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ABSTRACT  

Light Sheet Microscopy (LSM) in conjunction with embryonic zebrafish, is rapidly 

advancing three-dimensional, in vivo characterization of myocardial contractility. 

Preclinical cardiac deformation imaging is predominantly restricted to a low-order 

dimensionality image space (2i) or suffers from poor reproducibility. In this regard, LSM 

has enabled high throughput, non-invasive 4i (3d+time) characterization of dynamic 

organogenesis within the transparent zebrafish model. More importantly, LSM offers 

cellular resolution across large imaging Field-of-Views at millisecond camera frame rates, 

enabling single cell localization for global cardiac deformation analysis. However, manual 

labeling of cells within multilayered tissue is a time-consuming task and requires 

substantial expertise. In this study, we applied the 3i nnU-Net with Linear Assignment 

Problem (LAP) framework for automated segmentation and tracking of myocardial cells. 

Using binarized labels from the neural network, we quantified myocardial deformation of 

the zebrafish ventricle across 4-6 days post fertilization (dpf). Our study offers tremendous 

promise for developing highly scalable and disease-specific biomechanical quantification 

of myocardial microstructures. 
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INTRODUCTION 

Investigating genetic, structural, or metabolic biophysical characteristics in response to cell 

dysfunction or targeted therapeutic intervention, fundamentally drives biomedical research 

[1–3]. A comprehensive understanding of cell-associated genomics, disease precursors or 

imaging biomarkers through cutting-edge biomedical technologies in the last decade, has 

vastly benefitted disease modeling and clinical translational of pharmaceuticals [4–6].  

With respect to cardiovascular disease (CVi) in particular, correlation of cardiac cell 

lineage and associated phenotypes is instrumental to characterize tissue remodeling owing 

to hemodynamic malformations. From a biomechanics perspective, the human heart is a 

kinetic pump undergoing mechanical stimuli across an entire cardiac cycle [9,10]. The 

continuous cardiac motion of delivering oxygenated blood to organ systems is performed 

by cardiomyocytes (CM), experiencing anisotropic mechanical compliance based on 

location within the heart [11,12,13]. Consequently, identification of novel hemodynamic 

biomarkers is emerging a crucial research topic, to quantify local tissue deformation and 

cardiac output [13–15].  

Understanding the complex mechanotransduction of heart tissue requires diagnostic 

imaging pipelines capable of multidimensional, in vivo cell tracking in translational animal 

models, thereby mimicking patient-specific heart disease. In this regard, zebrafish have 

emerged as robust gene-editing platforms for cardiac cell tracking or chemical screening 

of pharmaceuticals. This is predominantly owing to optical clarity of the specimen, low-

cost maintenance, and high reproducibility of transgenesis[16–19]. Moreover, zebrafish 

share evolutionarily conserved gene signaling pathways with humans [7,16]. However, 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.04.621759doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.04.621759
http://creativecommons.org/licenses/by-nd/4.0/


visualizing dynamic zebrafish heart cells is a daunting task, owing to their very small size 

(100-150 microns) and rapid motion (~170 bm) [26]. Consequently, transgenic zebrafish 

studies have led to the development of advanced microscopy techniques that facilitated cell 

tracking across varying spatiotemporal scales.  

In this regard, Light Sheet Microscopy (LSM) has emerged as a powerful imaging modality 

in zebrafish biologists, owing to cellular resolution while providing large penetration 

depths up to centimeter scale [7,27–29]. Moreover, LSM offers promising avenues for 

autonomous microscopy, in conjunction with semantic segmentation networks requiring 

extensive training data. This can be attributed to rapid 3i volume acquisition times, up to 

30 frames per second (fps). However, current AI research is focused on segmentation of 

biomedical imaging data, utilizing Convolutional Neural Networks (CNNs), Support 

Vector Machines (SVM) or ieep Learning (iL). Hence, classification/segmentation 

performance is adversely affected by high data dimensionality or sparseness (less features). 

Moreover, current iL trends focus on manual annotation of region-of-interest (ROI) for 

training, in addition to non-customizable network architectures. Thereby, hindering the 

development of scalable segmentation models that perform generalized classification 

across varying imaging modalities. Other drawbacks include tradeoffs between 

computational resources and network depth/feature complexity.  

Consequently, nnUnet has recently emerged as a highly versatile, self-adaptive framework 

for medical image segmentation. Unlike traditional iL methods, that require extensive 

manual architecture/hyperparameter tuning, nnU-Net identifies optimal network 

configurations based on domain-specific data [20,21]. Consequently, nnUnet has 
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significantly reduced tradeoffs between computing power, image patch size, and GPU 

memory limitations, beleaguering conventional iL algorithms. In addition, instance 

normalization implemented in nnUnet preprocessing, enables style transfer from label 

images. Hence, enabling generalization of segmentation performance with respect to 

multimodality imaging.  

In this study, we implemented a zebrafish-specific 3i nnU-Net to segment and track 

myocardial nuclei 4i (3i+time) trajectories acquired using LSM. While earlier studies 

using nnU-Net focus on 2i or 3i image segmentation, we have extended its application 

to higher dimensionality object tracking. In addition, we integrated Laplacian-of-Gaussian 

(LoG) in conjunction with morphological operators as a novel preprocessing strategy 

within the nnUnet framework. Consequently, we quantified significant improvements in 

iice coefficient, Jaccard values and time per epoch using the LoG preprocessing. Further, 

we quantified the area displacement of nuclei trajectories segmented using nnUnet and 

assessed declining area ratio trends across 4-6 days post fertilization (dpf). Thus, 

demonstrating the scalability and efficacy of nnUnet with respect to automated, multiscale 

object segmentation in higher-order image dimensionality 

 

MATERIALS AND METHODS 

Zebrafish lines, husbandry, and maintenance  

Experiments were performed using transgenic Tg(cmlc:GFPnuc) zebrafish embryos 

obtained from spawning adult zebrafish maintained under the UT Arlington Animal Core 

Facility and Use Committee (IACUC) protocol (A17.014). iue to cardiac myosin light 
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chain (cmlc) contributing majorly to the heart contractile apparatus, wild-type 

Tg(cmlc:GFPnuc) zebrafish were used to analyze differentiated cardiomyocytes. Green 

fluorescent protein is expressed primarily in myocardial nuclei through cmlc promoter, 

enabling wall deformation analysis by visualizing cardiomyocyte trajectories. To suppress 

pigmentation, 0.0025% 1-phenyl 2-thiourea (Sigma-Aldrich, St-Louis, MO) was 

introduced to E3 embryonic medium between 20-24 hours post fertilization [22,23]. 0.05% 

tricaine (MS 222, E10521, Sigma-Aldrich, St-Louis, MO) was used to sedate the embryos 

embedded in 0.5% low-melt agarose gel to avoid sample movement during imaging[24]. 

Further, agarose gel was transferred to a Fluorinated Ethylene Propylene (FEP) tube 

(1677L, IiEX, Chicago, IL) for sample mounting and refractive index matching between 

embryos and the surrounding medium (Refractive index of water = 1.33, refractive index 

of agarose and FEP tube = 1.34).  

 

Light sheet microscopy (LSM) implementation 

Our home-built light sheet microscope features a single-side illumination pathway 

consisting of a cylindrical lens (LJ1695RM, Thorlabs) and 4x objective lens (4X Plan 

Apochromat Plan N, Olympus, Tokyo, Japan) to collimate cylindrical light sheet. A 

mechanical slit (VA100C, Thorlabs) was used to vary light sheet thickness between 1-3 

um, to sample growing ventricular circumference (100-200 um) across varying 

developmental stages and anisotropic nuclei sizes (4-12 um). Optical sectioning of the 

sample was executed by a iC servo motor actuator (Z825B, Thorlabs), with z-step velocity 

and acceleration set at 0.005 mm/s. A single color channel detection pathway features a 
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water dipping lens (20x/0.5 NA UMPlanFL N, Olympus, Tokyo, Japan), infinity corrected 

tube lens (TTL 180-A, Thorlabs), and sCMOS camera (ORCA flash 4.0, Hamamatsu, 

Japan). The sCMOS Camera [pixel size = 6.5 um) enabled non-gated 4i (3i + time) 

cardiac volume acquisition at rapid exposure times between 30–50 ms. As the zebrafish 

ventricle undergoes periodic deformation from peak systole to end-diastole, optical 

sections were captured at different time points during 4–5 cardiac cycles. In this regard, 

volumes were reconstructed post hoc to ensure alignment between adjacent optical 

sections. This process involves estimating the cardiac cycle period via least squares 

intensity minimization and adjusting relative period shifts to synchronize independent 

cardiac cycles.  In a previous study, we comprehensively discussed the in silico 

synchronization of 4i volumes as per specific cardiac phases [25].  

 

3D nnUnet implementation  

The nnU-Net v2 was implemented in Python 3.10 using PyTorch v2. Batchgenerators 0.21 

was used for data augmentation. Python libraries that were also used include tqdm 4.66.5, 

dicom2nifti 2.2.10, scikit-image 0.17.2, MedPy 0.4.0, SciPy 1.5.2, batchgenerators 0.21, 

NumPy 1.19.1, scikit-learn 0.23.2, SimpleITK 1.2.4 and pandas 1.1.1. nnU-Net’s source 

code is available on GitHub (https://github.com/MIC-iKFZ/nnUNet). Further, we 

implemented a novel preprocessing approach within nnUnet v2 (Supplementary 

document, https://github.com/JuhyunLeeLab/3i-Zebrafish-nnUNet.git)), focusing on the 

efficiency and accuracy of the inferencing obtained using 3i nnU-Net. Laplacian of 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.04.621759doi: bioRxiv preprint 

https://github.com/MIC-DKFZ/nnUNet
https://doi.org/10.1101/2024.11.04.621759
http://creativecommons.org/licenses/by-nd/4.0/


Gaussian (LoG) was integrated with nnUnet v2 preprocessing framework by importing the 

LoG filter from the SciPy multidimensional image processing library. Edges (zero 

crossings) of overlapping nuclei at varying depths were localized by altering the blur 

operator (standard deviation) for the LoG filter. (Supplementary Document).  

 

3D nnU-Net network configuration  

4i (3i+time) LSM greyscale time series image data was acquired across 4 – 6 dpf across 

two cardiac cycles. Both bins for training and raw volumes were converted into 8-bit format 

and imported as 512 × 512 × m 8-bit arrays (raw image size). The network takes the input 

of size: A × A × m {A = (2^n)k | k∈N} where n is the number of levels of network, m is the 

image depth}. For inferencing, input patch sizes of A x A x m were generated using sliding 

window with half patch size overlap and output was merged using Gaussian importance 

weighting, Single color channel was utilized for emission, and 3x3x3 kernel sizes were 

utilized for convolutions during down sampling. Each computational block consisted of 

sequences of convolution, instance normalization, and Leaky Rectified Linear Unit 

(LeakyReLU) [26]. Stochastic Gradient iescent with Nesterov momentum (𝜇 =  0.99) 

with initial learning set to 0.01 was used for network weights, in addition with combination 

of iice loss and Cross Entropy loss functions [26]. The default training parameter was set 

with 150 epochs (1 epoch = 250 iterations).  To avoid overfitting, we used data 

augmentation methods, such as rotation, scaling, Gaussian noise, blurring, contrast and 

brightness adjustment, and gamma correction. Further, we obtained convolutional strides 
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ranging from 1x2x2 to 2x2x2, based on input image size, which contributed to the 

network’s adaptability and performance across different image sizes. The dataset consisted 

of approximately 26,000 image slices. The training process consisted of 1,000 epochs (m 

=120). This strategy ensured efficient training for datasets across different stages of 

ventricular development. The output images, originally in NIfTI (.nii) format, were 

converted into a human-recognizable format (.tiff) for further analysis and visualization. 

 

Performance metrics description 

We generated performance metrics, including line graphs depicting training loss, testing 

loss, and the iice coefficient over 1,000 epochs. iice coefficient was calculated as 2 TP / 

(2 TP + FP + FN), and Jaccard Index/Intersection of union was calculated as TP / (TP + 

FP+FN). (TP = true positive, FP = false positive, FN = false negative). 

 

Cell counting and trajectory tracking sz 

To perform particle tracking without trajectory splitting/loss between image frames, 

isolating individual binarized nuclei labels from greyscale myocardial nuclei is necessary. 

iifference of Gaussian (ioG) bandpass filtering was used to enhance the contrast of 

nuclei. Briefly, n-dimensional grayscale image 𝐼: 𝑇 = 𝑇𝑛  is described by the function 

Γ𝜎1,𝜎2 = 𝐼 ∗ 𝐺𝜎1 −  𝐼 ∗ 𝐺𝜎2 ,  produced by subtracting a Gaussian filtered image with a 

larger standard deviation from the same image convolved with a narrower deviation. After 

Otsu binarization, frame–frame linking of nuclei trajectories was performed using the 
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linear assignment problem (LAP) framework[27]. The algorithm tracks non-branching 

trajectory ‘segments’ between adjacent frames through (a) Solving cost matrix for frame-

to-frame linking, that takes the shape of a [n+m]x[n+m] matrix whereby n are spots in time 

frame t and m are spots in time frame t +1. Thereby establishing a ‘link’ or ‘no-link’ 

between successive trajectory segments. This step is further divided into cost function 

estimation across four quadrants. (b) Calculating the linking cost, where the user imposes 

a maximal linking distance. If the linking distance is exceeded, the cost is set to infinity. 

(c) Estimating cost function for non-linking, whereby the top right (n x n) and bottom left(m 

x m) quadrants estimated in step (a) contain costs associated with segment termination and 

initiation, respectively. Cell counting was performed using the 3i Object Counter plugin 

in ImageJ[28]. 

 

Area ratio quantification 

A triad of nuclei trajectories spaced between 5-15 um was imported into the MATLAB 

workspace for single area ratio quantification. In order to avoid any ambiguities for camera 

perspective and dynamic nuclei displacement, global coordinate vectors in x, y, and z 

directions are converted into local coordinates using the MATLAB function 

global2localcoord()[29].  Briefly, the algorithm workflow consists of calculating centroids 

(M x 3 vectors) of triangles (polygons) plotted between the triad of global coordinate nuclei 

vectors along each time step to establish the origin of local coordinate vectors at (0,0,0) 

(Supplementary Figure 1). Centroids of triangles in local coordinate space were 
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quantified as ∑ 𝐶𝑥𝑖 = (𝐺𝑥1𝑖𝑛
𝑖=1   + 𝐺𝑥2𝑖 + 𝐺𝑥3𝑖 )/3,  ∑ 𝐶𝑦𝑖 = (𝐺𝑦1𝑖𝑛

𝑖=1   + 𝐺𝑦2𝑖 + 𝐺𝑦3𝑖 )/3, 

∑ 𝐶𝑧𝑖 = (𝐺𝑧1𝑖3
𝑖=1   + 𝐺𝑧2𝑖 + 𝐺𝑧3𝑖 )/3 , with respect to three corresponding vertices. 

[𝐺𝑥1𝑖, 𝐺𝑦1𝑖, 𝐺𝑧1𝑖], [𝐺𝑋2𝑖, 𝐺𝑦2𝑖, 𝐺𝑧2𝑖], [𝐺𝑧3𝑖, 𝐺𝑦3𝑖, 𝐺𝑧3]. For triangle ABC in local coordinate 

space, area was computed by| ½ x | 𝐴 x �⃗⃗� + �⃗⃗� x 𝐶 + 𝐴 𝑥 𝐶 |[11,12]. 

 

RESULTS 

Zebrafish CM-specific nnUnet architecture  

The nnUnet is a supervised, self-configuring’ network that demonstrates robust 

generalization of segmentation pipeline parameters for varying datasets without any 

manual configuration. The nnU-Net architecture employs a U-net-based architecture, with 

two computational blocks per resolution stage in the encoder/decoder paths, consisting of 

convolution, instance normalization, and leaky RELU (Figure 1). The decoder 

convolutional blocks mirror the encoder convolutional block, with down sampling utilizing 

strided (stride = 1x2x2 or 2x2x2) convolutions and up sampling implementing 

convolutions transposed. However, what makes nnUnet stand out is a rule-based approach 

that establishes interdependencies between image metadata (voxel spacing, median image 

size) and pipeline configuration (patch size, batch size, GPU memory constraints). This 

design allows the network’s fixed ‘U-net’ based architecture to iteratively optimize larger 

batch/patch sizes while minimizing GPU memory constraints. However, nnUnet utilizes z-

score and instance normalization during preprocessing, leading to incorrect feature 

classification of overlapping nuclei at varying organ depth. This is due to outlier’s ‘style’ 
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(noise) information transferred from the content image (label image) to output during 

normalization.  

Unlike Confocal microscopy, Light Sheet Microscopy suffers from autofluorescence along 

depth, saturating overlapping tissue. Hence, we integrated an additional filter-based 

preprocessing approach to the nnUnet framework by integrating LoG edge detection. 

Therefore, we were able to extract background and foreground texture information 

accurately across multidimensional data (gaussian blur) and isolate merged nuclei of 

varying scales. We validated this approach using k-fold cross-validation (k=5) by 

quantifying iice coefficient scores and achieved high generalization for multiscale nuclei 

segmentation at varying heart development stages. (Table 1, Supplementary Video 1), 

 

Validation of zebrafish 3D nnU-Net for CM nuclei segmentation   

To validate the segmentation accuracy of nnUnet for fluorescence tomographic images and 

its robustness (performance) with respect to localizing individual nuclei, we compared a 

2i U-Net architecture[23] and 3i zebrafish specific nnUnet architecture (Figure 2A-C). 

Ground truth nuclei binarized using conventional intensity thresholding in conjunction 

with the watershed algorithm, were used for comparing segmentation performance with 

respect to 2i U-net and zebrafish specific 3i nnUnet. 2i U-Net was configured using 

ReLU activation and binary cross-entropy loss function with an Adam optimizer, while the 

3i nnUnet relies on leaky ReLU activation and a combined iice and cross-entropy for the 

loss function. 
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We quantified no significant differences in 3i nuclei volumes between ground truth nuclei 

datasets (164 ± 3) and 3i nnU-Net segmentation using LoG preprocessing (158 ± 4.7) 

(Supplementary Figure 2A, Supplementary Video 2,3). On the other hand, significant 

under-segmentation was performed using the 2i U-Net (134 ± 5) compared to the ground 

truth nuclei count (Supplementary Figure 2A). Hence, we successfully demonstrate 

superior 3i network performance to automated segmentation of high dimensionality object 

imaging data with varying object size (Figure 2D-2E). 

To further validate image semantics, we performed iice coefficient and Jaccard Index 

comparison for the various open-source versions of nnUnet available compared to our 

preprocessing approach utilizing LoG edge detection. Consequently, we quantified high 

iice coefficients for the 3i network with 95 percent accuracy across 4 – 6 dpf nuclei 

segmentation, in comparison with mean 90 percent accuracy for nnUnet versions without 

LoG (Supplementary Figure 3A) for default 1000 epochs. In addition, we observed 91 

percent Jaccard values for LoG based preprocessing versus 82 percent for non-LoG nnUnet 

versions. (Supplementary Figure 3B). Hence, we successfully validated the 

implementation of our filter-based preprocessing approach for self-adaptive nnUnet based 

architecture for the segmentation of high-order dimensionality fluorescence data.  

 

Reconstruction of Dynamic Cell Trajectories for In Vivo Area Ratio Analysis 

Using non-gated, 4i LSM, we acquired time-dependent ventricular myocardial 

deformation of Tg(cmlc:GFPnuc) zebrafish at various embryonic developmental stages 

(Figure 3A). LSM, in conjunction with 3i zebrafish nnU-Net, provides a promising end-
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to-end autonomous platform for imaging-based cell tracking due to its fully automated 

illumination and detection capability, along with self-configuring network architecture of 

zebrafish nnU-Net (Figure 3B). We integrated the multiscale imaging capability of LSM 

with the nnU-Net ability to handle large patch/batch sizes without affecting GPU memory 

constraints. Hence, we acquired and analyzed individual nuclei trajectories (15-20 

microns), covering the entire ventricular circumference (50-100 microns). To reconstruct 

periodic deformation, we plotted nuclei labels post hoc over a complete cardiac cycle 

(Figure 3C-D). Furthermore, the nuclei pixel coordinate vectors in the global coordinate 

system were converted to local coordinates using a geometric center to avoid rotation and 

scaling artifacts affecting the scale of reconstructed objects (Figure 3E). 

 

Zebrafish nnU-Net for Measuring Local Cardiac Tissue Deformation 

Using the zebrafish 3i nnU-net, we segmented zebrafish CMs across 4-6 dpf 

(Figure 4A, 5A, 6A). We tracked the relative movements of nuclei triads in both the 

inner curvature of the ventricle near the inflow and the outer curvature of ventricular 

regions to analyze regional deformation of the ventricular myocardium across an 

entire cardiac cycle. (Figures 4B-C, 5B-C, 6B-C). In addition, we performed 3i 

object counting of binarized nuclei labels produced by zebrafish specific 3i nnUnet 

and compared them with ground truth nuclei labels processed after LoG filtering.  

At 4 dpf, we quantified 257 ± 5 nuclei for the ground truth binarized labels, 264 ± 3 

nuclei at 5 dpf, and 266 ± 4 nuclei at 6 dpf. For the 3i zebrafish nnUnet 
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segmentation, the network detected 252 ± 4 nuclei at 4 dpf, 260 ± 3 nuclei at 5 dpf, 

and 261 ± 4 nuclei at 6 dpf. No significant differences were observed between the 

CM segmentation from zebrafish 3i nnUnet segmentation and ground truth at 4 dpf 

(p = 0.15, n = 20 nuclei from 3 zebrafish hearts across two cardiac cycles), 5 dpf (p 

= 0.43), and 6 dpf (p = 0.14) (Supplementary Figure 2B-D). 

We further analyzed area ratios (AR) in the inner curvature of the ventricle and found 

values of 1.61 ± 0.09, 1.58 ± 0.12, and 1.50 ± 0.07 at 4 dpf, 5 dpf, and 6 dpf, 

respectively, based on LoG ground truth segmentation (Figures 4D,5D,6D). The 

zebrafish 3i nnU-Net showed similar ARs of 1.59 ± 0.13 (p = 0.09), 1.56 ± 0.09 (p 

= 0.19), and 1.48 ± 0.09 (p = 0.18) across 4-6 dpf (Figures 4F, 5F, 6F). In contrast, 

the ground truth outer curvature of the ventricular bulge trajectories exhibited higher 

ARs of 1.97 ± 0.2, 1.86 ± 0.12, and 1.83 ± 0.19 at 4, 5, and 6 dpf, respectively 

(Figures 4E,5E,6E). No significant differences were observed in the 3i nnU-Net 

ARs for the outer curvature at 1.95 ± 0.2 (p = 0.18), 1.84 ± 0.19 (p = 0.19), and 1.81 

± 0.16 (p = 0.065) (Figures 4G, 5G, 6G). Thus, our segmentation pipeline 

successfully quantified regional myocardial wall deformation during zebrafish 

development, indicating that the outer curvature has higher contractility than the 

inner curvature.  
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DISCUSSION  

This study successfully validates a multiscale, cell-specific 3i+time nnUnet based 

architecture for quantifying local cardiac tissue deformation. By integrating a light sheet 

imaging, multidimensional pipeline with an automated nnUnet framework, we achieved 

highly reproducible insights with regards to cell trajectory tracking. In addition, we 

successfully demonstrated the potential of combining single particle tracking Linear 

Assignment Problem (LAP) algorithm[27] with self-adaptive nnU-Net[26], for generalized 

cell segmentation and tracking framework across varying spatiotemporal scales. 

Conventionally, high cell density and variable signal-to-noise (SNR) ratio have adversely 

affected filter-based edge detection algorithms[30]. Particularly, with respect to the 

classification of heterogenous tissue texture overlap in fluorescence tomography.  

In this study, we integrated LoG preprocessing and watershed algorithm as part of 3i 

nnUnet preprocessing, to perform automated, multidimensional cell tracking for various 

scales of zebrafish myocardium cell maturation. Cell splitting was implemented on high-

density training labels using the watershed algorithm during preprocessing, in addition to 

LoG edge detection for isolation of foreground and background tissue overlap. In this 

regard, instance normalization of nnUnet effectively transfers the ‘style’ of the training data 

to output. Thereby, enabling high degree of generalization with respect to cell splitting in 

multidimensional imaging data with variable SNR and high object density[31]. By 

implementing LoG edge detection and watershed algorithm in the 3i nnUnet 

preprocessing framework, we enhanced depth awareness of the feature extraction with 

respect to overlapping nuclei greyscale intensities. Consequently, we quantified no 
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significant difference in 3i nuclei count between nnUnet preprocessing with LoG and 

watershed splitting, requiring several hours (68 seconds per epoch, number of epochs = 

250-1000), in comparison with ground truth nuclei count produced after manual intensity 

thresholding over several days. This is due to instance normalization instead of batch 

normalization, which requires large training data. 

Furthermore, we demonstrate the scalability of the LAP particle tracking algorithm in the 

Track Mate Fiji plugin with respect to the complexity of tracking high-order dimensionality 

merged objects without interpolation. The data modeling of TrackMate plugin utilizes a 

graph structure in contrast to using a linear data structure to store the cell trajectories[30]. 

Hence, cell trajectory linking is based on the strict frame–frame distance linking to better 

handle cell merging time-series events. 

With regard to developmental biology insights, we observed anisotropic deformation in 

different ventricular regions, consistent with previous studies mapping regional cardiac 

output [11]. Significantly, no differences in Area ratios were quantified between zebrafish 

specific 3i nnUnet output and ground truth nuclei labels segmented using a conventional 

intensity thresholding approach. Hence, validating the application of nnUnet output for 

high-density cell tracking with variable SNR. In addition, integration of our novel 

preprocessing approach for 3i nnU-net, significantly improves accuracy (Supplementary 

Figure 2B-D). Previous studies suggest myocardial deformation is essential in the 

regulation of cardiac muscle maturation, in addition to modulation of the mechanosensitive 

signaling pathway such as Notch[25]. In this regard, Notch gene expression has been 

quantified to be significantly higher in the outer ventricular region using transgenic 
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tg(tp1:gfp) zebrafish [32,33]. In this study, we have quantified significantly higher 

deformation in the outer ventricular region, in contrast to the atrioventricular region. Hence, 

future studies will focus on correlating myocardial contractility with Notch gene expression 

to assess the role of Notch in cardiac trabeculation. 

In conclusion, our research demonstrates the efficacy of combining zebrafish specific 3i 

nnUnet with LSM, to achieve automated and high-precision analysis of cardiac tissue 

deformation in a zebrafish model. The integration of our novel preprocessing approach for 

3i nnUnet, offers a powerful platform for high-throughput trajectory analysis of cell 

merging/division events, thereby facilitating fluorescence tomographic studies probing 

cellular dynamics.  

 

CONCLUSION 

Integrating nnU-Net with LSM, enabled automated multidimensional classification and 

tracking of dynamic cells acquired in vivo. Furthermore, the integration of Laplacian of 

Gaussian in addition with watershed algorithm for 3i nnU-Net training, helped us achieve 

high-throughput trajectory localization for cell merging events, without interpolation. 

Consequently, our imaging workflow enabled 3d+time nuclei tracking for quantification 

of zebrafish myocardial strain across entire cardiac morphogenesis  
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FIGURE 1 

 

 

 

Figure 1. Zebrafish nnUNET architecture. Convolutional blocks within the network 

contain sequences of a convolution, followed by instance realization and leaky RELU 

activation function. Block number represents the output size, with downsampling 

implemented as stridden convolution and upsampling implemented as a convolution 

transposed.  
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FIGURE 2 

 

Figure 2. Quantifying 2D vs 3D segmentation accuracy by reconstructing 3 days post 

birth Tg(cmlc:GFPnuc) embryonic zebrafish ventricular myocardial nuclei. (A)  

Binarized nuclei volumes segmented using 2i U-Net topology with convolutional neural 

network (scale bar = 50 μm), (B) Binarized nuclei volumes segmented using 3i full 

resolution nnUnet topology (scale bar = 50 μm), (C) Cross sectional overlay of myocardial 

nuclei biomarkers classified using 2i Unet (yellow) and 3i nnUnet (green), indicating 

under segmentation by the former. (i) 5 days post fertililzation zebrafish labels produced 

by nnUnet preprocessed with LoG edge detector (scale bar =40 um) (E) 6 days post 

fertilization zebrafish labels produced by nnUnet processed with LoG edge detector  scale 

bar = 40 um) 
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FIGURE 3 

 

Figure 3. Quantifying in vivo mechanical deformation of local area ratio by tracking 

cardiomyocyte nuclei as markers. (A) Cardiomyocyte nuclei in a 4dpf embryonic 

zebrafish ventricle. (scale bar = 40 μm). (B) Binarized segmented labels produced by 3i 

nnuNET topology. Yellow box: Nuclei triad used for area ratio analysis, indicated by 

different colors (scale bar = 40 μm). (C) Plotting mechanical deformation across the cardiac 

cycle as a triangular vector patch between nuclei triad markers in a global coordinate 

system. (i) Using multi-scale imaging capability of LSM , we tracked individual nuclei 

trajectories across millimeter scale field-of-view. (white scale bar = 30 μm), (black scale 

bar = 10 μm). (E) To compare the tissue deformation, we reorient the nuclei triad from 

global to local coordinate transform to visualize the tissue area in the same perspective 

view. In area ratio computation. iotted triangle indicates default systolic cardiac phase, 

while solid blue boundary indicates diastolic cardiac phase in local coordinate transform.  
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FIGURE 4 

 

Figure 4. Quantifying area ratio for 4dpf zebrafish ventricular myocardium. (A) 

Greyscale myocardial nuclei in tg(cmlc:GFPnuc) zebrafish ventricle. (B) and (C) represent 

binarized nuclei labels produced by 3i zebrafish nnUNet used for area ratio quantification 
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during cardiac diastole(The green solid boundary in the yellow box indicates nuclei in the 

outer curvature of the ventricle, and the red solid boundary in the yellow box indicates 

nuclei in the inner curvature of the ventricle), (scale bar = 50 μm). (i-E) The ground truth 

area ratio deformation analysis was performed in the inner and outer curvature of the 

ventricle, respectively, using ground truth segmentation using conventional edge detection. 

(F-G) The area ratio deformation analysis in the inner and outer curvature of the ventricle 

was performed after the segmentation from 3i nnUnet based on LoG.. 
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FIGURE 5 

 

Figure 5. Quantifying area ratio for 5dpf zebrafish ventricular (A) Greyscale myocardial 

nuclei in tg(cmlc:GFPnuc) zebrafish ventricle. (B) and (C) represent binarized nuclei labels 

produced by 3i zebrafish nnUNet used for area ratio quantification during cardiac 
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diastole(The green solid boundary in the yellow box indicates nuclei in the outer curvature 

of the ventricle, and the red solid boundary in the yellow box indicates nuclei in the inner 

curvature of the ventricle), (scale bar = 50 μm). (i-E) The ground truth area ratio 

deformation analysis was performed in the inner and outer curvature of the ventricle, 

respectively, using ground truth segmentation using conventional edge detection. (F-G) 

The area ratio deformation analysis in the inner and outer curvature of the ventricle was 

performed after the segmentation from 3i nnUnet based on LoG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.04.621759doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.04.621759
http://creativecommons.org/licenses/by-nd/4.0/


FIGURE 6 

 

Figure 6. Quantifying area ratio for 6dpf zebrafish ventricular myocardium. (A) Greyscale 

myocardial nuclei in tg(cmlc:GFPnuc) zebrafish ventricle. (B) and (C) represent binarized nuclei 

labels produced by 3i zebrafish nnUNet used for area ratio quantification during cardiac 

diastole(The green solid boundary in the yellow box indicates nuclei in the outer curvature of the 
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ventricle, and the red solid boundary in the yellow box indicates nuclei in the inner curvature of 

the ventricle), (scale bar = 50 μm). (i-E) The ground truth area ratio deformation analysis was 

performed in the inner and outer curvature of the ventricle, respectively, using ground truth 

segmentation using conventional edge detection. (F-G) The area ratio deformation analysis in the 

inner and outer curvature of the ventricle was performed after the segmentation from 3i nnUnet 

based on LoG. 

Table 1 

 

Table 1. iice coefficient scores for varying zebrafish 3i+time datasets, acquired across 3 – 6 dpf 

(days post fertilization) with anisotropic voxel configuration, slice thickness, intensity etc   
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