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This study examined metabolite profile differences between serum samples of thyroid

papillary carcinoma (PTC) patients and healthy controls, aiming to identify candidate

biomarkers and pathogenesis pathways in this cancer type. Serum samples were

collected from PTC patients (n = 80) and healthy controls (n = 80). Using principal

component analysis (PCA), partial least squares discrimination analysis(PLS-DA),

orthogonal partial least square discriminant analysis (OPLS-DA), t-tests, and the

volcano plot, a model of abnormal metabolic pathways in PTC was constructed.

PCA, PLS-DA, and OPLS-DA analysis revealed differences in serum metabolic profiles

between the PTC and control group. OPLS-Loading plot analysis, combined with

Variable importance in the projection (VIP)>1, Fold change (FC) > 1.5, and p <

0.05 were used to screen 64 candidate metabolites. Among them, 22 metabolites,

including proline betaine, taurocholic acid, L-phenylalanine, retinyl beta-glucuronide,

alpha-tocotrienol, and threonine acid were upregulated in the PTC group; meanwhile,

L-tyrosine, L-tryptophan, 2-arachidonylglycerol, citric acid, and other 42 metabolites

were downregulated in this group. There were eight abnormal metabolic pathways

related to the differential metabolites, which may be involved in the pathophysiology

of PTC. Six metabolites yielded an area under the receiver operating curve of >0.75,

specifically, 3-hydroxy-cis-5-tetradecenoylcarnitine, aspartylphenylalanine, l-kynurenine,

methylmalonic acid, phenylalanylphenylalanine, and l-glutamic acid. The Warburg

effect was observed in PTC. The levels of 3-hydroxy-cis-5-tetradecenoylcarnitine,

aspartylphenylalanine, l-kynurenine, methylmalonic acid, phenylalanine, and L-glutamic

acid may help distinguish PTC patients from healthy controls. Aspartic acid metabolism,

glutamic acid metabolism, urea cycle, and tricarboxylic acid cycle are involved in the

mechanism of PTC.
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INTRODUCTION

Thyroid cancer is the most common type of endocrine tumor
in clinical practice, accounting for 1.1% of all malignant tumors
(Bray et al., 2018), while PTC is the most common type of thyroid
cancer, accounting for ∼90% of all cases. It is more common
in women aged 30–45 years. PTC has good differentiation
and low malignancy; however, it is prone to early lymph
node metastasis (Ferlay et al., 2013). Therefore, early diagnosis
and treatment are paramount to patient survival. Ultrasound-
guided fine needle aspiration cytology (FNAC) is a commonly
used auxiliary examination for the diagnosis of thyroid cancer.
Although imaging tests have high sensitivity in the diagnosis of
thyroid cancer, their specificity is poor (Remonti et al., 2015).
FNAC is currently the most accurate and cost-effective method
for assessing benign and malignant thyroid nodules; however,
∼20–30% of cases cannot be confirmed as either benign or
malignant by FNAC alone (Faquin, 2008; Fish, 2017). Because
some papillary thyroid microcarcinomas have fewer abnormal
cells, they may be missed or even misdiagnosed when only the
FNACmethod is performed (Kim et al., 2011). Therefore, several
genetic tests have been proposed as useful in the diagnosis of
thyroid cancer, including tests for BRAF and NRAS mutations,
and RET translocation tests; in fact, BRAF mutations have been
reported in 30–80% of PTC cases (Jin et al., 2006). However,
samples from suspicious thyroid nodules that test negative for the
BRAF gene mutation do not automatically exclude the possibility
of PTC. In cases of inconclusive cytology findings, the detection
of BRAF gene mutations can improve the rate of diagnosis of
PTC (Johnson et al., 2014). Meanwhile, FNAC is an invasive
examination, and the preoperative acceptance of patients is
generally limited, but the clinical applicability of the latter is not
very strong. Overall, this evidence indicates a need for a stable
and reliable biomarker to assist in the diagnosis of thyroid cancer.

Metabolomics refers to a comprehensive analysis of the
metabolome of biological systems under specific conditions. It
is a type of high-throughput technology that plays an important
role in systems biology research. The metabolome consists of
thousands of complex molecular metabolites, whose relative
molecular mass is <1 × 103 (Barnes et al., 2016). High
Performance Liquid Chromatography of Quadrupole Time of
Flight Mass Spectrometry (HPLC-Q-TOF-MS/MS) combines
liquid chromatography and mass spectrometry, thereby allowing
to examine metabolites and perform stoichiometric analysis
and improving the understanding of the molecular mechanisms
of cancer development and associated biomarkers (Monteiro
et al., 2013). The HPLC-Q-TOF-MS/MS platform allows
for the separation and identification of complex mixtures,
combining the compound separation capacity of the liquid
chromatograph with the component identification ability of the
mass spectrometer, resulting in high detection sensitivity and
wide coverage of metabolite detection (Shepherd et al., 2011).
Metabolomics is key to the understanding of the mechanisms
of various cancers. For example, Yuan et al. (2018) used
tandem mass spectrometry (UHPLC-MS/MS and FIA-MS/MS)
to compare the types and levels of metabolites extracted from
the plasma of patients with primary breast cancer with those

of healthy controls, revealing that metabolites are mainly
involved in amino acid metabolism and breast cancer cell
growth pathways. Concurrently, Han et al. (2020) used UHPLC-
MS/MS to show that retinol is a biomarker that distinguishes
hepatocellular carcinoma (HCC) from adjacent tissues. The
reported area under the curve associated with retinol (The area
under curve, AUC= 0.991) suggests that it is important in HCC.
Several previous studies have used metabolomics technology to
distinguish PTC patients from healthy subjects; however, the
studies had certain limitations. The advantages of the current
study were as follows: (1). HPLC-Q-TOF-MS/MS is a novel
method for identifying non-target metabolites, although it is less
used in PTC research. (2). The sample size was sufficient. Using
HPLC-Q-TOF-MS/MS to assess metabolic changes of PTC, we
established a reliable statistical model that could distinguish and
predict PTC patients and healthy controls. The main purpose
of the study were as follows: (1). to identify metabolic markers
that can distinguish PTC patients from healthy subjects using
metabolomics; (2). to determine detailed metabolic changes and
related metabolic pathways in PTC; and (3). to provide evidence
for the diagnosis and treatment of PTC patients on the basis
of science.

MATERIALS AND METHODS

Patients and Study Design
This study complied with the guidelines of the Declaration
of Helsinki and the Conference for Coordination of Clinical
Practice and was approved by the Ethics Committee of Hunan
Provincial People’s Hospital. Each participant signed an informed
consent form. The seventh edition of the American Joint
Committee on Cancer Tumor-Lymph Node Metastasis staging
system was used to determine PTC stage (Edge and Compton,
2010). This case-control study involved obtaining a serum
sample from PTC patients undergoing total thyroidectomy at
the study site between October 2018 and February 2020. Patient
eligibility was confirmed based on pathological findings after
thyroidectomy; only patients diagnosed with PTC were included;
in contrast, patients with micro-PTC were excluded from this
study. None of the patients had a history of another cancer,
normal levels of thyroid hormones (T3 and T4), thyroid-
stimulating hormone (TSH), no thyroid hormone medications
before surgery, no other forms of cancer, immune blood
system diseases, or metabolic disorders (metabolic syndrome,
diabetes, and insulin resistance). Healthy controls visited
the hospital to draw blood voluntarily for regular physical
examinations. Healthy controls were recruited from among the
individuals referred to the Saeed Pathobiology and Genetics
Laboratory for routine examinations. Laboratory examination
results confirmed normal levels of T3, T4, and TSH, and the
absence of hypothyroidism, hyperthyroidism, nodular goiter, or
autoimmune thyroid inflammation.

Each PTC patient provided ∼5ml of blood before the
operation (patients were treatment-naïve at the time of sample
collection); healthy controls provided blood samples after
overnight fasting. Blood samples from both groups were
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stored for 2 h at 4◦C and were subsequently centrifuged for
10min at 4◦C and 3,000 rpm. The centrifuged serum samples
were extracted into 1.5ml Eppendorf (Eppendorf Corporation,
Germany)microtubes and stored at−80◦C for later use.

Serum Metabolite Extraction
Serum metabolites were extracted by adding 400 µl protein
precipitant (MEthanol/ACN,v/v, 2:1) and 10 µl internal
standard (L-2-chlorophenylalanine, 0.3 mg/ml, methanol
preparation) to 100 µl of serum into 2ml Eppendorf (Eppendorf
Corporation, Germany)microtubes. The tube was vortexed for
30 s, ultrasonicated for 10min (4◦C water bath) and cooled
at −20◦C for 1 h. The tube was then centrifuged at 4◦C at
13,000 rpm for 15min to remove the precipitated protein.The
supernatant of each sample was collected and stored in a
refrigerator at−20◦C.

Quality Control (QC) preparation: 10 µl was taken from each
sample and added into 2ml Eppendorf (Eppendorf Corporation,
Germany)microtubes.Then vortex and divide into 200µl for each
tube.Quality control (QC) samples were pooled and pretreated
using the same procedure to improve the data quality for
metabolic profiling.

HPLC-Q-TOF-MS/MS Metabolomics
Analysis
HPLC-Q-TOF-MS/MS (Bruker Corporation, USA) was used as
a metabolite separation and detection platform to study the
metabolite differences between the PTC and control groups.
The data were collected under the positive and negative ion
modes of mass spectrometry. HPLC-Q-TOF-MS/MS conditions
were the following: ACCLAINMTMRSLC120-C18 column (100
× 2.1mm,2.2µm) (Thermo fisher scientific, USA) at 40◦Cwith 3
µl sample injection; mobile phase A was 0.1% (volume fraction)
formic acid/water, and mobile phase B was 0.1% (volume
fraction) acetonitrile/water (containing 0.1% formic acid). The
gradient was set as follows: 2% B for 0–2min, 50% B for 2–
12min, 90% B for 10–30min, and 98% B for 30–60min. The
flow rate was maintained at 400 µl/min. The mass spectrometry
conditions were as follows: Electrospray ion source was detected
using positive and negative ion mode; high purity N2-assisted
spray ionization and solvent removal was used; the flow rate was
1.2 l/min, the mass scanning range was 20–1,000 m/z, and the
drying temperature was 200◦C. In ESI positive mode, the Spray
voltage (ISVF) is 4,500V, and the capillary voltage is 100V; in
ESI negative ion mode, the Spray voltage (ISVF) is−4,500V, and
the capillary voltage is −100V, fragmentor voltage 70V.Quality
control samples (QC samples) were analyzed five times at the
beginning of the run and injected once after every 20 injections
of the random sequenced samples.

Raw HPLC-Q-TOF-MS/MS Data
Processing
Metaboscape 3.0 (Bruker Corporation, USA) software was used
to perform data cleaning, including peak extraction, noise
reduction, standardization, and export, among others. Minimum
Peak Length (3–5) spectrum; Recursive Feature Extraction/
Recursive Feature Extraction:MinimumPeak Length (Recursive)

(5–7) spectrum. Minimum feature for extraction and presence
of features in minimum of analyses will be selected according
to the actual sample size. According to the 80% principle
(Bijlsma et al., 2006), given 80 analyses, 64/80 analyses, retention
time range [0, 30] min, and mass range [20, 1,000] M/Z.
Ion Deconvolution/ Deconvolution inverse volume product EIC
correlation ≥0.8. The ion fragments [such as [M+H]+, [M-
H]–] were then recombined. Subsequently, the known false
positive peaks, such as derivative chemical reagent peak, noise,
and column loss peak, were removed from the data matrix;
finally, the redundancy and peak combination procedures were
performed. The data were uploaded to Annotate with Analyte
List (HMDB database www.hmdb.ca), Annotate with Spectral
Library [the standard product database created by Bruker
[the most accurate]], and Annotate with Smartformula (online
website database) database for matching and finally maintain the
output A three-dimensional data matrix of time, mass response
intensity, mass-to-nucleus ratio (M/Z), sample information, etc.
This matrix was suitable for data analysis software such as
SIMCAP, SPSS, and R language.

Statistical Analysis
The metabolic profiles of serum samples were compared
between the PTC and control groups, using multivariate and
univariate analyses. Variable distribution was normalized using
Log transformation and Pareto scaling for all pre-processed
data. The Mann-Whitney-Wilcoxon test with false discovery
rate correction was used to measure the significance of
each metabolite. The SIMCAP14.1 software (Umetrics, Umea,
Sweden) was used to PCA, PLS-DA, and OPLS-DA to determine
the differences in metabolic profiles between the groups. The
quality of the model is determined by the values of R2Y and Q2.
R2Y represents the explanatory rate model, Q2 represents the
forecast rate. Higher values of R2Y and Q2 usually indicate that
the model is more reliable.Benjamini-Hochberg false discovery
rate (FDR) procedure was employed for the multiple test
adjustments. Adjusted p < 0.05 were considered statistically
significant. Two hundred Permutation test was used to test model
reliability. R2 andQ2 are obtained through permutations test, and
its function is to verify whether the model is overfitting. When
R2

> 0 and Q2
< 0, it means that the model is not overfitting

and the model is reliable.VIP index represents the importance
of each variable to model performance and describes the overall
contribution of each variable to the model. Variables with a
VIP of >1 have greater significance than do their counterparts.
These variables were obtained from the PLS-DA model and
adjusted p < 0.05.One-way analysis of variance and volcano
plot were used to identify which metabolites annotated in the
HPLC-Q-TOF-MS/MS dataset were significantly affected by the
factor assessed in the experiment. MetaboAnalyst 4.0 (https://
www.metaboanalyst.ca/) drew a heatmap, which was based on
the estimates derived from the Spearman rank correlation and
cluster analysis. The receiver operating characteristic (ROC)
curve analysis was performed using the survival analysis module
to evaluate the area under the curve (AUC) and to compare
the diagnostic ability of significant metabolites between the
tested groups.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 February 2021 | Volume 9 | Article 593510

http://www.hmdb.ca
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Du et al. Metabolic Profile of Papillary Thyroid Carcinoma

Metabolic Pathway Analysis
Use MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) on
the difference of PTC patients serum and healthy subjects
serum metabolites analysis of metabolic pathways, the purpose
is to explain the biological correlation between PTC patients
and healthy subjects. In this study, we referred to the Kyoto
Encyclopedia of Gene and Genomes (KEGG, https://www.
genome.jp/kegg) and the Human Metabolome Database
(HMDB, https://hmdb.ca/) to elucidate any changes or
interference patterns observed in the metabolic pathways
in the study participants. KEGG is a knowledge base and is
used for systematic analysis of metabolite function (Du et al.,
2014). HMDB is a comprehensive database of metabolomics and
metabolites biology (Wishart et al., 2013). MetaboAnalyst 4.0
combines enrichment and topology pathway analyses to identify
relevant pathways. The module of pathway analysis was based on
the KEGG database; the enrichment analysis was based on the
Small Molecule Pathway Database (http://smpdb.ca/) (Jewison
at al, 2014).

Ethics Statement
The study was conducted in accordance with the Helsinki
Declaration and was approved by the Ethics Committee of
Human Provincial People’s Hospital in Changsha, Hunan
Province, China. Patients/participants provided their written
informed consent to participate in the study.

RESULTS

Clinical Characteristics of the Subjects
There were 80 PTC patients (18 men and 62 women; age range,
20–72 years), and 80 healthy controls (32 women and 48 men;
age range, 30 and 67 years). The median age of the PTC and
control groups was 41.63± 11.213 years and 43.44± 8.378 years,
respectively; this difference was no statistically significant (p >
0.05) (Table 1).

Serum Metabolomics Profiles in the PTC
and Control Groups
After Metaboscape 3.0 pretreatment, a series of metabonomic
data was obtained. In positive ion patterns, there were 384
identifiable peaks (Supplementary Figure 1), representing
384 detected metabolites. Supplementary Figure 1 shows the
base peak chromatograms (BPC) of the PTC and control
group serum samples. In negative ion patterns, there were
678 identifiable peaks (Supplementary Figure 2), representing
678 detected metabolites. Supplementary Figure 2 shows
the BPC of the PTC and control group serum samples.
There were significant between-peak differences in intensity,
indicating that in the positive and negative ion mode,
there were significant between-group differences in the
metabolic profiles.

Statistical tests commonly used to examine between-
group differences in metabolite profiles include the t-test,
FC analysis, and volcano plot. Univariate analysis can
intuitively show the significance of different metabolites
in two samples, and it is an essential statistical method in

screening differential metabolites. A p < 0.05 was used to
screen the different markers. Meanwhile, the volcano map
(Figures 1A,B) was drawn based on the FC values and t-test
findings (Supplementary Tables 1, 2). In the positive and
negative ion mode, a total of 27 (Supplementary Table 1)
and 73 different metabolites (Supplementary Table 2) were
screened, respectively. Between-group differences in metabolites
in the positive and negative ion modes were plotted as
volcanic maps; red dots represent the differences in serum
metabolites between the PTC and control groups. The
volcanic map of metabolites given the positive and negative
ion modes is shown in Figures 1A,B, respectively; there
were 27 and 73 different metabolites, respectively. These
findings indicated that amino acids, fatty acids and their
derivatives, and nucleotides, among others, were the most
important metabolites that differed between the groups. In
particular, an increase in the levels of proline betaine, L-
phenylalanine, threonic acid, isobutyryl-L-carnitine, and retinyl
beta-glucuronide was observed in the PTC group, presenting
candidate metabolic markers for differentiating PTC patients
from healthy controls.

Hierarchical cluster analysis was used to cluster all
metabolomic data with a p < 0.05 to examine the metabolites
significantly changed between different groups. Within-
group sample similarity was evaluated and presented as
a heatmap obtained in positive and negative ion modes
(Figures 1C,D, respectively). These data indicate specific
patterns of differences in the metabolites between PTC and
healthy controls.

TABLE 1 | Clinical and pathological characteristic of the participants.

Characteristic PTC Control (healthy

subjects)

Patient number 80 80

Gender

Male 18 48

Female 62 32

Age (Mean ± SD; year) 41.63 ± 11.213 43.44 ± 8.378

Clinical biochemistry

tests (Mean ± SD)

-

TSH (µIU/ml) 1.79 ± 0.81

T4T (nmol/l) 110.51 ± 12.35

T3T (nmol/l) 2 ± 0.54

Lymph node metastasisa -

Negative 26

Positive 54

TNM stagesb -

I 20

II 52

III 5

IVA 3

PTC, papillary thyroid carcinoma. a Includes N1a and/or N1b. bAmerican Joint Committee

on Cancer (AJCC) Tumor-Node-Metastasis (TNM) staging system.
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FIGURE 1 | (A,B) Volcano diagrams showing the changes in PTC and the most important metabolites of healthy subjects. (A) Represents the volcano map in positive

ion mode, and (B) represents the volcano map in negative ion mode. The red dots in the figure represent differential metabolites, and the black dots represent no

significant difference. The red dot on the right side of the figure represents the upregulated metabolite, and the red dot on the left side represents the downregulated

metabolite. x-axis corresponds to log2 (fold change) and y-axis corresponds to –log10 (p-value). (C,D) Heatmap visualization of metabolomics data with hierarchical

clustering analysis (HCA). (C) Represents the heatmap in positive ion mode, and (D) represents the heatmap in negative ion mode. The red color represents the peak

value that is relatively large; the blue color represents the peak value that is relatively small; and the gray color represents the metabolite peak value of zero. The more

similar the color, the more similar the peak value. The panel on the right represents the different metabolites. The upper dendritic structure is clustered according to the

degree of metabolite similarity across samples. The red line below the dendritic structure represents the PTC group, and the green line represents the control group.

PTC, papillary thyroid carcinoma; Control, healthy subject.

Screening of Differential Metabolites in
Serum Samples Between the Two Groups
In the positive and negative ion mode, through the PCA model,
we found that the clustering degree of the QC samples was good,
indicating that the instrument was stable during this experiment.
At the same time, we also found signs of separation between the
PTC group and the Control group. The red triangle, green dot
and blue square in the figure represent the QC group, the control
group and the PTC group, respectively (Figures 2A,B).

Use the PLS-DA method to analyze the metabolite profile
of the serum sample, as shown in Figure 1C: in the positive
ion mode, the metabolomics data of serum samples were
analyzed by PLS-DA, suggesting that there were significant
differences between PTC and Control groups [R2X (cum) =

0.497, R2Y (cum) = 0.882, Q2 (cum) = 0.735). In the PLS-

DA model, after 200 permutations tests, the R2 intercept of
the substitution test in the positive ion mode was 0.505,
and the intercept of Q2 was −0.33 (Figure 2E), suggesting

model reliability, given no evidence of over-fitting;As shown
in Figure 1D: in the negative ion mode, the metabolomics

data of the PTC and Control groups also have significant

differences between groups [R2X(cum) = 0.679, R2Y(cum) =

0.916, Q2(cum) = 0.634]. After 200 permutations tests, the
R2 intercept of the substitution test in the positive ion mode
was 0.831, and the intercept of Q2 was −0.0441 (Figure 2F),
suggesting model reliability, given no evidence of over-fitting.
These findings indicate that the PLS-DA model could be used to
distinguish PTC patients from healthy controls; The parameters
included in the model in both ion modes are shown in
Supplementary Tables 3, 4.
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FIGURE 2 | PCA (A,B), PLS-DA (C,D), and OPLS-DA (G,H) analysis score scatter plots illustrating that the metabolic profiles of PTC are distinct from those of healthy

subjects. PLS-DA and OPLS-DA analysis score scatter plots for metabolic profiles of healthy subjects (green dots) and PTC patients (blue squares) showing clear

discrimination between the two groups. (E,F,I,J) Permutation test was used to assess the reliability of the models. ROC curve analyses of the ability of six metabolites

to predict PTC patients and healthy subject (K–P). PCA, principal component analysis; PLS-DA, partial least squares discrimination analysis; OPLS-DA, orthogonal

partial least squares-discriminant analysis; QC, Quality Control; PTC, papillary thyroid carcinoma; Control, healthy subject. ROC, receiver operating characteristic.
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To achieve the greatest separation of metabolites between the
two sets of samples, OPLS-DAwas performed (Figures 2G,H). In
the positive and negative ion modes, there was a clear separation
between the groups; concurrently, there were clear between-
group differences in serum metabolic profiles. The samples from
both groups tended to cluster in a concentrated manner, with
a high degree of aggregation, without any obvious intragroup
difference. In the OPLS-DA model, after 200 permutations tests,
the R2 intercept of the substitution test in the positive ion mode
was 0.506, and the intercept of Q2 was −0.493 (Figure 2I);
the corresponding values in the negative ion mode were 0.455
and −0.3 (Figure 2J), suggesting model reliability, given no
evidence of over-fitting. These findings indicate that the OPLS-
DAmodel could be used to distinguish PTC patients from healthy
controls; the model has a high discrimination and prediction
rates (P < 0.05).

To distinguish the most important metabolites between
the groups, FC, p-values, and VIP scores were used to screen
for differential metabolites. In the positive and negative ion
mode, the PCA-, PLS-DA-, and OPLS-DA-based models
for distinguishing between the groups were constructed,
and between-group metabolic differences were determined.
Given VIP > 1.0, FC > 1.5, and p < 0.05, 64 metabolites
were identified (Table 2). Among them, the levels of 22
metabolites showed a significant upward trend in the PTC
group, including proline betaine, taurocholic acid, threonic acid,
3-hydroxyhexadecadienoylcarnitine, and dopamine. In contrast,
the levels of 42 metabolites showed a significant downward
trend in the PTC group, including L-tyrosine, 8-hydroxy-
deoxyguanosine, 3-hydroxy-cis-5-tetradecenoylcarnitine,
L-tryptophan, phenylalanylphenylalanine, argininic acid,
beta-alanine, acetone, citric acid, and glucose 6-phosphate.

Finally, ROC curve analysis was used to evaluate the
diagnostic ability of the differential metabolites for PTC
screening (Table 2). False positive rate and True positive rate
are presented along the x-axis and y-axis, respectively. The AUC
values of 6 metabolites in the PTC and control groups were of
>0.75 (Figures 2K–P).

Pathway Analysis
KEGG andHMDB (Table 2) were used to analyze 64 PTC-related
metabolites, and the results were submitted to MetaboAnalyst
to display the statistical analysis results of informatics analysis.
The path analysis results are shown in Supplementary Table 5

and Figure 3A. The most influenced metabolic pathway was
considered a pathway influence cut-off value>0.1 to filter for less
important pathways. The following eight important metabolic
pathways were identified: phenylalanine, tyrosine and tryptophan
biosynthesis; D-glutamine and D-glutamate metabolism; beta-
alanine metabolism; phenylalanine metabolism; histidine
metabolism; alanine, aspartate, and glutamate metabolism;
citrate cycle (TCA cycle); and arginine biosynthesis.

DISCUSSION

With the rapid development of analysis technology,
metabolomics has been applied in many fields such as

cancer disease research (Tayanloo-Beik et al., 2020). At the
molecular level, metabolomics uses novel biomarkers to
explore the mechanism underlying disease development (Wang
et al., 2011). To the best of our knowledge, this is the first
study to use HPLC-Q-TOF-MS/MS to analyze metabolic
pathways of a large number of serum samples from PTC
patients and healthy subjects. In this study, based on PCA,
PLS-DA, OPLS-DA model results (Figures 2A–J), and single-
factor analysis results (Figures 1A–D), we first identified key
metabolites related to PTC (Table 2). Based on these key
metabolites, six metabolic markers, namely 3-hydroxy-cis-5-
tetradecenoylcarnitine, aspartylphenylalanine, l-kynurenine,
methylmalonic acid, phenylalanylphenylalanine, and l-glutamic
acid, that could distinguish PTC patients from healthy subjects
were further identified (Figures 2K–P). At the same time,
we discovered eight important metabolic pathways related to
PTC (Figure 3A), which were involved in PTC development;
however, the detailed metabolic changes remain unknown.
We also found the association among aspartate metabolism,
glutamate metabolism, urea cycle, and tricarboxylic acid cycle in
the PTC metabolic pathway, thereby explaining the pathogenesis
of PTC (Figure 3B).

Warburg (Hsu and Sabatini, 2008) reported that a large
amount of energy is being produced by glycolysis during the
growth of cancer cells, which is distinct from the energy
metabolism observed in normal cells, where it involves oxidative
phosphorylation. This finding suggests that the different growth
patterns of cancer and normal cells may be due to the different
energy production pathways involved. The rates of glucose
uptake, aerobic glycolysis, and metabolism are increased in
cancer cells due to cell proliferation (Zhao et al., 2010). The
energy in healthy cells comes from the mitochondria that
oxidize sugar molecules; in contrast, tumor cells mainly rely on
glycolysis for energy, which does not require the participation of
oxygen atoms or mitochondria (Gioia et al., 2019). According
to Abooshahab et al. (2020), sucrose levels can separate PTC
from benign thyroid tumors (AUC = 0.92). Sucrose is converted
into glucose and fructose through the hydrolysis process;
subsequently, glucose enters the aerobic glycolysis pathway,
where it is converted into two molecules of pyruvate. In this
study, the level of glucose 6-phosphate in the serum of PTC
patients was lower than that in the serum of healthy subjects,
which may indicate that PTC tumor cells obtain energy through
enhanced glycolysis, which accelerates the conversion of glucose
6-phosphate into pyruvate molecules, required for the TCA cycle.
The citric acid levels in the PTC group were lower than those in
the control group, indicating that thyroid cancer cells consume
a significant amount of citric acid during the TCA cycle. The
present findings are consistent with the Warburg effect.

Glycerol phospholipids are the most abundant type
of phospholipid in eukaryotic cell membranes. Together,
phosphatidylcholine (PC) and phosphatidylethanolamine(PE)
account for ∼50% of the phospholipid components of cell
membranes. In addition, glycerophospholipids are involved in
protein recognition and signal transduction of cell membranes
(Kuhajda, 2000). In malignant tumor tissues, as the rate of
synthesis of glycerophospholipids is greater than that of their
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TABLE 2 | Differential metabolites in the serum of papillary thyroid cancer patients and healthy subjects with positive and negative ion patterns.

Name Retention

time

(min)

Mass-to

charge

ratio

Formula VIP FC log2(FC) Adjusted

p value

HMDB ESI±

Quillaic acid

3-[galactosyl-(1->2)-glucuronide]

14.01 413.2084 C42H64O16 2.11539 0.33217 −1.59 <0.001 HMDB0033404 +

Quillaic acid 3-[xylosyl-(1->3)-

[galactosyl-(1->2)]-glucuronide]

14.06 479.248 C47H72O20 2.06349 0.32061 −1.6411 <0.001 HMDB0033406 +

Aspartylphenylalanine 1.33 279.09845 C13H16N2O5 1.84875 0.27591 −1.8577 <0.001 HMDB0000706 -

L-Histidine 1.33 154.06227 C6H9N3O2 1.8051 0.4009 −1.3187 <0.001 HMDB0000177 -

Pyridinoline 1.32 427.21866 C18H28N4O8 1.7665 0.40468 −1.3051 <0.001 HMDB0000851 -

5-hydroxylysine 11.39 161.10051 C6H14N2O3 1.66697 0.47622 −1.0703 <0.001 HMDB0000450 -

L-glutamic acid 1.06 146.04601 C5H9NO4 1.64934 0.51228 −0.96499 <0.001 HMDB0000148 -

Hydrogen carbonate 1.44 60.9925 CH2O3 1.62898 0.58709 −0.76835 <0.001 HMDB0000595 -

L-phenylalanine 7.39 166.08415 C9H11NO2 1.62402 2.0901 1.0636 <0.001 HMDB0000159 +

Trans-trans-Muconic acid 1.45 140.97822 C6H6O4 1.59533 0.53257 −0.90896 <0.001 HMDB0002349 -

Taurocholic acid 20.77 514.26972 C26H45NO7S 1.5798 2.2144 1.1469 <0.001 HMDB0000036 -

Disulfiram 1.5 294.904 C10H20N2S4 1.56751 0.61107 −0.7106 <0.001 HMDB0014960 -

Citric acid 1.43 190.95495 C6H8O7 1.5526 0.54732 −0.86954 0.0049857 HMDB0000094 -

Dimercaprol 1.45 122.96761 C3H8OS2 1.54495 0.52417 −0.9319 <0.001 HMDB0015677 -

Argininic acid 1.15 174.0885 C6H13N3O3 1.53498 0.5726 −0.80439 0.014188 HMDB0003148 -

Ursocholic acid 22.41 407.24778 C24H40O5 1.53168 1.8474 0.88546 <0.001 HMDB0000917 -

Methylmalonic acid 1.18 117.01943 C4H6O4 1.52339 0.42889 −1.2213 <0.001 HMDB0000202 -

Nicotine glucuronide 16.8 337.14296 C16H22N2O6 1.50428 2.2215 1.1515 <0.001 HMDB0001272 -

L-Kynurenine 1.32 207.08727 C10H12N2O3 1.48824 0.46308 −1.1107 <0.001 HMDB0000684 -

2-hydroxyethinylestradiol 11.97 311.16896 C20H24O3 1.47693 2.9752 1.573 <0.001 HMDB0061027 -

Oleoylcarnitine 22.06 424.33074 C25H47NO4 1.45757 2.0335 1.024 <0.001 HMDB0005065 -

Retinyl beta-glucuronide 22.05 461.30177 C26H38O7 1.45534 2.0624 1.0443 <0.001 HMDB0010340 -

N-a-Acetyl-L-arginine 11.97 215.10839 C8H16N4O3 1.4469 0.53088 −0.91355 <0.001 HMDB0004620 -

Cyanate 1.3 44.0489 CHNO 1.43683 1.8665 0.90033 <0.001 HMDB0002078 +

10-Hydroxy-octadec-12Z-enoate-9-

beta-D-glucuronide

20.76 489.24827 C24H42O10 1.43271 2.0631 1.0448 <0.001 HMDB0060120 -

Biotin 11.97 243.10362 C10H16N2O3S 1.42499 0.60751 −0.71902 0.0018047 HMDB0000030 -

2-arachidonylglycerol 19.72 377.27343 C23H38O4 1.41697 0.55461 −0.85046 0.0046278 HMDB0004666 -

Beta-Alanine 1.18 88.04025 C3H7NO2 1.41179 0.55975 −0.83715 0.0059028 HMDB0000056 -

Indolelactic acid 1.35 204.06539 C11H11NO3 1.39434 0.48593 −1.0412 0.0018691 HMDB0000671 -

Acitretin 12.45 325.18468 C21H26O3 1.39063 2.6931 1.4293 <0.001 HMDB0014602 -

Hippuric acid 1.32 178.0511 C9H9NO3 1.3891 0.55416 −0.85163 <0.001 HMDB0000714 -

L-Tryptophan 1.33 203.08273 C11H12N2O2 1.38814 0.61765 −0.69513 0.0050668 HMDB0000929 -

Ribothymidine 1.14 257.07558 C10H14N2O6 1.372 0.49838 −1.0047 <0.001 HMDB0000884 -

3-Hydroxy-cis-5-

tetradecenoylcarnitine

10.26 386.27558 C21H39NO5 1.37183 0.61797 −0.6944 0.012251 HMDB0013330 +

N-Acetylornithine 1.28 173.09307 C7H14N2O3 1.36098 0.39628 −1.3354 <0.001 HMDB0003357 -

Threonic acid 1.3 159.02767 C4H8O5 1.35864 1.9251 0.94496 <0.001 HMDB0000943 +

Oxalic acid 1.2 88.98794 C2H2O4 1.32474 0.50332 −0.99047 <0.001 HMDB0002329 -

Alpha-Tocotrienol 0.09 423.32682 C29H44O2 1.3208 1.9807 0.98599 <0.001 HMDB0006327 -

Acetone 1.42 56.99484 C3H6O 1.31729 0.54805 −0.86763 <0.001 HMDB0001659 -

4′-O-Methylepicatechin

7-O-glucuronide

7.17 238.07747 C23H26O11 1.31537 1.6712 0.74089 <0.001 HMDB0029183 -

Glucosylgalactosyl hydroxylysine 22.13 485.32744 C18H34N2O13 1.29406 1.6334 0.7079 0.0012046 HMDB0000585 -

L-Tyrosine 1.95 180.06682 C9H11NO3 1.29302 0.65647 −0.60719 <0.001 HMDB0000158 -

(Continued)
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TABLE 2 | Continued

Name Retention

time

(min)

Mass-to

charge

ratio

Formula VIP FC log2(FC) Adjusted

p value

HMDB ESI±

1-Methylguanosine 1.3 296.10035 C11H15N5O5 1.29055 0.60407 −0.72721 0.011676 HMDB0001563 -

Azelaic acid 1.34 187.09788 C9H16O4 1.29008 0.36788 −1.4427 <0.001 HMDB0000784 -

4-hydroxybenzaldehyde 1.34 121.02957 C7H6O2 1.2664 0.47227 −1.0823 0.0023175 HMDB0011718 -

(S)-3,4-Dihydroxybutyric acid 1.15 119.03508 C4H8O4 1.24485 0.6209 −0.68756 <0.001 HMDB0000337 -

Heparan sulfate 15.06 639.98222 C14H25NO21S3 1.22504 1.6421 0.71556 <0.001 HMDB0000693 +

4-glutathionyl cyclophosphamide 20.52 564.26422 C17H30Cl2N5O8PS 1.2227 0.6261 −0.67553 0.010508 HMDB0060387 -

Uric acid 1.29 167.02124 C5H4N4O3 1.19315 0.54884 −0.86554 <0.001 HMDB0000289 -

Thiamine pyrophosphate 17.05 424.07522 C12H19N4O7P2S 1.16992 1.8087 0.85496 <0.001 HMDB0001372 -

Phenylalanylphenylalanine 7.97 311.14035 C18H20N2O3 1.16405 0.60089 −0.73483 <0.001 HMDB0013302 -

Farnesyl pyrophosphate 1.14 381.10138 C15H28O7P2 1.16075 0.55865 −0.83999 <0.001 HMDB0000961 -

p-Cresol sulfate 1.33 187.00783 C7H8O4S 1.13682 0.44465 −1.1693 0.011129 HMDB0011635 -

3-hydroxyhexadecadienoylcarnitine 23.32 410.31521 C23H41NO5 1.11251 1.8723 0.90484 <0.001 HMDB0013335 -

Hesperetin 3′,7-O-diglucuronide 15.05 654.99189 C28H30O18 1.10556 1.6165 0.69291 <0.001 HMDB0041742 +

Glucose 6-phosphate 1.13 258.99652 C6H13O9P 1.08797 0.5463 −0.87223 0.0013207 HMDB0001401 -

Proline betaine 1.24 144.10164 C7H13NO2 1.08384 3.8372 1.9401 <0.001 HMDB0004827 +

Dopamine 1.29 154.08371 C8H11NO2 1.07989 0.66314 −0.59262 0.010018 HMDB0000073 +

3′-hydroxy-e,e-caroten-3-one 15.84 567.27116 C40H54O2 1.05843 1.5214 0.60537 <0.001 HMDB0002020 +

8-hydroxy-deoxyguanosine 1.24 282.08465 C10H13N5O5 1.05832 0.63158 −0.66296 0.0109 HMDB0003333 -

12(13)Ep-9-KODE 11.93 309.1744 C18H30O4 1.04412 1.6818 0.75004 0.0092977 HMDB0013623 -

8-Isoprostane 19.38 279.44382 C20H40 1.03448 0.58342 −0.77739 0.00455 HMDB0004659 -

Maltotetraose 10.3 667.35056 C24H42O21 1.01631 0.52038 −0.94235 0.006033 HMDB0001296 +

Oxypurinol 1.32 151.02635 C5H4N4O2 1.00411 0.54446 −0.8771 0.003292 HMDB0000786 -

The metabolites were listed in a decreasing order based on variable importance in the projection values (VIP). p value adjusted by false discovery rate method across all the metabolites

within the comparison.

decomposition, choline substances are expressed at high levels
(Treede et al., 2007). As a result of the destruction of membrane
structures associated with the development of a malignant tumor,
choline levels tend to increase (Wu et al., 2016). According to
Wojakowska et al. (2017), PC and glycerophosphocholine
are expressed at high levels in PTC tissues, and choline, the
end product of metabolism, can generate new PC again. This
process demonstrates that PTC also decomposes phospholipids
while synthesizing phospholipids, with the goal of meeting
the needs of cancer cell proliferation. In the present study,
serum levels of 3-hydroxy-cis-5-tetradecenoylcarnitine in the
PTC group were lower than in the control group. In addition,
the associated AUC value was >0.865, indicating that 3-this
metabolite may help distinguish PTC patients from healthy
controls. Moreover, 3-hydroxy-cis-5-tetradecenoylcarnitine
belongs to the carnitine group; carnitine and its short-chain
derivatives are necessary for fatty acids to enter the mitochondria
for oxidation. Cheng et al. (2018) has shown that 3-hydroxy-cis-
5-tetradecenoylcarnitine can be used as an important biomarker
for the diagnosis of bladder cancer (AUC and sensitivity values
of 0.899 and 0.881, respectively). Nevertheless, the diagnostic
validity of 3-hydroxy-cis-5-tetradecenoylcarnitine in PTC
requires further studies to confirm. Arachidonylglycerol (2-AG)

is an important endogenous cannabinoid, associated with
abnormal metabolism in pancreatic ductal adenocarcinoma
(Qiu et al., 2019), prostate cancer (Endsley et al., 2008), and
HCC (Yang et al., 2019). Serum levels of 2-AG in the PTC
group were lower than those in the control group. This
finding might be accounted for by the fact that PTC tends
to be characterized by a lower degree of malignancy than
does HCC. Moreover, 2-AG has strong anti-proliferative and
pro-apoptotic properties in PTC patients. A large amount of
2-AG is consumed in anti-proliferation and pro-apoptosis
processes, resulting in the rate of 2-AG degradation higher
than that of its synthesis. Further studies are required to verify
these observations.

Cancer cells maintain cell growth and proliferation through
different metabolic pathways. New cancer cells require a large
number of biomolecular components, including proteins, nucleic
acids, lipids, and important cofactors to maintain the redox
state of cells. Amino acids are used by tumors as a source
of nutrition during development; they can also be used as
the main carbon source by new cancer cells (Kuhajda, 2000;
Voeller et al., 2004). In the present study, the OPLS-DA model
was used to screen amino acid-related differential metabolites,
showing that the levels of tyrosine, tryptophan, arginine, alanine,
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FIGURE 3 | (A) Results of pathway analysis of metabolomics data. Pathway analysis based on “Kyoto Encyclopedia of Genes and Genomes” (KEGG).The color and

size of each circle is based on p-values (yellow: higher p-values and red: lower p-values) and pathway impact values (the larger the circle the higher the impact score)

calculated from the topological analysis, respectively. Pathways were considered significantly enriched if p < 0.05, impact >0.1 and number of metabolite hits in the

pathway >1. PTC, papillary thyroid carcinoma. (B) The significantly enriched pathways involved in the pathogenesis of papillary thyroid carcinoma, including Aspartate

metabolism, Glutamate metabolism, Urea cycle, and TCA cycle.
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glutamic acid, and histidine were lower in the PTC group
than in the control group. Alanine is a glycogen amino acid
that can be converted into an intermediate substrate in the
tricarboxylic acid cycle, and then into glucose in the process
of gluconeogenesis. Therefore, alanine can also be considered
as an energy source for the rapid proliferation of PTC cells
(Tian et al., 2015; Ryoo et al., 2016). In this study, serum
levels of beta-alanine in the PTC group were lower than those
in the control group. This finding might be accounted for by
the fact that PTC cells use beta-alanine metabolism to convert
large amounts of beta-alanine into raw materials for energy
metabolism. Concurrently, this study examined amino acid
metabolism in the context of energy metabolism. Aspartate and
glutamate metabolism, and urea and TCA cycles emerged as
important pathways in the development of PTC (Figure 3B).
The metabolism of glutamate and aspartic acid is the most
important participatory pathway in malignant thyroid tumors,
linking the urea cycle with the TCA cycle. The urea cycle
converts excess ammonia and aspartic acid into urea. Reduce
the toxicity of its high ammonia content (Yekta et al., 2018).
According to Nagamani and Erez (2016), in many malignant
tumor tissues, the ASS1 enzyme is silenced in the urea cycle,
which leads to the preferential synthesis of pyrimidine by
aspartic acid to support cell proliferation, reducing the utilization
of aspartic acid in pyrimidine synthesis, which limits the
proliferation of cancer cells. Meanwhile, the silencing of the ASS1
enzyme in cancer cells supports their proliferation by activating
carbamyl phosphate synthase-2, aspartate transcarbamylase, and
the dihydrotransaminase complex, which promote pyrimidine
synthesis (Rabinovich et al., 2015). This evidence suggests
that silencing of the ASS1 enzyme is associated with poor
prognosis in patients with malignant tumors. Ammonia plays
an important role in the proliferation of PTC cells (Figure 3B).
Glutamine provides ammonia and triggers autophagy in PTC
cells. PTC cells generate glutamate through glutaminase and
glutamate dehydrogenase, whereby glutamate further produces
α-ketoglutarate, which provides sufficient energy for the survival
of tumor cells. Glutamic acid and aspartic acid also undergo
anaplerotic reactions, through which amino acids are oxidized
and decomposed to generate intermediate metabolites of the
TCA cycle, thereby supplying energy to tumor cells (Owen et al.,
2002; Jones and Bianchi, 2015). A large number of studies has
shown that in the proliferation of cancer cells, the metabolites
of citric acid are transported out of the mitochondria, and used
in lipid biosynthesis in the cytoplasm as a precursor of acetyl
coenzyme-A to compensate for the continuous consumption
of citric acid. Meanwhile, glutamine is the main anaplerotic
precursor in cancer cells, compensating for the lack of citric
acid, which is involved in energy generation (DeBerardinis
et al., 2007). This study found that citric acid was significantly
downregulated in PTC, as were glutamine and asparagine,
reflecting the weakened replenishment response of glutamine
in PTC. In addition, the levels of oxalic acid were lower in
the PTC group than in the control group. The consumed
oxalic acid was likely converted into an oxaloyl group, and the
oxalic acid group was then converted into oxaloacetate. Oxalic
acid is formed by combining an oxalyl group (after removing

a hydroxyl group) and an acetic acid group. The acid cycle
plays a catalyst-like role and determines the speed of the TCA
cell cycle (Kuang et al., 2018). Oxaloacetic acid can also be
transformed into non-essential amino acids such as asparate and
asparagine, which are involved in nucleotide synthesis (Yang
et al., 2017), suggesting that oxalic acid may be involved in
PTC development.

In the present study, metabolomic and multivariate analyses
were combined to distinguish PTC patients from healthy
controls, aiming to determine the metabolic characteristics of
PTC and improve the understanding of PTC development
and associated prognosis. Future studies should include PTC
tissue and lymph fluid analysis, and combine genomic and
proteomic methods to yield further insights into PTC biomarkers
and candidate treatment targets. Furthermore, future studies
should involve accurate metabolomics analyses with a large
number of specimens from PTC patients with lymph node
metastasis, aiming to clarify the role of lymph node metastasis
in PTC.

CONCLUSIONS

We found that metabolomics based on HPLC-Q-TOF-MS/MS
can clearly distinguish PTC patients from healthy subjects.
Lower levels of 3-hydroxy-cis-5-tetradecenoylcarnitine,
aspartylphenylalanine, l-kynurenine, methylmalonic acid,
phenylalanylphenylalanine, and l-glutamic acid were observed
in the serum of PTC patients than in the serum of healthy
subjects. These six metabolic markers can theoretically be used
in combination with current PTC diagnostic methods to guide
the clinical diagnosis of PTC. However, we the following issues
need to be considered: (1). For future clinical studies of PTC,
it is necessary to further analyze the serum of PTC patients
of phase III and IV to further confirm and summarize the
results of this study; (2). Tissue and urine samples of PTC
patients should be combined. The metabolomics research of
lymphatic fluid can be used as a plan for future metabolomics
research. This multicenter research aims to improve the accuracy
of prediction.
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