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Abstract: Hydrogels of 2-hydroxyethyl methacrylate/polyethylene glycol diacrylate (HEMA/
PEGDA) have been extensively studied for their use in biomedical and pharmaceutical applications
owing to their nontoxic and highly hydrophilic characteristics. Recently, cells immobilized by
HEMA/PEGDA hydrogels have also been studied for enhanced production in fermentation.
Hydrogel films of HEMA/PEGDA copolymer were generated by Ultraviolet (UV)-initiated
photopolymerization. The hydrogel films were used to immobilize viable Lactobacillus brevis RK03
cells for the bioconversion of monosodium glutamate (MSG) to γ-aminobutyric acid (GABA).
The mechanical properties and fermentation yields of the L. brevis RK03 cells immobilized on
polyacrylate hydrogel films with different monomeric formulations were investigated. Fermentation
was carried out in 75 mL de Man, Rogosa and Sharpe (MRS) medium containing various
concentrations of MSG. We found that HEMA (93%)/PEGDA (3%) hydrogels (sample H) maximized
GABA production. The conversion rate of MSG to GABA reached a maximum value of 98.4%
after 240 h. Bioconversion activity gradually declined after 420 h to 83.8% after five cycles of
semi-continuous fermentation. Our results suggest that HEMA (93%)/PEGDA (3%) hydrogels have
great potential for use in GABA production via semi-continuous fermentation.

Keywords: hydrogel; hydroxyethyl methacrylate; polyethylene glycol diacrylate; gamma aminobutyric
acid; immobilized; Lactobacillus brevis

1. Introduction

Hydrogels are composed of hydrophilic polymer networks formed by physical or chemical
interactions [1]. The networks of physical hydrogels are bound together by molecular entanglements
with secondary forces, while the networks of chemical hydrogels are normally crosslinked by covalent
bonds [2]. Hydrogels are widely used as biomaterials due to their nontoxic nature. They are synthesized
from natural polymer chains, such as collagen or alginate, or from synthetic polymers, such as
poly-(vinyl alcohol) (PVA), poly(acrylic acid) (PAA), or p(2-hydroxyethyl methacrylate) (p(HEMA)).
In particular, hydrogels based on p(HEMA) exhibit a degree of crosslinking and hydrophilicity similar
to the properties of articular cartilage, and are often used in medical applications [3,4]. Additionally,
hydrogels have great potential in other medical applications, such as drug delivery [5], regenerative
medicine [6], and wound repair [7]. The literature shows that the mechanical performance of HEMA
hydrogels depends on structure (especially porosity) and degree of hydrophilicity.

Chemical hydrogel synthesis by photo-crosslinking is a three-step process that involves the
initiation, propagation, and termination of free radical reactions induced by UV light. First,
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illumination excites the photoinitiator, resulting in free radical formation; then, the radicals react
with the photocurable macromonomer to produce the active substance involved in propagation.
During propagation, crosslinking occurs gradually, resulting in a three dimensional (3-D) polymer
network [8].

Polyethylene glycol diacrylate (PEGDA) is very hydrophilic and can suppress phase separation
by increasing the solubility of the copolymer chains [4]; thus, PEGDA can be added to HEMA hydrogel
formulations in different ratios to increase hydrophilicity. Furthermore, varying the ratio of HEMA to
PEGDA is likely to induce noticeable changes in surface feature size and distribution. In this study,
poly-hydroxyethyl methacrylate (HEMA) was modified with different ratios of polyethylene glycol
diacrylate (PEGDA) to develop the in situ formation of hydrogels using UV photo-crosslinking, which
were used to immobilize cells for γ-aminobutyric acid (GABA) production [3].

Cells immobilized by HEMA/PEGDA hydrogels have been studied for many years [9]. Liaw et al.
(2008) fermented xylose from rice straw hemicellulose hydrolysate for xylitol production using
Candida subtropicalis WF79 cells immobilized on polyacrylic hydrogel thin films with a thickness of
200 µm. Cell immobilization was conducted by first suspending the yeast cells in a mixture of HEMA
(hydrophilic monomer), PEGDA (crosslinking agent), and benzoin isopropyl ether (photoinitiator).
The maximum yield was 0.73 g of xylitol per gram of xylose consumed. In a 52.5-day-long durability
test, after 40 days of repeated batchwise operation, the fermentation activity of the cells immobilized
on the thin films began to decline, yielding 0.57 g/g at the end of the test. In addition, Liaw et al.
(2008) prepared polyacrylate hydrogel films by combining HEMA, methacrylic acid (MAA), and
N,N-dimethyl acrylamide (DMA) monomers with PEGDA (average Mw = 400 and 1000 g/mol) as
the crosslinking agent. This formulation was used in the same way as an immobilization matrix for
C. subtropicalis WF79 for the conversion of xylose to xylitol. The conversion rate reached a maximum
value of 80% after 120 h, then declined after 720 h to 65%, its final value at 1080 h.

γ-Aminobutyric acid (GABA) is a non-protein amino acid, which is synthesized by the action of a
pyridoxal-5′-phosphate-dependent enzyme, glutamic acid decarboxylase (GAD). GAD catalyzes the
α-decarboxylation of L-glutamic acid to yield GABA [10,11]. GABA inhibits neurotransmitters in the
sympathetic nervous system [12,13]; it is known to exert antidepressant [14], antihypertensive [15],
and anti-diabetic effects in humans [16]. Therefore, GABA is used as a bioactive component in the
pharmaceutical and food industry [17]. Various microorganisms, such as fungi [18,19], yeasts [20],
and lactic acid bacteria (LAB) produce GABA [21–33]. Particularly, LAB have attracted attention in
the food industry because they are generally recognized as safe (GRAS, an American Food and Drug
Administration designation) for GABA production.

The use of immobilized cell technology in the production of GABA has been reported. For instance,
embedding GABA-producing strains on calcium alginate gels for large-scale production can obtain the
highest GABA biotransformation efficiency within 60 h [34,35]. Under optimal reaction conditions
(pH 4.4, temperature 40 ◦C), GABA production reached 90%, which began to decline by the fifth
consecutive production run; by the tenth production run, the production was found to be retained at
56%. Other studies revealed that bacterial cellulose membrane (BCM) vectors with ultrafine network
structures were immobilized by covalently binding GAD, with a conversion rate of 87.56%. The external
enzyme transformation process showed the productivity of GABA to be 6.03 g·L−1·h−1 (about 1.5 to
10.8 times more than other synthetic methods) [36].

Immobilized GAD and L. brevis have also been studied for many years; for instance, Lee et al.
(2013) showed that His tag-mediated immobilization of E. coli drove glutamate decarboxylase (GAD)
to convert monosodium glutamate (MSG) to GABA. This system reached a 90% conversion rate in
100 min with MSG and GAD concentrations saturated at 1.43 g/L [9]. The immobilized GAD retained
58.1% of its initial activity even after 10 consecutive cycles. Huang et al. (2007) used Ca-alginate gel
beads entrapping L. brevis to produce GABA. The conversion rate reached approximately 90% in the
first five batches (8 h per batch) and declined to 56% by the tenth batch under optimal conditions [37].
Additionally, Lee et al. (2013) showed that the immobilization of GAD in nickel-chelated sepharose
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reached a maximum of 97.8% conversion to GABA from 50 mM L-glutamate in a flow-through
system [9].

Although the immobilization of GAD has been studied for many years, the purification of GAD
is costly, and its activity decays quickly. In addition, the production of GABA by immobilization
is much lower than that achieved by commercial fermentation. Therefore, it is important to find a
better immobilization method for the fermentation and production of GABA. In this study, we tested
different molecular weights of PEGDA (200–700 Mw) and different ratios of HEMA to PEGDA in
formulations of hydrogels for bacterial cell immobilization to maximize GABA production.

2. Results

2.1. Synthesis and Characterization of Polyacrylic Hydrogel Films

In this study, polyacrylic hydrogel films were used to immobilize L. brevis RK03 cells for increased
production of GABA. First, the polyacrylic hydrogel films were synthesized using UV radiation, as
shown in Figure 1A. Different proportions of HEMA and PEGDA (Mw: 200, 400, 700) were used.
Two sheets of glass with two polytetrafluoroethylene (PTFE) films were used, as shown in Figure 1B,
and HEMA and PEG-DA in different proportions mixed with the photoinitiator to form the polyacrylic
hydrogel films was injected, as shown in Figure 1C. To confirm the correct synthesis, FTIR spectroscopy
was used to examine the HEMA, PEGDA, and hydrogel films. In the HEMA spectrum, there was an
–OH bond at 3500 cm−1, a CH2 at 2940 cm−1, a C=O at 1730 cm−1, and a C=C at 1632 cm−1. In the
PEGDA spectrum, there was an –OH at 3600 cm−1, a CH2 at 2860 cm−1, a C=O at 1730 cm−1, and a
C=C at 1632 cm−1. In the hydrogel film spectrum, after the UV light crosslinking reaction, there was an
–OH at 3400 cm−1, and the C=C at 1632 cm−1 from PEGDA had disappeared (Figure 2). This suggests
that the hydrogel films were successfully synthesized after UV crosslinking. In addition, the tensile
strength and water content of the hydrogels were measured. As shown in Table 1, sample A had the
highest tensile strength (9.31 kg/cm2) but the least water content (31.41%). Sample I had the lowest
tensile strength (3.95 kg/cm2) but the most water content (34.95%).

Table 1. The tensile strength and water contents of different types of hydrogels.

No. HEMA PEGDA
Mw: 200

PEGDA
Mw: 400

PEGDA
Mw: 700 AA Initiator Tensile Strength

(kg/cm2)
Water

Content (%)

A 95 3 - - 1 1 9.31 31.41
B 93 3 - - 3 1 7.26 31.56
C 91 3 - - 5 1 6.61 32.45
D 95 - 3 - 1 1 7.52 32.10
E 93 - 3 - 3 1 6.76 32.94
F 91 - 3 - 5 1 5.96 34.63
G 95 - - 3 1 1 7.10 34.75
H 93 - - 3 3 1 5.20 34.91
I 91 - - 3 5 1 3.95 34.95

HEMA: 2-hydroxyethyl methacrylate; PEGDA: Polyethylene glycol diacrylate (Mw = 200, 400, 7000 g/mol);
AA: Acrylic acid; Initiator: Benzoin isopropyl ether.
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Figure 1. (A) Reaction of hydrogel synthesis using UV radiation; (B) Device used for hydrogel 
preparation; and (C) Photograph of the hydrogel stained with Coomassie Blue.  
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Figure 1. (A) Reaction of hydrogel synthesis using UV radiation; (B) Device used for hydrogel
preparation; and (C) Photograph of the hydrogel stained with Coomassie Blue.
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Figure 2. Fourier transform infrared spectroscopy (FTIR) analysis of HEMA, AA, PEGDA, and the
hydrogel. Results of HEMA, AA, PEGDA, and the hydrogel are indicated in black, blue, red, and
green, respectively.

2.2. GABA Production by Immobilized Cells on Polyacrylic Hydrogel Films

To examine the best conditions for GABA production using cells attached to polyacrylic hydrogel
films, first different MSG concentrations in de Man, Rogosa and Sharpe (MRS) medium were tested.
Figure 3A shows the GABA standard and GABA production by L. brevis RK03 cells grown on
polyacrylic hydrogel films in MRS medium with 150–600 mM MSG. HPLC analysis showed that
the purified GABA matched the GABA standard. As shown in Figure 3B, the effects of MSG were
compared at different concentrations added to the MRS medium, on GABA production. At 600 mM of
MSG, L. brevis RK03 cells produced the maximum amount of GABA (511.48 mM) with a conversion
rate of 85.25% in 60 h. In addition, the highest conversion rate, 98.88%, with GABA production of
395.5 mM was reached by using 400 mM MSG. However, at 450 mM MSG, cells produced higher
amounts of GABA (437.64 mM) with a conversion rate of 97.25%. Therefore, 450 mM GABA as the
optimal concentration was used to examine the effects of different polyacrylic hydrogel films on GABA
production; we tested samples G, H, and I, which had higher water contents. Cells were grown in MRS
medium with 450 mM MSG at 30 ◦C for 72 h. Cells grown without any polyacrylic hydrogel films and
polyacrylic hydrogel film sample H had the highest GABA yield (Figure 3C), suggesting that sample H
did not affect GABA production. As shown in Figure 4, L. brevis RK03 cells were grown in MRS medium
with 450 mM MSG containing a PEGDA hydrogel film at 30 ◦C to investigate GABA production over
84 h. The GABA products were compared to a GABA standard, using HPLC. At 36, 48, and 60 h, the
rate of GABA production increased gradually. At 36 h, the pH value was still acidic (~4.78), but at 48 h
the pH had increased to 7.36. The cell density at 24 to 84 h was approximately 4.47 × 109 CFU/mL.
At 72 h, cells produced the maximum amount of GABA at a pH value of approximately 7.1 and at a
density of 2.45 × 109 CFU/mL. These results suggest that polyacrylic hydrogel films do not affect cell
growth, and that maximum GABA production occurred at 72 h. In addition, the growth of biofilm cells
on the hydrogels was investigated and compared to the growth of planktonic cells in MRS medium; the
absorption rate was calculated as Hydrogelcell count (log CFU/mL)/Planktonic Controlcell count (log CFU/mL).
The absorption rate did not differ significantly from 12 to 84 h. This suggests an increase in the
numbers of planktonic cells as well as the cells growing on the hydrogel films. This also suggests that
the hydrogels did not affect cell growth (Table S1).
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MSG on GABA production; (C) Effects of different types of hydrogels on GABA production and pH 
values. 
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2.3. GABA Production by Immobilized Cells on Polyacrylic Hydrogel Films Using
Semi-Continuous Fermentation

In order to examine semi-continuous fermentation and maximize GABA production, L. brevis
RK03 cells were grown on a polyacrylic hydrogel film for 84 h per cycle for a total of five cycles, and
GABA production was measured every 12 h by using HPLC. After 84 h of incubation, the polyacrylic
hydrogel film was moved to a new MRS medium supplemented with 450 mM MSG for another cycle;
this process was repeated for four cycles. As shown in Figure 5, in every cycle except the first and
second, GABA production reached a maximum at 72 h. At 60 h in the first cycle, GABA production
reach its maximum at 411.86 ± 9.19 mM, and its conversion rate was approximately 91.52 ± 0.02%.
In the last cycle, cells produced the least amount of GABA at approximately 384.99 ± 16.2 mM, and
the conversion rate was approximately 85.33 ± 0.04%. After five cycles using polyacrylic hydrogel
films to produce GABA, the conversion rate was still over 85%. This suggests that the hydrogel film
system can produce over an 85% conversion rate after 17.5 days or 420 h.
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2.4. Immobilization of L. brevis RK03 onto Polyacrylic Hydrogel Films

SEM was then used to examine the L. brevis RK03 biofilms forming over time on polyacrylic
hydrogel films. Biofilm formation peaked after 60 h (Figure 6C–H). In addition, the microstructure of
the polyacrylic hydrogel films as assessed by SEM was flat with few wrinkles, as shown in Figure 6A,B
(0 h). Thus, L. brevis RK03 was able to form biofilms on polyacrylic hydrogel films in 60 h.
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3. Discussion

In this study, hydrogel films containing HEMA with PEGDA at a molecular weight of 700 Mw
had higher water content of all formulations, including those with PEGDA molecular weights of
200 and 400 Mw. HEMA (93%) with PEGDA (3%) hydrogels (sample H) resulted in maximum GABA
production by L. brevis RK03. This gel was reusable for up to 420 h in five 84-h cycles. Surprisingly,
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GABA production was 384.99 mM and the conversion rate was approximately 85%, even after five
cycles of incubation. The production rate and reuse efficiency of this gel formulation are quite high
and compelling.

Previously, Huang et al. (2007) embedded GABA-producing strains on calcium alginate gels and
obtained the highest GABA biotransformation efficiency by 60 h; in this process, GABA conversion
reached 90%, which after 10 consecutive cycles was retained at 56% [37]. Yao et al. (2013) used
ultrafine network structures immobilized by covalently binding GAD; the conversion rate was found
to be 87.56% and GABA productivity was 6.03 g·L−1·h−1 (approximately 1.5 to 10.8 times more than
that obtained using other synthetic methods) [36]. Other researchers such as Lee et al. (2013) used
immobilized GAD to convert MSG to GABA; a conversion rate of 90% was obtained in 100 min with
saturated MSG and GAD at 1.43 g/L. In addition, Lee et al. (2013) showed that the immobilization of
GAD on nickel-chelated Sepharose can result in a maximum conversion rate of 97.8% from 50 mM
L-glutamate in a flow-through system [3]. Compared to other studies on immobilized cells or enzymes
to convert MSG to GABA, our method used a hydrogel film to immobilize L. brevis and produce
GABA. Results showed a conversion rate of 98.4%, which was retained at 83.8% after five cycles of
semi-continuous fermentation. Thus, this method could produce GABA for a longer duration than
that seen in previously used methods, and the conversion rate was also found to be comparatively
higher. Although the immobilization of GAD has been studied for several years, its purification
is costly and its enzyme activity is shown to be rapidly decayed. In addition, alginate gels that
are used for immobilization to produce GABA are hard to sterilize. Therefore, we suggest that
HEMA (93%)/PEGDA (3%) hydrogels have a high potential for application in semi-continuous
fermentation to produce GABA, because they are easy to sterilize and can be reused. In addition, most
GABA fermentation proceeds through batch fermentation but not semi-continuous or continuous
fermentation. Therefore, it is important to develop a hydrogel to form biofilms in semi-continuous or
continuous fermentation to increase GABA production.

4. Materials and Methods

4.1. Isolation and Identification of GABA-Producing LAB

Thirty-two LAB strains were isolated from ocean fish, including Priacanthus macracanthus,
Chanos, Perca fluviatilis, Thunnus thynnus, Psenopsis anomala, Ostreoida Rafinesque, Ephippus orbis,
Ctenopharynodon idellus, and Penaeus monodon, found at two fish markets located in the Nantze and
Zuoying districts, Kaohsiung City, Taiwan. Isolated LAB strains were grown on MRS broth (BD
Biosciences, Franklin Lakes, NJ, USA) plates at pH 5 supplemented with 1% monosodium glutamate
(MSG) (Vedan, Taichung, Taiwan) at 37 ◦C. The isolated LAB strains were incubated in 9 mL MRS broth
in Pyrex tubes at 37 ◦C without shaking for 96 h. The cell cultures containing GABA was centrifuged
and filtered with 0.22-µm filters and analyzed by thin layer chromatography (TLC) assay. One pair of
primers, 27F: AGA GTT TGA TCM TGG CTC AG and 1492R: CGG TTA CCT TGT TAC GAC TT, was
used to amplify 16S rDNA with L. brevis RK03 genomic DNA as a template. The 16S rRNA gene was
sequenced and aligned with genomic sequences from national center for biotechnology information
(NCBI).

4.2. Scanning Electron Microscopy of Lactobacillus brevis RK03

The colonies were grown on polyacrylic hydrogel films in MRS medium over 60 h of incubation
at 30 ◦C under anaerobic conditions. Scanning electron microscopy (SEM) was used to analyze
the morphology of L. brevis RK03 cells. The cells were fixed in McDowell-Trump fixative reagent
pH 7.2 (Agar Scientific Limited, Stansted, UK) for at least 2 h. The cells were washed with 0.1 M
phosphate-buffered saline and centrifuged at 5000 rpm for 10 min. The resulting pellet was fixed for 1 h
in 1% osmium tetroxide (Sigma-Aldrich Co., LLC, St. Louis, MO, USA) prepared in phosphate buffered
saline. The sample was washed twice with distilled water for 10 min, then dehydrated for 10 min in
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ethanol (Merck, Darmstadt, Germany) at concentrations of 50%, 75%, 95%, and 99.5%. Afterwards,
1 mL hexamethyldisilazane (Agar Scientific Limited, Stansted, UK) was added to the sample tube
for 10 min. Hexamethyldisilazane was decanted from the tube, and the cells were air-dried at room
temperature. The sample specimen was coated with gold and viewed with an Hitachi Scanning
Electron Microscope SU3500 (Hitachi, Tokyo, Japan).

4.3. Preparation of Polyacrylic Hydrogel Films for Cell Immobilization

The polyacrylic hydrogel was used to immobilize bacterial cells. First, 2-hydroxyethyl
methacrylate (HEMA) and acrylic acid (AA) were mixed at different ratios, as shown in Table 1.
Then, 3% of different molecular weights of polyethylene glycol diacrylate (PEGDA, Mw = 200, 400,
700 g/mol) and 1 wt % of benzoin isopropyl ether (initiator) were added (Table 1) to the above
solution. The acrylic hydrogel film was prepared by injecting the above mixture into the space between
two pieces of glass (50 mm × 50 mm) separated by a 0.2-mm spacer (Figure 2B,C), followed by a
free-radical reaction with ultraviolet 320-nm laser excitation for 60 s. After the UV radiation reaction,
the polyacrylic hydrogels were cooled and solidified with distilled water for 40 min. The synthesis
procedure is shown in Figure 1A.

4.4. Tensile Strength and Water Content Measurement

The tensile strength of the polyacrylic hydrogel films was determined by the method specified by
the Chinese National Standards (CNS) 3553, employing a dumbbell-shaped #2 sample. The rate of
stretching was 2 cm/min. The tensile strength is expressed in kg/cm2. The polyacrylic hydrogel films
were dried at 90 ◦C for 9 h and then weighed. Water content of the films was calculated according to
the following equation: Water content = [(wet film weight − dry film weight)/wet weight] × 100%.

4.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis

First, the polyacrylic hydrogel films were dried at 50 ◦C for 24 h and the dried polyacrylic hydrogel
films were then ground and mixed with potassium bromide in a 1:99 mixture and compressed into
pellets. These pellets were then analyzed using FTIR (Spectrum One, PerkinElmer, Waltham, MA,
USA). The monomers and polymers were analyzed on the basis of their functional groups and the
wavelengths were scanned from 4000~450 cm−1.

4.6. GABA and MSG Analysis

L. brevis RK03 was grown in 75 mL MRS medium in 150-mL flasks supplemented with different
concentrations of MSG (150–600 mM) for 72 h at 30 ◦C for GABA production analysis. GABA, MSG
contents, and pH values were measured at certain time points. For the analysis of GABA production by
L. brevis RK03 cells attached to different polyacrylic hydrogel films, 1 × 109 CFU/mL of L. brevis RK03
was grown in 75 mL MRS medium supplemented with 450 mM MSG with three different polyacrylic
hydrogel films (G, H, I in Table 1) for 12 h at 30 ◦C. Every 12 h, cell numbers, GABA content, and pH
values were measured.

4.7. GABA and MSG Analysis in Semi-Continuous Conditions

L. brevis RK03 was grown in 75 mL MRS medium in 150-mL flasks supplemented with 450 mM
MSG for 84 h at 30 ◦C for GABA production analysis. The polyacrylic hydrogel films were then
removed to fresh MRS medium with 450 mM MSG for a further 84 h of incubation. The polyacrylic
hydrogel films were moved this way for a further five cycles. GABA, MSG contents, and pH values
were measured every 12 h.
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4.8. Measurement of GABA Content with High-Performance Liquid Chromatography (HPLC)

A 100-µL culture broth filtered through a 0.22-µm filter was mixed with 0.5 mL O-phthalaldehyde
(OPA) working solution (1 mL OPA stock: 40 mg O-phthalaldehyde/mL methanol), 25 mL of
0.1× borate buffer, and 100 µL β-mercaptoethanol) and filtered again. A GABA standard was mixed
with 0.5 mL OPA working solution. Twenty microliters of the mixture was measured as follows: HPLC
mobile phase A: 0.1 M sodium acetate (98%, Showa Chemical., Ltd., Tokyo, Japan) dissolved in 900 mL
deionized water and 500 µL trimethylamine (Merck, Darmstadt, Germany) to a final volume of 1 L
with deionized water. The pH of mobile phase A was adjusted to 6.7 using hydrochloric acid (Nihon
Shiyaku Reagent, Tokyo, Japan). HPLC mobile phase B was methanol (HPLC-grade, Merck, Darmstadt,
Germany). All mobile phases were passed through a 0.22-µm membrane filter. The flow rate of the
pump was set at 1.0 mL/min. Column temperature was set at 30 ◦C, sample injection volume at 20 µL,
and the compound was detected through a UV detector at 340 nm. GABA content was determined
by a Hitachi 1110 pump and Hitachi 1410 detector (Hitachi High-Technologies Corporation, Tokyo,
Japan) equipped with a Ascentis® C18 column 5 µm in diameter, 150 mm in length, and 4.6 mm in
internal diameter (Sigma-Aldrich Co., LLC, St. Louis, MO, USA). The amount of GABA was calculated
by comparing the peak area with that of the GABA standard. Peak heights were measured using
SISC-LAB chromatography software (Scientific Information Service Corporation, Taipei, Taiwan).
To confirm the accurate detection of a GABA peak, standard curves with known concentrations of
GABA were generated prior to sample analysis. Each experiment was performed in triplicate [38].

4.9. Statistical Analysis

Experimental data was analyzed using IBM SPSS Statistics 20 with Duncan’s multiple range test.
p-values < 0.05 were considered statistically significant.

5. Conclusions

In summary, our results indicated that HEMA/PEGDA hydrogels can be used as an immobilizing
material for L. brevis RK03 culture and GABA production for up to 420 h. Therefore, HEMA/PEGDA
hydrogels can be used as a nontoxic, cheap material for the immobilization of Lactobacillus for use
in semi-continuous or fermentative production of GABA. We are the first to demonstrate the use of
this hydrogel in GABA production by L. brevis, and our data highlight the potential of chemically
synthesized HEMA/PEGDA hydrogels as an immobilizing material in GABA production.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/11/2324/s1.
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