concept of the bitmap to
locate the pixels with invalid depth (NaN values). We then divide a 640 x 480 depth image
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into multiple 8 x 8 blocks. For each block, we create a bitmap to denote if an invalid pixel is
existent. Specifically, in this bit pattern, for each location, if the pixel contains a NaN value,
the bit value is set to 1. Essentially we create a bitmap representation of the block where
1 indicates where the NaNs are and 0 indicates where the depth measurements are. This
representation requires 64 bits (8 bytes) to map the location of NaNs. Having all NaN values
located, we traverse the bitmap in a zigzag pattern to convert the 2D data to a 1D vector
while jumping over all of the NaN values that are possibly scattered in the bitmap. We
then compute a compressed bitmap buffer of these NaN pixel locations and encode it with
run-length encoding (RLE). The non-NaN values are encoded by a dictionary-based lossless
compression algorithm using zlib. By filtering invalid pixels beforehand and, respectively,
encode the NaN value locations and valid depth information, we are able to compress
the geometric data while avoiding the potential problems of direct depth compression.
To decompress the data, the algorithm decodes the NaN bitmap, and recovers the dictionary
used in encoding stage to decode the values. The steps for both encoding and decoding are
summarized in Figure 2.

Compute the NaN Encode values by

Create the » Sort the block Eliminate » Quantize

Map > dictionary values | redundant values dictionary > 1%3?511?1?3;
(a)
Recover dictionary Decode values by
Decodﬁ{;he NaN » from quantized f—J» using the
p value dictionary
(b)

Figure 2. Block diagram summarizing the steps involved in (a) encoding and (b) decoding the depth map in the custom
depth compression algorithm.

4.2. Stream Meta Data

On top of our compressor, we can optionally add a layer of surface information
metadata by fitting planes to 8 x 8 blocks of depth data. For each block of the depth
image, if the block contains sufficient valid depth data (more than 50% pixels), we apply
the surface fitting algorithm mentioned in Section 4.2.1 to calculate a surface representation
and an entity of metadata, including the plane coefficient vector and its covariance that
summarizes the log-likelihood of the pixel in that block given the plane fit.

4.2.1. Independent Plane Fitting

To approximate the measured depth data with a 3D planar surface, we leverage the
plane fitting algorithm discussed in Section 3.2 and extend it to serve better in multi-agent
scenarios. We devise a method to fit explicit planar surfaces to local image patches without
the need to know the location of the image center. This allows local N x N image patches
to be compressed without the knowledge of their absolute location in the image. Let (x,y)
denote the pixel coordinates within an image region bounded by upper-left coordinate
(x0,y0) and lower right coordinate (x1,y1). We denote the patch center as the point
(xc,yc) = (2550, 510 We then make the coordinate transformation in Equation (7).

Xj =X, —Xc+cy

7
Yi=Yi—Yetey 7
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The impact of this coordinate transformation changes the scatter matrix MM from
the Equation (5) to the Equation (8) in (x/,y’) shown below.

(d-x)"  (Fx)(-w)  (d-x)

N f2 fxfy R fx
MM = Y| (i) (vimye) (Vi—¥c) (Vi—ve) ®)
i=1 foy fyz fy
(xf—xc) (vi—ve) 1
T i

Equations formulated in the coordinate system (x’, ") enjoy the benefit of being inde-
pendent of the sensor intrinsic camera parameters (cy, ¢y), and require only the knowledge
of the size of the image patch, i.e., (xp, yo) and (x1,y1). Calculation of surface fits to the
coordinates (x/, ) can then be linearly put into the 3D coordinate system appropriate for
a sensing camera by a single linear transformation on the estimated variable « as shown in
Equation (9) below.

1 0 0
T,=| 0 1 0 ©)
cx—Xc Sy VYe 1
fx fy

This allows inverse values for the matrix MM to be pre-computed and enables the
resulting fit surfaces to be placed in 3D with a single linear transformation of the estimated
coefficient vector: & = Ta'.

Various applications including multi-agent SLAM can be benefited from this sepa-
ration of the plane fitting algorithm and the sensor information. In a multi-agent SLAM
system where agents are likely equipped with different cameras, our camera-independent
fitting algorithm allows the possibility of easily sharing and comparing plane fits across
the cameras which enables an efficient cooperative SLAM system.

In addition to encoding the depth map, our compression algorithm also encodes the
camera calibration information at the same time. After compressing all information, we
send from frontend to backend the compressed depth image, the plane fits (4§, g, 4) each of
which takes three 24-bit values and plane coefficient covariance (six 24-bit values) for all
blocks having 32 or more valid depths in an 8 x 8 window.

4.3. Plane Cloud Odometry

Similar to DVO SLAM, we use alignment results between images for odometry. Given
an image pair with intensity and depth information (I;, Z;) and a second image pair taken
at a later time (I, Z;), DVO odometry algorithm seeks to estimate the set of transformation
parameters ., that best aligns the images after a warp function 7(x, T) is applied to all
pixels x where T is the transformation matrix of the camera motion and can be calculated
from ¢, using the matrix exponential T = exp(&.). The warped location in the second
image, X/, of an image pixel x in the first image can be computed given the transformation
matrix, T, and the projection function, 7, from pixel coordinates to a 3D point.

X =1(x,T) = n(Tr (x, Z1(x))) (10)

The goal here is to find the best correspondence that is determined by the difference
between the warped image, W(x'), and the reference image, I(x) or Z(x) in terms of
intensity and depth value. The error function can be written as:

F&) = 3 L) = 100 + 3 R(Wo () = Z(0)* = 2 Tra(x + 3 Era(0? ()

X

Note that the error term above is non-linear, and we, therefore, find ourselves in
the midst of a non-linear least-squares problem. It is worth to mention that a multi-
scale methodology is adopted by DVO for odometry calculation. At different levels, it
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first computes the residuals for intensity and depth, then computes the sum of residual
weighted gradient vectors for parameter update.

The problem of matching image measurements (depth and intensity) is that it re-
quires the existence of the same sample from the same surfaces, which is not always
available with the camera moving. The common solution to this problem is to perform
interpolation which introduces much computation to the problem. For example, DVO
Odometry performs interpolations for depth images, intensity images, depth gradients
in x,y directions, and intensity gradients in x, y directions at every iteration, as a result
of which, it is very computationally expensive. This can be addressed by directly solv-
ing for the correspondences between plane fits from two plane images [30]. We use the
compact representation of the world in terms of planar algebraic surfaces, i.e., surfaces
having equation ax + by + cz 4+ d = 0, to establish the likelihood that a given hypothesized
plane image pair can be aligned with the intent to piece together large geometric map
regions in a manner similar to puzzle-solving. This is accomplished by minimizing an
error function that solves for both the correspondence of planar surfaces between the plane
images and the Euclidean transform that aligns these algebraic surfaces. The magnitude of
the algebraic alignment error then serves as a goodness-of-fit metric to validate or refute
the plane image pair hypotheses. We base our plane odometry algorithm on this and it
saves much computational cost by avoiding searching for corresponding measurements
from surfaces at the corresponding location. Instead, it computes the optimal alignment (in
the least-squares sense) between planes that are hypothesized to have the same equation
up to an unknown Euclidean transformation. For our derivation, we denote 7; and 71 as
two collections of N plane equations. Equation (12) expresses the optimization problem at
hand. Here we seek to estimate the transformation "T"H]- that takes the planes of 71; into
the coordinate system of planes 77;. Note that Euclidean transformations, when applied to

planes, follow the transformation rule 7= (T~ Yim for et = [a,b,c,d].

Tioj=min 3 |~ (T;1)'m? (12)
=7 {i,j}pairs

To benefit from both image measurements and algebraic representation of points, we
can alternatively add a stream of metadata from our plane fitting on top of the intensity
constraints in Equation (11), in replace of the depth constraints. The new error function is
shown in Equation (13). We call this approach hybrid odometry. Specifically, our hybrid
odometry treats plane coefficients (a,b,c,d) as four images in addition to the intensity
image that is already used by DVO. The transformation to be solved needs to bring 4 plane
coefficients and intensity values into an agreement between two frames. Intensity images
are required to be downsampled to match the size of plane images and interpolations are
performed during calculation. By taking advantage of the metadata within blocks, our
method aligns images by performing calculations on a much smaller collection of values
instead of visiting every pixel in the image.

F&) = 3 Tor(? + 5 Yo 13)

We also perform graph-SLAM incorporating only motion constraints into the back-
end optimization like DVO SLAM. However, in contrast to DVO SLAM, our backend
keyframes store compressed plane clouds in lieu of RGB-D data. This fundamentally
changes the function g(u¢, x;_1) in the second term of the graph-SLAM optimization prob-
lem in Equation (2) from an RGB-D point cloud alignment problem to that of aligning
compressed plane clouds. The new optimal pairwise motion estimate for a keyframe pair
is replaced by a new odometry algorithm g(uy, x;_1) that estimates the relative motion of a
pair of point clouds by minimizing the corresponding pairwise plane cloud data error.
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4.4. Semantic SLAM

Our semantic slam approach applies a CNN that takes in RGB images and plane
images which are sets of plane coefficients associated with each pixel, to produce semantic
labels for each input pixel. Once semantic labels are assigned to each element label fusion
is used to ensure that labels are consistent across time and multiple views. These are the
core components of semantic slam: semantic segmentation to generate labels and label
fusion to combine and track them. These are discussed in the following subsections.

4.4.1. Plane Semantic Segmentation Network (RedNet)

We use RGB + Plane coefficient data as the inputs into a multi-branch convolutional
neural network that performs semantic segmentation. Semantic segmentation is a combi-
nation of image segmentation, in which pixels correspond to the same object, and object
classification, identifying and labeling that object. This is useful both for producing labeled
maps and for reducing the computational burden of identifying correspondences and loop
closures as there is no sense in trying to match a table to a wall.

There are many networks, such as RedNet [54] and BiSeNEt [74], that use both RGB
and depth information to perform semantic segmentation. These networks generally per-
form convolutional operations on the RGB and depth images in parallel and then fuse the
information together before scaling back up to the original resolution, though implementa-
tion details differ. We are forced to retrain on a targeted dataset with modifications to the
depth branch to operate on plane images.

A plane image is similar to a depth image except it contains plane coefficients instead
of depth values. Since a plane can be represented with as few as 4 coefficients, we are
able to reconstruct 3D geometric data into a 4 channel image but with 3D information for
the following semantic segmentation work. In a real-world scene, especially an indoor
scene, many of the objects can be fitted by planes, such as floor, wall, table. For this work,
we operate on plane coefficients but do not merge contiguous planes so as to keep the
convolutional architecture. Operating on irregular collections of planes is deferred to
future work.

One advantage of performing the segmentation on planes rather than on the depth
values is that depth values are independent but the plane coefficients encode information
about the local geometry. Based on preliminary results, we elected to focus on modifying
and retraining RedNet for our application. RedNet was originally trained on RGB+D data
from the SUN RGB-D dataset [75]. We train our whole network on a modified version
of the same dataset in which the depth channel has been converted to a grid of plane
coefficients, i.e., plane images and the RGB images scaled to align with the plane images.

We reused the PyTorch implementation of RedNet and retrained both branches with
the depth branch converted to use plane images in the place of depth images. Both branches
are downsampled by necessity as calculating each plane requires at least 3 valid depth
points within one fitting block. No pre-trained weights for the RGB branch are available,
but we follow the training regimen specified in the original RedNet paper.

4.4.2. Label Fusion

Generating a semantic map requires the temporal consistency of the semantic predic-
tion. When observing a scene from a moving camera such as on a mobile robot, the system
obtains multiple different views onto the same objects. Nevertheless, as the viewpoint
varies, different semantic cues estimated by the CNN may become available and a pre-
viously semantically ambiguous region may become more distinctive. To address this
problem, we perform data association by warping sequential frames of different views into
a common reference view and fuse the semantics.

As discussed in Section 4.3, given a 2D image coordinate x € R?, the warped pixel
location can be determined by Equation (10). With the warped pixel location, we can find
the pixel correspondences for two label images S 4, Sp in sequential keyframes sharing a
common field of view (FOV). We then compare the labels and their associated prediction
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confidence for those pixels in the common FOV. If the labels are the same for two corre-
sponded pixels, we remain the same label in the label image of the second view and update
the predicted confidence by averaging two confidence. If not, we update the pixel label in
both label images with the label of higher confidence. The new confidence is obtained by
lowering down the higher confidence by 10% as a penalty to semantic inconsistency.

The underlying intuition of our label fusion is that corresponding pixels must have the
same semantic label, as well as similar (but not necessarily the same) prediction confidence.
Unlike the photo-consistency assumption adopted by tracking algorithms like DVO SLAM,
the semantic consistency assumption is comparatively weak since it is not anchored to any
actual measurement. However, it is possible to use it as a constraint for graph optimization.
In this work, we only focus on using label fusion to generate a global semantic map, not
for any optimization.

5. Experiments and Results

In this section, we evaluate the key components of our SLAM system that we con-
tribute to. We conduct experiments on each component separately and compare it to
the state of the art when available. Specifically, (1) we compare and analyze the size of
our compression data to the raw data, showing that bandwidth reduction on sharing the
geometry information among agents. (2) We also compare our odometry algorithms with a
popular RGB-D camera tracking algorithm DVO odometry, demonstrating that using plane
data accelerates the odometry estimation process by reducing the data size and calculation
complexity. (3) We then evaluate the performance of our CNN with a common RGB-D
semantic segmentation CNN, RedNet. Our results outperforming RedNet on some classes
suggests the potential of extracting semantics from plane data in an indoor scene where
most objects have regular shapes. The TUM RGB-D dataset [76] is used for evaluation
and comparison for most of the experiments while the neural network training uses the
SUN-RGBD dataset. More details are discussed in the following sections, respectively.

5.1. Depth Compression

Depth compression for SLAM is a relatively new concept and to the best of our knowl-
edge, there exists no open-source implementation of compression on non-synthetic depth
data. In this work, we present two novel depth compression techniques, zlib Compression
and the University of North Carolina at Charlotte (UNCC) compression technique. We
conduct our experiments on a laptop with an Intel Core i9 processor (no GPU used). We
evaluate the performance of the two algorithms by examining the time taken to encode
and decode a depth image and by investigating the size of the compressed depth map.
Figure 3a shows the size of the compressed depth map for each of the 2510 depth images
from a benchmark TUM RGB-D dataset. Table 2 provides statistics on the size of the
compressed depth images for the same experiment. It is observed that both the zlib and
UNCC Compression have a compression ratio of 9.6x and 8.5, respectively. As expected,
the UNCC compression algorithm has a larger compressed image, as it encodes the com-
pressed image with meta-data containing the plane coefficients. Additionally, each 8 x 8
block has its own dictionary taking up more space.

As described in the previous section, the UNCC compression algorithm splits an
image into 8 x 8 blocks and encode the non-NaN values using a dictionary generated
by the zlib algorithm, which means that each 8 x 8 block has a dictionary that needs to
be encoded. This gives the user flexibility in the decoding process in terms of decoding
only parts of the image and parallelizing the decoding process. In addition to the depth
map, the UNCC compression technique also encodes the camera calibration information
and the plane fits for each block, thus taking up more time and size to encode a depth
map. Upon further investigation, the average size difference for the encoded depth map
produced by the zlib algorithm and the UNCC compression is ~17 kB.
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Table 2. Table summarizing the compressed image size statistics.
Compression zlib Compression UNCC Compression Original Size
Mean [kB] 127.16 144.24 1228.8
Std Dev. [kB] 12.99 15.74 N/A
Max [kB] 159.84 184.32 N/A
Min [kB] 101.72 114.76 N/A

Figure 3a shows the size of the compressed depth image obtained from both the zlib
and UNCC algorithms for each frame in the test dataset. Depth sensors perform better
when objects are near the camera when compared to objects that are further away. This
means that they encode more information on nearby objects producing high-resolution
maps on scenes with lots of objects near the cameras like the one shown in Figure 3b as
compared to the scene shown in Figure 3c. As the amount of information encoded in the
original depth image is high, it results in a larger compressed image, which is seen in
Figure 3a. Figure 3b,c are the 4000th and 4500th frames in the dataset, respectively.

——— UNCC Approach
ZLib Approach | 4

o
3

Size of Compressed Image in kB
=
&

00 . . . . .
3000 3500 4000 4500 5000 5500 6000
Frame Number

(b)

Figure 3. (a) The size of the compressed depth image (in kB) for each frame in depth dataset. (b) The
depth point cloud capture at frame 4000. The depth image consists of objects near the camera thus
containing more information to encode (as seen on the plot). (c) The depth point cloud at frame 4500.
The majority of the objects captured are relatively far from the sensor, resulting in a low-resolution
depth image thus resulting in a smaller compressed depth image.

We show the statistics for the time taken to encode and decode depth images for the
two compression algorithms in Table 3. The time taken to decode the compressed depth
image is significantly lower than the time taken to encode the data, especially for the UNCC
compression technique. This is expected because to encode the depth map, the algorithm
has to sort values in an 8 x 8 block and then remove redundant values to generate the
dictionary, which is not necessary for decoding. The small duration to decode the depth
image and the small size of the compressed image opens the door to storing the depth
image in a compressed format. This frees up storage space for running the algorithm for
longer and saving more data in memory.

In addition, the ability of the UNCC algorithm decoding blocks individually allows
reconstruction of the depth map by sharing only the plane metadata between the frontend
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Size in kB

400

and the backend. It is noted that it takes an average of 1.24 us to decode a single block
from the compressed depth image which is comparable to Pratapa et al. [38] who present
a random access compression technique on individual depth frames. This allows the
possibility to further decrease the bandwidth of the computation load on both the frontend
and the backend in future work.

Table 3. Statistics for the time taken to encode and decode depth images for the two compression

algorithms.
zlib Compression UNCC Compression
Compression Algorithm
Encode Decode Total Encode Decode Total
Mean [us] 5544.89 384498 9389.87 13,997 1665.93 15,663.26
Std. Dev. [us] 43374 19197 601.79 81875  62.68 869.15
Max [us] 9568 5691 15,259 22,485 2930 24,524
Min [ps] 4590 3312 7944 12,044 1505 13,592

A key difference between UNCC compression technique and the zlib technique is
that the UNCC technique allows the user to change the behavior of the compressed depth
image by varying the bits per symbol (BPS) and the quantization step size (QSS). The BPS
determines the number of bits in each symbol of the dictionary whereas QSS determines
how close two neighboring entries in a dictionary can be. The QSS values are represented
as the inverse of the distance threshold between depth entries and have the units of m~!.

Figure 4 shows the variations in the size of the compressed depth image and the total
time taken to encode and decode a depth image for every frame in the dataset. We note
that while the size of the encoded depth image changes significantly, the time taken to
encode and decode the depth image does not change. Upon further investigation, we
find that the majority of the time taken to perform the encoding operation is taken up by
the bit packing algorithms and the time taken to move data to and from memory. Hence,
we notice no significant changes in time when both BPS and QSS parameters are varied.
Table 4 summarizes the size and time when the parameters are varied.
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Figure 4. Plot showing (a) the changes in the size of the compressed depth image and (b) the total time take to encode and
decode a depth image when the bits per symbol is varied.
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Table 4. Average size of compressed image and total time while varying QSS and BPS.

Avg. Size of Compressed

Scenario Total Time (s)

Image (kB)
Quantization Step Size = 1000 144.24 0.015
Bits/Symbol = 15
Quantization Step Size = 700 446.81 0.02
Bits/Symbol = 15
Quantization Step Size = 1000 297.87 0.021

Bits/Symbol = 14

5.2. Odometry Estimation

Odometry can be estimated using plane coefficients much faster than using depth and
intensity measurements as DVO odometry does. To the best of our knowledge, popular
RGB-D SLAM systems perform very similarly in odometry estimation to DVO odometry.
Instead of matching depth for different frames, we match the algebraic representation of
the surface itself. As discussed in Section 4.3, plane odometry, achieved by aligning two
surface representation, avoids the effort of looking for corresponding measurements from
surfaces at the corresponding locations. All of the points that are on the same surface
would share the same plane coefficients, making the plane representation of the point
cloud much more efficient. This is confirmed by our experiment results. We compare our
plane odometry to our implementation of DVO odometry in MATLAB and measure the
computation time for odometry estimation. It is worth noting that DVO does an excellent
job in architecture acceleration and is able to achieve real-time odometry computation. Our
implementation of it is not metrically consistent with the wall-clock analysis of running
their algorithm. Additionally, unlike the original DVO implementation with multi-scale
calculation on the images, we only compute odometry at one single scale as the depth
images and plane images have different sizes, which may require different scale numbers.
Our experiments are conducted on the benchmark TUM RGB-D dataset. The results of
our evaluation on 100 pairs of frames are presented in Figure 5. It shows that our plane
odometry is far more computationally efficient, running at about 12 times faster overall
than DVO odometry.

To take advantage of both image measurement and algebraic representation, as pro-
posed in Section 4.3 we integrate our plane representation into DVO odometry. In this
hybrid odometry approach, by grouping depth data into 8 x 8 blocks and representing
them with 4 coefficients (a,b, ¢, d), more computation savings can be achieved as visiting
over all pixels can be avoided (although it actually introduces more interpolation opera-
tions). The experiment results are also included in Figure 5. Our hybrid odometry performs
between DVO and plane odometry in terms of computational cost. It overall runs 3 times
faster than DVO and 4 times slower than plane odometry.

The acceleration of odometry calculation compared to DVO odometry, a real-time
implementation, suggests the real-time capability of our algorithms. Given that RGB-
D image data are captured at a resolution of N = 640 x 480 ~ 307k and a frame rate
of 30 images/second, these computational savings from using planar representation for
odometry calculation may significantly affect the run-time of real-time image processing
algorithms for this class of image sensors.

We also compare the accuracy of estimated odometry from the three aforementioned
algorithms with ground truth and are shown in Table 5. Although benefiting from handling
much fewer data to achieve higher processing speed, both hybrid odometry and plane
odometry suffer from larger error and variance than DVO odometry. This provides an
insight to balance the trade-off here based on the real application, for example, to achieve
a good balance between speed and accuracy performance, in a multi-scale odometry
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calculation scenario, plane odometry can be applied in the higher level to initialize the
estimator weights for lower-level DVO odometry to leverage.
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Figure 5. Average computational time of different odometry algorithms.

Table 5. Accuracy performance of different odometry algorithms (yaw, pitch, and roll are in degree,
and tx, ty, and tz are in meters).

Yaw (°)  Pitch(°®) Roll(°) tx(m) ty(m) tz(m)

RMSE (DVO) 0.2741 03646 0.2042 0.0070  0.0028  0.0049
Std. Dev (DVO) 0.3585 0.4443 0.2969 0.0051 0.0042  0.0071
RMSE (Hybrid) 0.9417 1.7444 1.9219 0.0430  0.0441 0.0487

Std. Dev (Hybrid) 2.9798 5.9445 5.2683 0.1842  0.1830  0.1485

RMSE (Plane) 1.7984 1.9692 0.4452 0.0552  0.0489  0.1126

Std. Dev (Plane) 1.2027 1.0511 0.5727 0.0687  0.0312  0.0412

5.3. Semantic Segmentation
5.3.1. Network Training

We trained our modified version of RedNet architecture in PyTorch with a ResNet34
backbone from random initialization on the preprocessed SUN RGB-D dataset in which the
depth channel has been converted to a grid of plane coefficients. The SUN RGB-D dataset
contains a vocabulary of 37 classes from indoor scenes. The optimizer used was stochastic
gradient descent with a learning rate of 0.002, the momentum of 0.9, and a weight decay
rate of 0.0001. The training ran for 250 epochs on four NVIDIA 1080 GPUs.

5.3.2. Performance Evaluation

We evaluate our modified version of RedNet architecture on the test dataset from the
preprocessed SUN RGB-D dataset. Overall, our network performs well on the modified
SUN RGB-D dataset described above but compares unfavorably to the original imple-
mentation. This is partially attributable to the downsampling required to calculate the
plane coefficients, in this case shrinking the images by a factor of roughly four, and to the
architecture not being structured to fully exploit the information in the plane coefficients.
As a result, we achieved an overall pixel accuracy of 62.15% as opposed to 80.8% for the
original RedNet and a mIoU of 0.272 as opposed to 0.468. The qualitative performance,
shown in Figure 6, indicates it is fit for the purpose to generate semantic labels for mapping
purposes. Please note that both the ground truth (top row) and predicted (bottom row)
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show artifacts from repeated down/upsampling and lossy compression used solely for
exporting the data to make this figure.

il
-\ i

(8)

Figure 6. Qualitative test set results. (a) an example RGB image. (b—d) masked images for segmen-
tation ground truth of three classes (floor, chair, table) respectively. (e-g) corresponding masked
images for the segmentation predictions by our network.

Those top-line statistics do not tell the whole story though. Table 6 shows the mean
intersection over union (mloU) for each of the SUN RGB-D classes. The mloU values
show that performance is much better on common classes that are well represented in
the training data and classes that are well represented by large planes. Ceilings, walls,
and floors have the highest mean pixel accuracy and mloU, as is to be expected. Other
classes such as toilets and sink have unexpectedly high scores, presumably because they
are isolated in view and protrude from walls and floors. For the top ten classes as ranked
by mloU, the accuracy for just those classes was calculated and listed in the third column.
For the top three, the mean pixel accuracy is even higher than the overall accuracy of
81.3% reported for the original implementation of RedNet based on the larger ResNet-50
backbone and trained for longer on RGB-D data.

Table 6. Mean intersection over Union for each of the SUN RGB-D classes.

Class mloU Acc. Class mloU Class mloU Class mloU
Floor 0.766 0.941 Sofa 0.366 Whiteboard 0.235 Box 0.1115
Ceiling 0.547 0.832 Window 0.358 Counter 0.208 Person 0.1081
Wall 0.519 0.910 Mirror 0.340 Bookshelf 0.197 Night Stand 0.0985
Chair 0.502 0.810 Cabinet 0.318 Lamp 0.187 Bag 0.0680
Curtain 0.445 0.598 Door 0.296 Blinds 0.182 Shelves 0.05767
Toilet 0.437 0.522 Fridge 0.294 Bookshelf 0.164 Shower Curtain 0.0051
Sink 0.421 0.623 Dresser 0.286 Desk 0.139 Floor Mat 0.0
Table 0.120 0.642 TV 0.279 Clothes 0.130 - -
Bed 0.412 0.711 Pillow 0.254 Towel 0.127 - -
Bathtub 0.411 0.481 Picture 0.250 Paper 0.121 - -

5.3.3. Semantic Map

We show an example of our label fusion results in Figure 7. By performing the
warping we can align different keyframes if an overlap exists (second row). Label fusion
will update the labels based on prediction confidence for all of the keyframe labeling
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results. From the last row of Figure 7, we can observe the consistency of labeling in
different keyframes, for example, after performing fusion many pixels of the chair in the
right image are modified and is consistent with the left image. Such consistency does
not appear in the keyframes before the fusion (first row). Note that this result is only for
the purpose of display the process of the label fusion. The labeling accuracy in terms of
labels and associated confidence are dependent on both the network and the data we run
experiments on, i.e., if the bagfile we use contains enough objects that the network can
recognize after training. This is not the focus of the discussion.

We also present an example of our planar map with textures, as well as with semantic
labels in Figure 8. Note that these maps are represented by plane clouds which are
a collection of smaller planar blocks instead of point clouds. The bagfile we use for
experiments does not contain sufficient objects that can be recognized by our trained
network, thus the label shown there are not necessarily perfectly reliable compared to the
ground truth.

keyframe #1 label (before fusion) keyframe #2 label (before fusion) keyframe #3 label (before fusion)

warping from #2 to #1 keyframe #2 label (before fusion) warping from #2 to #3
= —

updated pixel in keyframe #1 updated pixel in keyframe #2 updated pixel in keyframe #3

keyframe #1 label (after fusion) keyframe #2 label (after fusion) keyframe #3 label (after fusion)

Figure 7. Label fusion: the first row shows three keyframe label images. The second row shows the
reprojection of the image in the middle to the keyframe to the previous and next keyframe using the
odometry measurement. The third row shows the pixels where the labels are updated by the fusion and
the last row shows the results of label fusion. Labels across three keyframes are consistent after fusion.

Figure 8. Our global map with RGB appearance (left) and semantic map (right). The camera trajectories are also shown in

the map encircling the office scene.
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6. Conclusions

In this article, we propose a semantic SLAM system that uses planar surfaces to reduce
the resources for communicating the complexity of the world. We propose two depth com-
pression algorithms and integrate our plane fitting algorithms on top of them. The plane fits
can be computed efficiently and independently of the sensor intrinsic camera parameters,
and these planes can be used for many purposes, such as fast odometry estimation. We
also extend maps with semantic information predicted from sparse geometries by a CNN.
Although the CNN architecture we adopt is not designated for the plane data and to be
able to use it to train on plane data, we treat planar information as regular images, it still
shows the potential to match semantic labels with planar models of the objects for efficient
mapping. More research can be performed to address the aforementioned problems. With
semantics and shape models available, our approach enables us to share among the robots
very compressed knowledge of the world. In the future, we can explore more complicated
geometry primitives for object representation. Estimating semantics and modeling rules
at the same time is another interesting topic. The ultimate goal of this work is to enable
robots to achieve high-level tasking efficiently in distributed and collaborative settings.
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