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Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with
deficient social skills, communication deficits and repetitive behaviors. The prevalence
of ASD has increased among children in recent years. Children with ASD experience
more sleep problems, and sleep appears to be essential for the survival and integrity of
most living organisms, especially for typical synaptic development and brain plasticity.
Many methods have been used to assess sleep problems over past decades such as
sleep diaries and parent-reported questionnaires, electroencephalography, actigraphy
and videosomnography. A substantial number of rodent and non-human primate models
of ASD have been generated. Many of these animal models exhibited sleep disorders
at an early age. The aim of this review is to examine and discuss sleep disorders in
children with ASD. Toward this aim, we evaluated the prevalence, clinical characteristics,
phenotypic analyses, and pathophysiological brain mechanisms of ASD. We highlight
the current state of animal models for ASD and explore their implications and prospects
for investigating sleep disorders associated with ASD.

Keywords: autism, sleep, non-human primate, brain development, animal model

INTRODUCTION

Sleep appears to be essential for most living organisms’ survival and integrity, especially for
typical synaptic development and brain plasticity (Fogel et al., 2012; Hartsock and Spencer,
2020). Over the past decades, the role of sleep in learning and memory has been probed by
many studies at behavioral, systemic, cellular, and molecular levels (Walker and Stickgold, 2006;
Rawashdeh et al., 2007; Sawangjit et al., 2018; Kim et al., 2019). The American Academy of Sleep
Medicine (AASM) has recently released the third edition of the International Classification of
Sleep Disorders (ICSD-3) in 2014. This guideline grouped sleep disorders into seven basic types:
insomnia disorders, central disorders of hypersomnolence, circadian rhythm sleep-wake disorders,
sleep-disordered breathing, movement disorders, parasomnias, and other sleep disorders (Sateia,
2014; Ito and Inoue, 2015). There are universal physiologic changes during sleep, and some
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biologic, environmental, psychological, social as well as genetic
factors can affect change in the sleep pattern (Jenni and
O’Connor, 2005; Bathory and Tomopoulos, 2017). The sleep-
wake circadian rhythm is regulated through both circadian
and homeostatic processes. Arousal and sleep are active and
involved in neurophysiologic processes, including both activation
and suppression of neural pathways. Sleep disorders can be
an early symptom of the disease, and the presence of rapid
eye movement (REM) sleep behavior disorder (RBD) can be
used as an early diagnostic indicator for neurodegenerative
diseases (Galland et al., 2012; Kotterba, 2015). Besides, sleep
disorders have observable effects on physical and mental health of
children with autism spectrum disorder (ASD) and their parents
(Zhang et al., 2021).

Autism spectrum disorder is a neurodevelopmental disorder
and the prevalence of ASD is increasing, with 1 in 59 children
in the United States. diagnosed with ASD (Orefice, 2019). ASD
is approximately four times more prevalent among males than
females (Christensen et al., 2016; Satterstrom et al., 2020).
According to the DSM-V, the previous categories of pervasive
developmental disorders, pervasive developmental disorder-not
otherwise specified (PDD-NOS) and Asperger disorder were
combined into ASD. The new diagnostic criteria from DSM-
V defined ASD as a heterogeneous spectrum disorder with
deficits in social interaction and communication, restricted
and repetitive interests, and stereotyped behaviors (American
Psychiatric Association, 2013; Devnani and Hegde, 2015).

It is not surprising when considering the numerous health
and behavioral issues that sleep disturbance are commonly
observed in the clinical progression of ASD. Children with
ASD experience more sleep problems compared with the
general population, particularly insomnia. Sleep-wake cycle
abnormalities are associated with communication deficits,
stereotyped behaviors, and autism severity (Tudor et al.,
2012). Disrupted sleep may exacerbate the daily dysfunction
of ASD children, such as social and communication skills,
behavioral performance, stereotypical behaviors, and motor
output on non-verbal performance tasks (Schreck et al., 2004;
Limoges et al., 2013).

As we gain deeper knowledge of the neural mechanisms
of ASD and sleep, more contributions from sleep-related
biomarkers to the study of neurophysiology in ASD.
Prospectively, the emergence of digital technologies and
devices is making studies of sleep physiology more flexible and
convenient. The sleep study provided new insights for research
on the children with ASD when compared with the other
behavioral tests currently used in human subjects and animal
experimental models. This review’s main objective is to explore
animal models’ role, especially non-human primate (NHP)
models, as a useful tool to investigate sleep disorders in ASD
children. Firstly, we present data on sleep disorders in autistic
children, emphasizing their prevalence, clinical characteristics,
phenotypic analyses, and pathophysiological mechanisms. Next,
we highlight the current state of animal models for ASD and
explore their implications and future prospects in translational
research. We suggest that using NHP animal models may provide
insights into sleep disorders in ASD.

THE ROLE OF SLEEP

In most mammalian species, sleep amounts are highest during
the neonatal period (Weber and Dan, 2016). Sleep loss can
significantly affect a child’s health-related quality and activities
of daily living (Maski and Kothare, 2013). The brain is one of
the organs most impacted by sleep or the lack thereof while
adolescence is a critical period for brain reorganization. It is
beyond doubt that sleep disorders during this period exert
irreversible effects on children’s brain development (Roffwarg
et al., 1966; Klein et al., 2000; Weber et al., 2018). REM sleep
can prune newly formed postsynaptic dendritic spines during
motor learning (Li et al., 2017), and the balance of newly
formed and original dendritic spines is crucial for neuronal
circuit development and behavioral improvement in children.
Two studies found that sleep enhance cortical plasticity in the
visual cortex during the developmental critical period (Frank
et al., 2001; Aton et al., 2009). In conclusion, sleep seems to
be important for brain development, learning, and memory
consolidation by selectively eliminating and maintaining newly
formed synapses (Li et al., 2017).

Sleep deprivation may cause physical diseases and
developmental problems. During early life, sleep deprivation has
been shown to have long-term implications for social behaviors
in adulthood (Hudson et al., 2020). Neural substrates can be
affected by sleep deprivation, including the prefrontal cortex,
basal ganglia, and amygdala. Furthermore, sleep deprivation
may cause difficulties in executive functioning, reward learning
as well as emotional reactivity. Such issues may contribute to
difficulties in judgment, resolution of problems, challenging
behaviors, emotional control, and public health concerns, such
as depression, suicide, and risk-taking behavior (Maski and
Kothare, 2013). These findings indicate that insufficient sleep
during early life has persistent effects on brain development and
later behavioral performance.

It has been assumed that sleep can clear out brain’s toxins,
such as beta-amyloid which was associated with Alzheimer’s
disease (Xie et al., 2013). Sleep is essential for maintaining the
body’s physical health and is associated with neurodegeneration,
metabolic diseases, cancer, and aging. The processes of growth
and development are related to sleep quality. The abnormal
sleep and circadian also affect hormones and metabolism (Li
et al., 2018a). Getting adequate sleep can help the immune
system to better react against infection (Grigg-Damberger, 2009;
Herculano-Houzel, 2013; Welberg, 2013).

CLINICAL CHARACTERISTICS OF
SLEEP DISORDERS IN ASD CHILDREN

Many neurodevelopmental processes have been reported in the
children with ASD, such as synaptic plasticity, neurogenesis
and migration of neuron (Gilbert and Man, 2017). About 40–
80% of children with ASD exhibit at least one sleep-related
problems (Verhoeff et al., 2018), including irregular sleeping and
waking patterns, decreased sleep efficiency, reductions in total
sleep time and REM sleep time, sleep onset delays, decreased
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sleep efficiency, increased wakening after sleep onset, bedtime
resistance, and daytime sleepiness (Humphreys et al., 2014).
Studies utilizing Actigraphy (ACT) and Polysomnogram (PSG)
have found that increased sleep latency, and decreased sleep
duration and sleep efficiency in ASD children (Elrod and Hood,
2015). A comprehensive review in children with ASD reported
that insomnia is one of the most common sleep problems
(Souders et al., 2009). Another study also documented that the
predominant sleep disorder included insomnia, difficulty falling,
and staying asleep (Malow et al., 2006). Mutluer et al. (2016)
found that the most common symptoms reported were troubles
falling asleep, sleep after waking up and tired after sleeping.

PREVALENCE OF SLEEP PROBLEMS IN
CHILDREN WITH ASD

Childhood sleep disorders which are mostly reported by
parents are associated with emotional, cognitive, and behavioral
disturbances. Sleep disturbances occur in approximately 20–
30% of preschool children, including bedtime resistance, sleep
onset delays, night terrors or nightmares, and repetitive rhythmic
behaviors (Lozoff et al., 1985; Krakowiak et al., 2008; Knappe
et al., 2020). The abnormalities of ASD may predispose children
to various threaten of sleep and make them especially susceptible
to sleep problems (Morgenthaler et al., 2007; Maxwell-Horn
and Malow, 2017). Sleep problems have become one of the
most common symptoms among ASD children (Richdale, 1999;
Wiggs, 2001; Liu et al., 2006; Uren et al., 2019). Two studies
compared sleep behaviors of ASD with typically developing
(TD) children, they found that 66% of ASD children exhibited
moderate sleep disturbances (Souders et al., 2009) and 71% in
another study (Malow et al., 2016). A parent-reported study
found that 35% of ASD children had at least one sleep dysfunction
(Krakowiak et al., 2008). The risk of sleep disturbance is 2.8-fold
higher in children with ASD (Köse et al., 2017). A recent study
repeated sleep measures at different age in 5,151 children, and
found that ASD children have an increase in sleep problems with
age, whereas TD children decrease (Verhoeff et al., 2018).

PHENOTYPE ANALYSES FOR SLEEP
DISORDERS

Over the past years, many different sleep analysis methods have
been reported (Lomeli et al., 2008; Kelly et al., 2012; Ibáñez
et al., 2018; de Zambotti et al., 2019). Infection, pain as well
as trauma can disrupt sleep and activity (Vandekerckhove and
Cluydts, 2010; Doufas et al., 2012), even some issues that might
seem minor to us are often very significant to a child. As
children progress from infancy to adolescence, sleep structure,
sleep behavior and sleep duration will also change (Williams
et al., 2013), it is crucial to take into account the specificity of
different ages of children when investigating sleep states. Some
sleep studies require an intimate contact of the electrode with
the skin and even require surgical implantation of electrodes,
which are difficult to apply in freely moving animals and

humans, particularly in children related to the lively side of their
nature. Even though several new technological developments
have been brought to reduce inconvenience, pain, and further
damage of these methods, expensive and burdensome must
also be considered, especially for long-term studies that include
large samples. Some assessments were developed to monitor
sleep through observation of body motion and posture. These
methods could obviate the need for direct contact and even
avoid surgery or electrode implantation. It is non-invasive and
low cost. Nevertheless, the behavioral observation does not
provide sufficient information compared to those provided by
electroencephalogram (EEG) and electromyogram (EMG). In
general, both humans’ and animals’ sleep analyses include sleep
patterns, locomotor activity, temperature, and food intake. The
current study summarized phenotype analyses for sleep disorders
obtained from sleep diaries, parent-reported questionnaires,
electroencephalography, actigraphy, and videosomnography.
We summarized the main types of experimental approaches
applicable to assessment methods of sleep studies and all of
these methods have advantages and disadvantages (Figure 1).
The selection of clinical sleep assessment should be tailored to
children’s unique characteristics, and safety and feasibility must
also be taken into consideration.

Sleep Diaries and Parent-Reported
Questionnaires
Subjective measures including sleep diaries and parent-reported
questionnaires are the most common analyses in human studies.
They have several advantages such as the non-invasive ease of
acquisition and low cost. Parents are usually quick to recognize
any changes in their child’s behavior and mood, and these
observations should be recorded (Bhargava, 2011). One of the
most common parent-reported questionnaires is Children’s Sleep
Habits Questionnaire (CSHQ), a parent-report sleep screening
instrument designed for school-aged children. The CSHQ score
has eight measures, evaluating the behavioral and psychological
symptoms of sleep disorders in children (Owens et al., 2000).
Many factors affect the reliability of sleep analysis. These
factors include the aspect of sleep assessed, the period of sleep
aggregated, and the sample population and so forth (Acebo et al.,
1999; Camerota et al., 2018). Most retrospective studies on sleep
are reported by proxies, such data are limited by problems related
to recall bias and subject selection bias (Short et al., 2017). When
parents have to estimate the sleep habits of their children, it has
been shown that parents tended to estimate with more accurate
sleep schedule variables than time awake in bed (Werner et al.,
2008). Moreover, the consistency of their reports decreased when
the monitoring lasted a long time (Short et al., 2013). Although
biases are introduced when utilizing these methods, sleep diaries,
and parent reports are commonly used in monitoring children
with sleep problems because of their low cost and ease of
administration (Honomichl et al., 2002).

Electroencephalography
The influence of technology advances becomes increasingly
evident in the study of neuroscience. EEG can provide the
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FIGURE 1 | Sleep detection methods. Current methods available for measuring sleep in young children include questionnaire-based, activity-based, and
electroencephalogram (EEG)-based methods. These three types of assessments are not interchangeable, as each method contains its own idiosyncrasies that can
influence the quality and meaning of the data that are collected.

temporal and spatial characteristics of subject. A sleep EEG is
a recording of the electrical activity of the brain while you are
awake and then asleep. It involves having small disks (electrodes)
which record the activity attached to the subject’s scalp (Feinberg
et al., 1967; Weber and Dan, 2016). Compared with a single-
channel EEG, one technique named polysomnogram (PSG)
is considered as the gold standard to objectively assess sleep
(O’Donnell et al., 2018). PSG can be used in a diverse range
of monitoring, such as brain electrical activity, muscle activity,
eye movements, respiratory rate and other channels relying
on experimental design (Boulos et al., 2019). It integrates
both normal and abnormal physiological indicators of brain
electrical activity, sleeps architecture, sleep stages, quality of
sleep, eye movements, and physical activities during the sleep
period. Wakefulness, NREM sleep, and REM sleep can be clearly
distinguished making sleep a directly quantifiable behavior, which
could be introduced more easily into clinical routine and less
stressful for patients (Blume et al., 2015). The main drawback of
PSG is the need of electrodes attached to the skin surface, and
not convenient to use in clinical sleep monitoring for children
(Lucey et al., 2016). The children cannot be sedated by given
medicine such as tranquilizers or sleep aids during the PSG
sleep study, and thus doctors may use a blanket or papoose
board to keep the child from rolling around on the bed or
pulling on the wires. However, this issue may restrict children’s
normal sleep as we don’t expect. And also, PSG instruments are
bulky and expensive and may be difficult to monitor changes
in patients for long-term studies (Stepnowsky et al., 2013; Qin
et al., 2020). Recently, telemetry transmitters have been used for
long-term measuring of EEG and electromyography signals in
rodent and NHP animals, it could collect data from conscious,
freely moving laboratory animals without skin-electrode contact
impedance and reduce animals’ stress (Ishikawa et al., 2017; Qiu
et al., 2019). This strategy can be potentially applied for future
clinical applications.

Actigraphy
Actigraphy is a non-invasive method that measures limb
movement by a watch-size accelerometer to determine
sleep and wake episodes. It allows for multiple-day data
collection in natural environments. One study compared
the validity of actigraphy and PSG, found that intraclass
correlations between PSG and actigraphy variables were strong
(>0.80) for sleep latency, sleep duration, and sleep efficiency
(Bélanger et al., 2013). Nevertheless, lack of correspondence
of circadian sleep-wake cycles between actigraphy and PSG
was confirmed in school-age children (Meltzer et al., 2016).
Actigraphy assessments may severely underestimate the true
sleep statements in children with significantly elevated sleep
disorders (Sadeh, 2011).

The next generation multisensory consumer sleep trackers are
different from the first motion-based generation of consumer
wearables (actigraphy). New generation sleep trackers apply
algorithms to achieve functions approximately similar to PSG.
Fitbit (Montgomery-Downs et al., 2012; Meltzer et al., 2015;
de Zambotti et al., 2016; Mantua et al., 2016; Cook et al.,
2017; de Zambotti et al., 2018) and Jawbone (de Zambotti
et al., 2015; Toon et al., 2016; Cook et al., 2018) sleep trackers
are most frequently tested wearables and their performance
has always been compared with PSG. Boe et al. (2019)
recently presented a wireless, wearable sensor measuring hand
acceleration, electrocardiography (ECG), and skin temperature
that outperforms the ActiWatch (one common equipment of
actigraphy), detecting wake and sleep with a recall of 74.4 and
90.0%, respectively.

Videosomnography
For centuries, many videosomnography monitoring systems have
been used to measure predefined daily activities continuously
(von Ziegler et al., 2021). Like actigraphy, the advantages of
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videosomnography lie in its objective documentation for long-
term interval (Goodlin-Jones et al., 2001; Burnham et al., 2002).
It can also be used for capturing abnormal events such as
parasomnias during night. However, there are several challenges
using videosomnography in sleep research for children. First of
all, the portable systems that capture time-lapse video recording
are expensive and often need laborious and subjective human
labeling. Additionally, camera is placed in fixed positions, the
angle of review and the motion of children may affect the quality
of video recording. Finally, ethical concerns and privacy issues
of videosomnography surveillance system must be considered
(Sadeh, 2015; Schwichtenberg et al., 2018). Videosomnography
is now widely used in animal sleep research. Most non-invasive
rodent sleep assessments depend on gross body movement (Pack
et al., 2007; Fisher et al., 2012). Three-state sleep staging can be
recorded by using electric field sensors to capture both gross body
movement and respiration-related measures (McShane et al.,
2012; Mingrone et al., 2020). For NHP study, sleep states are
judged by focusing on two major behavioral features: whether
the eyes were open or closed, and whether gross movements
were present or absent (Prechtl, 1974; Mizuno et al., 2006; Chen
et al., 2017). Over the past years, software packages based on deep
learning/neural networks allow marker less tracking of multiple,
hand-picked body points with astonishing performance.

ANIMAL MODELS USED IN THE STUDY
OF ASD

Numerous animal models of ASD have been generated in the
last decade (Peñagarikano et al., 2011; Li et al., 2015; Kazdoba
et al., 2016; Sacai et al., 2020). Many ASD-associated genes such as
Neuroligins play a crucial role in regulation of synaptic adhesion
and keeping imbalance between excitatory and inhibitory control
in brain circuits (Wintler et al., 2020). The gene editing tools
have rapidly been adopted by scientists to parse the role of
genetic abnormalities in the etiology and symptomology of ASD.
Because the more established gene editing technologies were used
in the mice, mice have become the primary animal model of
genetic diseases (Crawley, 2012). Growing studies of NHP models
have been generated because their close phylogenetic relatedness
to humans (Gadad et al., 2013). Moreover, mounting evidence
suggests that environmental factors during early development
is important. Animal models of maternal exposure to valproic
acid and maternal immune activation appear to be the most
commonly used. Frequent blood draws and PSG recordings,
which are difficult procedures for children with ASD, also make
the ASD models becoming ideal candidates. Here, we summarize
some rodent (Table 1) and NHP (Table 2) models of ASD,
which may have potential value to investigate the causes and
effects of ASD, as well as their effects on brain development and
sleep disorders.

Rodent Models for ASD
The CNTNAP2 gene encodes cortactin-associated protein-like
2 (CASPR2), which is a cell adhesion molecule and receptor
(Jackman et al., 2009). Research of CNTNAP2 demonstrated a

connection between genetic risk for autism and specific brain
structures (Alarcón et al., 2008). A linkage study reported
an increased familial risk for autism with mutations of the
CNTNAP2 gene (Arking et al., 2008). Cntnap2 knockout
(KO) mice have very similar presentations as with ASD
including hyperactivity and epileptic seizures. Analyses of these
mice indicated abnormal neuronal migration and synchrony
(Peñagarikano et al., 2011).

Neuroligins (NLs) are a diverse class of proteins distributed
molecules with functions of excitatory or inhibitory synapse
specification (Ichtchenko et al., 1995; Ichtchenko et al., 1996;
Graf et al., 2004; Blundell et al., 2010). Neuroligin-1 (NLG-
1) is enriched preferentially at excitatory synapses (Song et al.,
1999), neuroligin-2 (NLG-2) is enriched at inhibitory synapses
(Varoqueaux et al., 2004; Levinson and El-Husseini, 2005),
and neuroligin-3 (NLG-3) appears to be present at both
(Fekete et al., 2015). The activity of NLG1 is impaired by
prolonged wakefulness. Neuroligin-1 is related to neuronal
activity and associated with regulation of sleep and wake (El
Helou et al., 2013). Janine et al. found that NLG-1 knockout
mice can hardly sustain wakefulness and spend more time
in NREM sleep. Neuroligin-2 knock-out mice have less total
sleep time and exhibit abnormal spike and wave discharges
and behavioral arrests characteristic of absence seizures (Cao
et al., 2020). Neuroligin-3 knock-out mice exhibit reduced fear
conditioning, olfactory impairments and hyperactivity, as well
as reduced ultrasound vocalization and social novelty preference
(Radyushkin et al., 2009; Liu et al., 2017).

It has been proven that SHANK3 may induce sleep difficulties
in patients with ASD. SHANK proteins are important organizers
for signaling proteins in the post-synapse of excitatory neurons.
In neurons, SHANK2 and SHANK3 have a positive effect on
the induction and maturation of dendritic spines, whereas
SHANK1 induces the enlargement of spine heads. Patients
with an ASD-associated condition called Phelan-McDermid
syndrome (PMS) are often missing the SHANK3 gene and
they also often have sleep problems (Phelan and McDermid,
2012; Bro et al., 2017; De Rubeis et al., 2018). A recent meta-
analysis of SHANK mutations suggested that SHANK3 mutations
have a higher frequency and penetrance in individuals with
ASD, compared to SHANK1 and SHANK2 (Leblond et al.,
2014). Shank3 mutant mice show a variety of features of both
ASD and PMS (Jaramillo et al., 2017; Ingiosi et al., 2019).
In Shank3 heterozygous mice, there was a reduction in basal
neurotransmission (Bozdagi et al., 2010). Shank3 knockout mice
exhibit many autistic-like behaviors such as repetitive grooming,
social deficits, reduced activity, anxiety-related behavior, as well
as learning and memory impairments (Jaramillo et al., 2016;
Dhamne et al., 2017). Shank3 KO mice have reduced sleep
intensity and delayed sleep onset.

Overall, there were many other rodent models of ASD
displaying reduced sleep time: 16p11.2, Fmr1, Mecp2, Ube3a,
Rims1, Scn1a, Scn8a, Disc1, Gabrb3,Camk2a, Cacna1g, and
Npas2 (Dudley et al., 2003; Lee et al., 2004; Anderson et al.,
2005; Lonart et al., 2008; Kimura et al., 2010; Papale et al.,
2010; Johnston et al., 2014; Zhou et al., 2014; Ehlen et al., 2015;
Kalume et al., 2015; Kumar et al., 2015; Jaramillo et al., 2016;
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TABLE 1 | Autism-relevant phenotypes in selected rodent models.

Models Methods Ages Phenotypes Sleep disorders Brain development References

Genetic rodent
models

Cntnap2
knockout

7 days to 6 months Abnormal social
contact,
hyperactivity and
epileptic seizures.
Increased repetitive
behaviors and
reduced juvenile
ultrasonic
vocalizations

Wake
fragmentation and
reduced spectral
power in the alpha
(9–12 Hz) range
during wake

Impaired neuron migration
and abnormal neural
network connectivity

Peñagarikano et al.,
2011; Thomas
et al., 2017

Genetic rodent
models

Neuroligin-1
(NLG1)
knockout

2–8 months Impaired social
approach, repetitive
behavior and
deficits in spatial
learning

NLG1 knockout
mice do not sustain
wakefulness and
spend more NREM
sleep. Low
theta/alpha activity
during wakefulness
and altered delta
synchrony during
sleep

Abnormal long-term
potentiation in hippocamp
and decreased ratio of
NMDA/AMPA glutamate
receptor at cortico-striatal
synapses

Blundell et al.,
2010; El Helou
et al., 2013

Genetic rodent
models

Neuroligin-2
(NLG2)
knockout

5–8 weeks Increased
anxiety-like
behavior,
decreased pain
sensitivity, motor
coordination,
exploratory activity
and ultrasonic pup
vocalizations.
Developmental
milestone delays

More wakefulness
and less NREM and
REM sleep.
Abnormal “hyper
synchronized” EEG
events during
wakefulness and
REM sleep

Reduced inhibitory synaptic
puncta and impaired
synaptic neurotransmission

Blundell et al.,
2009; Wöhr et al.,
2013; Seok et al.,
2018

Genetic rodent
models

Neuroligin-3
(NLG3)
knockout

50–70 days Reduced fear
conditioning.
Olfactory
impairments and
hyperactivity.
Reduced
ultrasound
vocalization and
social novelty
preference

Significantly
impaired EEG
power spectral
profiles during
wake and sleep

Increased inhibitory
neuro-transmission in the
barrel cortex, enhanced
long-term potentiation in
the hippocampus.
Decrease of total brain
volume

Radyushkin et al.,
2009; Liu et al.,
2017

Genetic rodent
models

Shank3
knockout

4–88 days Repetitive
grooming,
Abnormal social
interactions and
vocalizations, and
reduced open field
activity

Reduced sleep
intensity and
delayed sleep onset

Impaired long-term
potentiation. Impaired
transmission and plasticity
in hippocampus. Deficits in
baseline NMDA
receptor-mediated synaptic
responses

Jaramillo et al.,
2016; Dhamne
et al., 2017

Environmentally-
induced
models

exposure to
valproic acid
(VPA) during
pregnancy

7–40 days Social behavioral
deficits, increased
repetitive behavior,
and impaired
communication

More wake and
NREM sleep,
disrupt sleep
architecture.
Decreased theta
and increased
gamma power
during REM sleep

Decreased cortical levels of
GAD65 and
GAD67—markers of
GABAergic synapses.
Increased basal levels of
serotonin

Tsujino et al., 2007;
Nicolini and
Fahnestock, 2018

Environmentally-
induced
models

Pregnant mice
infected with
virus or
synthetic
dsRNA,
poly(I:C)

7–12 weeks Reduced social
behavior and
increased
anxiety-like
behavior

Abnormal EEG
power and
spontaneous
epileptiform activity

Deficits in synaptic strength
of prefrontal to amygdala
neural circuits. Increases in
microglia and
neuro-inflammatory
markers

Li et al., 2018b;
Missig et al., 2018
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TABLE 2 | Autism-relevant phenotypes in selected primate models.

Models Methods Ages Phenotypes Sleep disorder Brain development References

Rett Syndrome MECP2 mutations
mediated by
TALENs

7–8 months Increased sensory
threshold and
stereotypical
behaviors, social
communication
deficits and
abnormal
eye-tracking

Sleep in mutants
was more
fragmented.
Significantly longer
awake durations
and shorter total
sleep durations

Significantly reduced
cortical gray matter and
white matter. Reduced
total cortical volumes
and thicknesses

Chen et al., 2017

MECP2 duplication
syndrome

MECP2
overexpression by
lentivirus-based
transgenic

12–18 months and
then to 55 months

Increased repetitive
behavior and stress
responses.
Reduced social
contact

N/A Reduced
β-synchronization
within
frontal-parieto-occipital
networks.
Hypoconnectivity in
prefrontal and cingulate
networks

Liu et al., 2016; Cai
et al., 2020

Maternal immune
activation

Poly IC injection 6–24 months Increased repetitive
behaviors,
communication
deficits, abnormal
social interactions
and affiliative calls

N/A Altered dendritic
morphology. Reduces
in both gray matter and
white matter.
Alterations of dendritic
morphology

Bauman et al.,
2014; Machado
et al., 2015

Maternal immune
activation

Valproic acid (VPA)
explored

17–21 months Abnormal social
interaction,
increased
stereotypies, and
abnormal
eye-tracking

N/A Severe neurogenesis
defects and abnormal
neurogenesis

Zhao H. et al., 2019

SHANK3 mutation CRISPR/Cas9 1–12 months Motor deficits and
increased repetitive
behaviors. Social
and learning
impairments

Increased sleep
latency and
nocturnal waking.
Reduced sleep
efficiency

Decreased gray matter.
Dysregulated
resting-state brain
connectivity

Zhou et al., 2019

Tatsuki et al., 2016; Dittrich et al., 2017; Lu et al., 2019). Although
the majority of these mutant rodent models exhibit reduced
activity, which could be indicative of decrease sleep duration, the
prevalence of serious sleep problems such as sleep fragmentation
is far less than what has been observed in the clinical population.

While there is strong genetic effect, the etiology of ASD seems
to be multifactorial. Environmental factors including toxins,
pesticides, infection, and drugs also have a strong correlation.
Environmental exposure during preconception, prenatal, and
postnatal pregnancy can impact the immune system and the
developing nervous system, and may cause neurodevelopmental
disorders including ASD.

Valproic acid (VPA) is a drug used in humans primarily
for epilepsy and seizure control. VPA is currently considered
to be a risk factor for ASD and is also known teratogenicity
(Balfour and Bryson, 1994). It has been demonstrated that
exposure to VPA during pregnancy would increase the risk of
autism in children based on several studies in humans (Laegreid
et al., 1993; Christianson et al., 1994) and experimental evidence
in animals (Lin et al., 2013). Furthermore, rodents prenatally
exposed to this drug exhibit autism-like behavior including social
behavioral deficits, repetitive and stereotypic behaviors, and
impaired communication (Mychasiuk et al., 2012; Nicolini and
Fahnestock, 2018). Intraperitoneal injection of VPA to rats with

pregnancy would make their offspring exhibiting autism relevant
behavioral and physiological indicators (Schneider et al., 2008).

Several studies have reported correlation between maternal
antibody reactivity toward fetal brain proteins and ASD in
the children (Braunschweig et al., 2008; Croen et al., 2008;
Brimberg et al., 2013). In the rodent maternal immune activation
model of ASD (Smith et al., 2007; Malkova et al., 2012; Choi
et al., 2016; Kim et al., 2017), offspring from pregnant mice
which were infected with virus or injected intra-peritoneally with
synthetic dsRNA [poly(I: C)], exhibited behavioral symptoms
such as social deficits, communication deficits, and repetitive
behaviors. For brain neuropathology, the offspring of maternally
infected mice displayed significantly fewer Purkinje cells.
These data are quite similar to both ASD behavioral and
neuropathological phenotypes.

Non-human Primate Models
Non-human primates are among the optimal animal models, in
large part because of their close phylogenetic relatedness with
humans (Zhang et al., 2014; Nunn and Samson, 2018). With
the rapid advances in gene-editing technologies, researchers have
established several NHP models for ASD (Liu et al., 2016; Sato
et al., 2016; Chen et al., 2017; Tu et al., 2019). It would be valuable
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for researchers to be attentive to study of many kinds of disease
by using NHP animal models (Anderson, 2000).

MECP2 duplication syndrome is an X-linked recessive
syndrome resulting from abnormal genomic rearrangement.
The two major clinical symptoms are intellectual disability
and anxiety. MECP2 overexpressed monkey models exhibited
characteristic features of ASD such as social deficits, repetitive
behaviors, and increased anxiety (Liu et al., 2016). Cai et al.
reported a combination of gene-circuit-behavior analyses,
including MECP2 co-expression network, locomotive and
cognitive behaviors, and EEG and fMRI findings in MECP2
overexpressed monkeys. Whole-genome expression analysis
revealed MECP2 co-expressed genes were significantly
enriched in GABA-related signaling pathways, whereby reduced
β-synchronization within frontal-parietal-occipital networks was
associated with abnormal locomotive behaviors (Cai et al., 2020).

Rett syndrome caused by mutations in MECP2 is a
prototypical neurodevelopmental disorder. Researchers
demonstrated that MECP2 mutant monkeys could well
mimic autism-associated abnormalities in physiology and social
behavior (Chen et al., 2017). The mutant monkeys exhibited
significantly increased total awake time and more fragmental
sleep during night, which have also been found in Mecp2 mutant
mice (Li et al., 2015).

Feng et al. used CRISPR/Cas9 to generate SHANK3, a top
autism gene mutant monkey. SHANK3 mutant monkeys tend
to be less active and have troubles sleeping that they take longer
time to fall asleep and wake up more often. Monkeys in this study
have severe repetitive movement, deficient social skills, and show
brain-activity patterns similar to those seen in autistic people
(Le Bras, 2019; Tu et al., 2019). SHANK3-deficient monkeys
showed reduced spine density and impaired development of
mature neurons in the prefrontal cortex (Zhao et al., 2017). It has
also been found that some rhesus macaques carried spontaneous
mutation of SHANK3 (Vegué and Roxin, 2015). Spontaneous
mutations in NHPs may have the potential to be used as a suitable
animal model to figure out the relationships between genetic
variants and behaviors (Haus et al., 2014; Zhao et al., 2018).

Rodent animal models of maternal exposure to VPA provided
evidence that environmental risk factors in ASD. Recently, Zhao
H. et al., 2019 reported the neurodevelopmental and behavioral
outcomes of maternal VPA exposure in NHP for the first time.
Offspring from maternal exposure to VPA has significantly
impaired neuronal development. VPA-exposed monkey offspring
showed impaired social interaction, communication disabilities,
and abnormal eye-tracking (Zhao H. et al., 2019).

When rhesus monkeys were given the viral mimicking
synthetic double-stranded RNA (polyinosinic:polycytidylic acid
stabilized with poly-L-lysine) during pregnancy, and their
offspring could exhibit abnormal repetitive behaviors, altered
communication, impaired social interactions and abnormal gaze
patterns to salient social information (Bauman et al., 2014;
Machado et al., 2015). These offspring with autism-like behaviors
also have reduced gray matter in most of the cortex and decreased
white matter in the parietal cortex (Short et al., 2010). Novel
evidence implicating MIA exposure with alterations of NHP
dendritic morphology have been found (Weir et al., 2015).

The mother and the fetus exploit several mechanisms in order
to avoid fetal rejection and to maintain an immunotolerant
environment during pregnancy. The placenta is an important
organ that facilitates nutrient exchange. It has been reported
that the anatomy of the placenta is varied across species, and
it is highest in humans, intermediate in rhesus macaques, and
minimal in rodents (Carter, 2007). Thus, the role of the NHP
animal model in this field of research is important.

MONKEYS AS AN IDEAL ANIMAL
MODEL FOR STUDYING SLEEP IN ASD

An ideal animal model of human disease should show tight
junctions with clinical characteristics of the disease. The statistics
from United States government in 2010 indicated that almost
90% of the laboratory animals used in science research are mice,
rats, and other rodents. NHP only represents 0.28% among
all animals (Phillips et al., 2014). However, rodents diverged
from humans by more than 70 million years of evolution.
There are significantly evolutionary differences in brain anatomy,
cognitive capacity, and social behavior between humans and
rodents (Kumar and Hedges, 1998; Gibbs et al., 2004). Compared
with rodents, rhesus macaque (Macaca mulatta), most common
NHP used in study, are separated from humans approximately
25 million years ago and are more similar to humans in
genetics, neurobiology, and behavior. Thus, NHP have reasonable
behavioral correlates to the characteristics of patients in ASD,
such as repetitive behaviors, communication deficits, and
stereotyped behavior (Watson and Platt, 2012; Parker et al.,
2018). As mentioned previously, prenatal environment and
gestational timing may impact neurodevelopment of offspring.
The gestational period of rhesus monkeys (165 days) and humans
(280 days) is much longer than mouse (18–23 days) (Clancy
et al., 2001). Besides, the prenatal immune challenge and neuron
development of primates occur mostly during the third trimester
of prenatal and during early postnatal period (Careaga et al.,
2017). The mouse is becoming increasingly popular for genetic
studies. However, the mouse’s brain weighs a few grams, and
ours weighs one and a half kilos. Can we use the mouse to learn
something about our brain? The region of the neocortex is almost
80% in the human brain, which is just 28% in the rat (Roberts
and Clarke, 2019). Human prefrontal cortex includes granular
and agranular cortex, while rat prefrontal cortex only contains
agranular cortex (Ongür and Price, 2000; Uylings et al., 2003). It
has been proposed that the prefrontal cortex has a substantial role
in social processing, and its potential dysfunction may cause ASD
(Sugranyes et al., 2011). The temporal lobe is a morphological
brain region which is unique to primates (Colombo et al.,
2000; Bryant and Preuss, 2018). The major areas of the human
brain classified by Brodmann have also been identified in NHP.
Structure and function of the amygdala are nearly the same
in the human and non-human primate (Gowen et al., 2007;
Rutishauser et al., 2015; Schumann et al., 2016), but remarkably
different from the rodent brain (Chareyron et al., 2011). The close
relationship of development and evolution between NHP and
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human show that great prospects to mimic clinical realities by
designing NHP animal models.

As mentioned previously, sleep problems in children with
ASD are caused by multi-factorial risks such as abnormal
neurodevelopment and environmental factors (Bourgeron, 2007;
Owens and Mindell, 2011). Modeling clinical disorders in
animals provide an opportunity to improve translational research
although the human disorder’s clinical phenotype is complex
and heterogeneous and lacks objective homologous endpoints
across species (Missig et al., 2020). Many previous studies of ASD
animal models exhibited several hallmark features which have
been documented in humans.

Sleeping studies in humans must be done in accessible
samples, predominantly saliva or blood, and confounded by
environmental factors. Species-specific differences including light
and biological rhythm, as well as sleep features have been noted
in studies of sleep (Campbell and Tobler, 1984). For example,
rodents are commonly thought to awake during the dark
phase and asleep during the light phase. However, researchers
found that mice are not explicitly nocturnal, and they have
diurnal feeding activity. Researchers also reported that seasonal
influences were demonstrated to be more potent on activity than
specific genes which was generally considered to control sleep
(Daan et al., 2011). Effective use of animals to study normal
sleep and sleep disorders must consider known similarities
and differences between human and animals. Likewise, sleep is
important to keep health and can significantly influence daily
activity schedules in NHP (Fruth et al., 2018; Qiu et al., 2019).
Sleep structure and EEG patterns of NHP are closely related
to the consolidated and monophasic organization observed in
humans (Reite et al., 1965; Hsieh et al., 2008), which contrasts
with the more fragmented sleep patterns in rodents (Fifel and
Cooper, 2014) (Table 3). NHP is also a diurnal animal to better
recapitulate clinical conditions with behavioral and metabolic
properties closer to humans. Humans pass through 4–6 cycles
of NREM and REM within a night’s sleep, which are much
shorter in rats and mice (Fuller et al., 2006; Toth and Bhargava,
2013). Nunn and Samson compared sleep patterns in 30 different
species of primates, including humans. Most species generally
sleep between 9 and 15 h, while humans averaged just 7 h
(Nunn and Samson, 2018). In summary, measuring behavioral

and sleep states in NHP may provide a better understanding of
sleep disorders in children with ASD compared with rodents.

CURRENT CHALLENGES

Autism spectrum disorder is a neurodevelopmental disorder and
the origins of ASD remain unresolved. The potential estimates
including genetic, maternal, and environmental effects (Bai et al.,
2019). At first, there are various types of genetic variation, such as
single-nucleotide polymorphism (SNP) or rare genetic mutations
(Weiner et al., 2017). Animal model studies have shown that the
impact of genetic on behavior is complex and not completely
correspond to specific behavior. Brain development can be
influenced by not only the expression of genes, but also modified
by environmental factors during the pregnancy and postnatal
period. Therefore, the application of gene editing technology
in animal models of disease may not completely mimic clinical
phenotypes of humans. Secondly, although the NHP animal
model has been used to study the impact of environmental
modifications on the brain development. Genetic influences
may also affect individual responses to different situations
and different types of environmental challenges (Machado and
Bachevalier, 2003). In this area, rodent models may be more
appropriate which have more identical genetic backgrounds
compared with NHPs. Besides, NHP exhibit significant and stable
individual differences in social commination (Capitanio, 1999;
Capitanio and Widaman, 2005).

Non-human primates have much longer reproductive cycle
and lower reproduction efficiency compared with rodents, which
may bring the difficulties to prepare an adequate quantity
of experimental animals. Furthermore, the giant body size
of NHP may cause a significant challenge for experimental
design. Limitations associated with the gene-editing technique,
including editing efficiency, chimeras, and off-target effects,
should also be brought to attention (Niu et al., 2014; Chen
et al., 2016). Lastly, NHP, rather than other animals, require
more significant ethical consideration because its significant
cognitive capacity and complex social behavior. Researchers
have moral responsibility to ensure that experimental animals
receive reduced negative effects and suffering (Bentham, 1996;

TABLE 3 | Different sleep pattern between human and animals.

Human Monkey Rat Mice

Primary circadian sleep
phase

Dark Dark Light Light

Sleep pattern Monophasic or diphasic Monophasic or diphasic Polyphasic Polyphasic

Total sleep duration (24 h) 6–8 h 9–12 h 12–15 h 12–15 h

Sleep efficiency (%) (12 h
dark)

95% 88% 55% 33%

REM sleep (%) (12 h dark) 20–25% 28% 7–9% 3–5%

NREM sleep (%) (12 h dark) 60–83% 76–80% 26–30% 22–29%

References Roffwarg et al., 1966;
Campbell and Tobler, 1984;
Carskadon and Dement,
2005

Hsieh et al., 2008; Authier
et al., 2014; Rachalski
et al., 2014; Ishikawa et al.,
2017; Qin et al., 2020

Zepelin et al., 1972; Seelke
and Blumberg, 2008

Vyazovskiy et al., 2006;
Hasan et al., 2012
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Beauchamp and Frey, 2011). Animal experiments should follow
the principles of the 3Rs, including replacement, reduction, and
refinement (Russell and Burch, 1959; Jennings et al., 2009).

CONCLUSION AND PERSPECTIVES

Autism spectrum disorder is a neurodevelopmental disorder and
with the increasing incidence of ASD, it is essential to understand
what has changed in our genes and environments that may
contribute to these disorders. It has been showed that ASD
is not a single disease, but rather several conditions including
genetic, maternal, and environmental effects that ultimately cause
similar behavioral impairments. The abnormalities of ASD may
predispose children to various threaten of sleep and make them
especially susceptible to sleep problems. Sleep disorders have
been reported as one of the most common symptoms and in up to
80% of children with ASD have sleep problems which may even
contribute to the altered brain structure and activity (Blakemore
et al., 2006). Thus, understanding how sleep affected children
with ASD by specific mechanisms such as brain development
and synaptic plasticity will enable a broader understanding of the
disorders’ causes and provide insights into specific treatments.
Over the years, many different sleep analysis methods have been
reported. The selection of sleep assessment method should be
tailored to specific subjects and taken into consideration of their
unique characteristics.

Animal models hold great potential values to investigate the
causes and treatments for sleep problems in children with ASD.
Numerous animal models of ASD have been generated in the
last decade. An ideal animal model should show tight junctions
with clinical characteristics of the disease. Rodents are the most
common experimental animals and growing studies of NHP
models have been generated because their close phylogenetic
relatedness to humans.

Because of the complexity and heterogeneity of the ASD, it is
still inadequate to understand how genes control and influence
complex behavior. The animal models of ASD are currently

oversimplified and have many issues. Recently, Liu et al. (2019)
demonstrated that an approach to generate cloned monkeys
by somatic cell nuclear transfer (SCNT), which can creatively
solve the problem of generating NHP models with uniform
genetic backgrounds. This study is profoundly improving the
overall reproducibility of the model. Continued research used
this technique to generate five BMAL1 knockout monkeys for
sleeping study, and these monkeys exhibited more activities and
reduced sleep during night (Qiu et al., 2019). The development
of genome editing technologies (such as CRISPR/Cas9 and
base editing, etc.) has opened up the revolutionary ways to
directly target and modify genomic sequences in animals (Kang
et al., 2019; Zhao J. et al., 2019; Li et al., 2020). We anticipate
greater numbers of applications will materialize shortly, such
as genome-edited NHP combined with SCNT. Although some
issues still need to be solved, studying the sleep disorder across
multiple biological scales can offer the hope in the field of
translational medicine for ASD and other human diseases. The
role of NHP animal model in this process is irreplaceable and
must be recognized.
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