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Ascorbic acid, also known as vitamin C, was previously reported to inhibit the activity

of pancreatic α-amylase, the primary digestive enzyme for starch. A major implication of

such inhibition is a slowed rate of starch digestion into glucose, which thereby reduces

postprandial hyperglycemia. The aim of this study was to explore the inhibitory effects of

ascorbic acid at various concentrations on the in vitro digestion of high amylose maize

starch (HAMS) and potato starch (PS) in both raw and cooked conditions. Resistant

starch (RS) content, defined as the starch that remained after 4 h of simulated in vitro

enzymatic digestion, wasmeasured for the starch samples. Upon the addition of ascorbic

acid, the RS contents increased in both raw and cooked starches. Cooking significantly

reduced the RS contents as compared to raw starches, and less increase in RS was

observed with the addition of ascorbic acid. The inhibitory effect of ascorbic acid on the

digestion of raw starches showed a dose-dependent trend until it reached the maximum

extent of inhibition. At the concentrations of 12.5 and 18.75 mg/mL, ascorbic acid

exhibited the most potent inhibitory effect on the in vitro starch digestion in raw and

cooked conditions, respectively. Overall, our results strongly indicate that ascorbic acid

may function as a glycemic modulatory agent beyond other important functions, and its

effects persist upon cooking with certain concentrations applied.

Keywords: high amylose maize starch, potato starch, ascorbic acid, cooking, simulated in vitro digestion

INTRODUCTION

As one of the most common chronic diseases worldwide, diabetes mellitus is a major risk factor
for cardiovascular diseases and is associated with an increased rate of morbidity and mortality
(1). It is characterized by chronic hyperglycemia, which involves many alterations at the vascular
tissue that accelerates the pathogenesis of diabetic complications (2). Among the determinants for
glucose metabolism, diet plays an important role in the development of hyperglycemia, as excessive
ingestion of calorie-dense and easily digestible foods can cause abnormal spikes in postprandial
blood glucose level (3, 4). Since starch is the primary energy source in human diet, retarding
starch digestion and glucose absorption could serve as an effective way for the prevention and
treatment of hyperglycemia and related metabolic diseases (5–7). Accordingly, some antidiabetic
drugs, such as acarbose, have been used to retard starch digestion through inhibiting the activity
of digestive enzymes (8). Nevertheless, some drugs are reported to have certain side effects, such as
hepatotoxicity, gastrointestinal disturbances and diarrhea (9). Therefore, food-based strategies are
of great interest as they may have less side-effects and carry additional health benefits. As a group
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of dietary compounds with beneficial health effects, phenolic
compounds have been proposed as natural inhibitors of human
digestive enzymes, including α-amylase, α-glucosidase, and
lipase, etc. One of the well-known compounds is ascorbic acid,
which has demonstrated the ability to inhibit starch digestive
enzymes (10, 11) and therefore may function as a glycemic
modulatory agent.

Ascorbic acid, commonly known as vitamin C, is a water-
soluble micronutrient essential for the proper functioning of
the body. It can be found in many foods, particularly fruits
and vegetables such as citrus fruit, broccoli, and spinach. It
is required for the formation and maintenance of connective
tissues, and serves as a potent antioxidant which protects
the body from harmful free radicals (12). Since it is water-
soluble, excess ascorbic acid is easily excreted in urine and
rarely accumulates to toxic levels. Such property makes the
utilization of ascorbic acid advantageous over medications that
may cause adverse symptoms at high doses. Beyond being
required for the aforementioned essential metabolic activities,
ascorbic acid has also been shown to inhibit the activity
of pancreatic α-amylase, a digestive enzyme that plays the
major role in breaking down starch into glucose, via non-
competitive antagonism (11). Although the mechanism of
such enzymatic inhibition was well-investigated, the effect of
ascorbic acid was only examined in an α-amylase assay over
the brief course of 30min (11), which is only a fraction of
the total digestive time of starch in the small intestinal tract.
Moreover, few studies have evaluated the inhibitory effects
of ascorbic acid with various concentrations using simulated
in vitro digestion assays, therefore raising concern regarding
the dose responses and how this may translate to real-
life applications.

The objective of this study was to further investigate
the inhibitory effect of ascorbic acid on starch digestion as
well as to explore its general applicability as a glycemic
modulatory agent. To simulate the digestion process in the
small intestine, mixtures of starch and ascorbic acid were
subjected to 4 h of in vitro digestion. The amount of
starch that remained undigested after the 4-h period was
defined as the resistant starch (RS) content (13). Different
concentrations of ascorbic acid were used to determine whether
the inhibitory effect is dose dependent. In addition, starches
were subjected to cooking prior to digestion to evaluate
the practicality of ascorbic acid as a potential glycemic
modulatory agent.

MATERIALS AND METHODS

Materials
High amylose maize starch (HAMS, Hylon VII) was kindly
provided by Ingredion (Bridgewater, NJ, USA). Potato starch (PS,
S2004) and ascorbic acid were purchased from Sigma-Aldrich
Inc. (St. Louis, MO, USA). Digestible starch and resistant starch
assay kit (K-DSTRS) was obtained from Megazyme (Wicklow,
Ireland). Ethanol was purchased from VWR International
(Radnor, PA, USA).

In vitro Digestion
The in vitro starch digestion was conducted according to
the method by the Megazyme resistant starch assay kit with
slight modifications. The enzyme solution, containing pancreatic
α-amylase and α-amyloglucosidase (0.8 and 0.34 KU/mL,
respectively), was prepared immediately before use. Cooked
starch was prepared by boiling starch in a 100◦C water bath
for 20min and allowed to cool to room temperature (20◦C)
before in vitro digestion. Starch (100mg) alone and starch mixed
with 12.5, 25, 50, or 75mg of ascorbic acid were weighed into
20mL round-bottom test tubes. A test tube with no starch and
inhibitors was used as the blank. An amount of 3.5mL of 50mM
sodiummaleate buffer was added into each tube, and the reaction
suspensions were mixed and placed in a water bath at 37◦C for
5min to equilibrate. Enzyme solution (0.5mL) was added into
each tube at a certain time interval with accurate timing for
further sampling. The test tubes were capped and placed into
a shaking water bath at 37◦C and 170 strokes per min. After
incubating for 4 h, 4.0mL of 95% (v/v) ethanol was added to each
tube and was mixed vigorously. The samples were centrifuged
(3,600 g, 10min) and the supernatant was decanted. The pellet
was resuspended in 8mL of 50% (v/v) ethanol and vigorously
mixed. The centrifugation, washing, and decanting steps were
then repeated twice, and the remaining pellet was used for the
resistant starch measurements.

Resistant Starch Content
The RS content in starch samples was determined following
the resistant starch assay procedure using the digestible starch
and resistant starch assay kit (K-DSTRS) (14), with slight
modifications. The remaining pellet obtained from the last step
was resuspended in 2mL of cold 1.7M NaOH by stirring for
20min in an ice bath, and then added with 8mL of 1.0M sodium
acetate buffer and 0.1mL of α-amyloglucosidase (3,300 U/mL).
The tubes were mixed well and placed into a 50◦C water bath for
30min. For samples containing >10% RS content, the contents
of the tubes were transferred and volumes adjusted to 100mL in
a volumetric flask with water. Aliquots of the diluted solutions
were centrifuged (17,900 g, 5min). For samples containing<10%
RS content, aliquots of solutions (no dilution) were centrifuged
directly (17,900 g, 5min). In duplicates, aliquots of 30 µL from
the diluted or undiluted supernatants were measured for the
glucose concentrations using the glucose oxidase-peroxidase
(GOPOD) method (14). The reagent blank was prepared using
30µL of 100mM sodium acetate buffer, and the glucose standard
was prepared in duplicates using 30 µL of D-glucose (1 mg/mL).
The absorbance was measured at 510 nm against the reagent
blank. The RS contents were obtained using the appropriate
MegaCalcTM Excel R© Calculator.

Statistical Analysis
All experiments were conducted in duplicates. Data were
analyzed by one-way analysis of variance (one-way ANOVA)
followed by Tukey’s multiple comparison test using the
OriginPro software (OriginLab, Northampton, MA, USA). The
letters a, b, c, and d indicate statistically significant differences,
p < 0.05 (a > b > c > d).
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FIGURE 1 | Resistant starch contents in high amylose maize starch (HAMS) and potato starch (PS), presented as a proportion of total starch, with the presence of

ascorbic acid at various concentrations. Error bars show standard deviation; n = 2. Significant differences among treatments of differing ascorbic acid concentrations

are denoted by different letters (a > b > c > d, p < 0.05).

RESULTS AND DISCUSSION

Dose-Dependent Effect of Ascorbic Acid
on Inhibiting Raw Starch Digestion
The potential inhibitory effect of ascorbic acid on the in vitro
starch digestion rate was first explored on two starches (HAMS
and PS) in their raw form. To better understand its applicability
as an inhibitor of starch digestion, four different concentrations
(3.125, 6.25, 12.5, and 18.75 mg/mL) were used to determine
the most effective level of ascorbic acid that could retard starch
digestion to the greatest extent. As shown in Figure 1, the RS
content of rawHAMSwas 52.81%, which is very close to previous
findings in HAMS, e.g., the reported 46.9% in Hi-Maize 260
starch (15), and the reference value, 47.4% in HAMS Hylon VII,
provided by Megazyme (14). Upon the addition of ascorbic acid,
the RS content in HAMS exhibited significant increase (p < 0.05)
in response to all tested concentrations except for 3.125 mg/mL.
As the concentration of ascorbic acid increased up to 12.5
mg/mL, the RS content continued to increase, showing a dose-
dependent effect of ascorbic acid (Figure 1). However, increase
of the ascorbic acid concentration to 18.75 mg/mL did not result
in further increases in the RS content, demonstrating a saturation
effect. Similar results were observed in PS, where a trend for dose-
dependent increase in the RS content was visible as ascorbic acid
concentration increased from 3.125 to 18.75 mg/mL, although
only the concentration of 18.75 mg/mL resulted in a statistically
significant increase.

As previously mentioned, such inhibitory effect of ascorbic

acid on starch digestion is primarily due to the inhibition

against α-amylases. The underlying mechanism could be owing
to the hydroxyl groups present in the ascorbic acid molecules,

which may be crucial in binding to pancreatic α-amylase,
leading to the inhibitory activity (11). When the concentration
of ascorbic acid increases, multiple ascorbic acid molecules
can contribute more hydroxyl groups in forming hydrogen
bonds with amino acid residues in the α-amylase binding
sites, which may explain the dose-dependent inhibitory effect.
Besides, the changed pH by ascorbic acid in the reactant
was also considered for such inhibitory effect. We tested
the pH values of the original maleate buffer and with the
addition of ascorbic acid of different concentrations, and
found that the pH of the buffer solution reduced from 6.01
to 5.33 (with 3.125 mg/mL ascorbic acid), 4.56 (with 6.25
mg/mL), 3.91 (with 12.5 mg/mL), and 3.65 (with 25 mg/mL)
with increasing ascorbic acid concentrations, respectively. As
the optimal pH for α-amylase and amyloglucosidase activity
was in the range of 4.5–7.2 and 4.2–5.5, respectively (17),
addition of ascorbic acid with concentrations up to 12.5
mg/mL would create an acidic environment with the pH
out of the optimal ranges of the starch digestive enzymes,
which is another possible mechanism underlying the inhibitory
effect of ascorbic acid against starch digestion. Consequently,
our findings suggest similar result as reported by Borah
et al. (11), who found that the inhibitory effect of ascorbic
acid against human pancreatic α-amylase is comparable to
that of the reference inhibitor, i.e., acarbose, marking its
strong potential as a starch digestion inhibitor and glycemic
response modulator.

In this study, four different doses of ascorbic acid were
applied, which were 3.125, 6.25, 12.5, and 18.75 mg/mL. Such
doses were selected based on our previous finding that the
addition of 25mg of ascorbyl palmitate was effective enough
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to significantly increase the RS content in the same amount of
starch (100mg) (16). Based on this, to test the inhibitory effect
in response to dose, ascorbic acid with amounts of 12.5, 25,
50, and 75mg were added to 100mg of starch prior to the in
vitro digestion. As the total volume of the solvent was 4mL,
the concentrations of the added ascorbic acid correspond to
3.125, 6.25, 12.5, and 18.75 mg/mL, respectively. In addition,
such doses are practical and applicable to incorporate into daily
diet without causing any toxic effect. The absorption of ascorbic
acid in small intestine is tightly regulated and peaks at ∼162
mg/day (18). Since ascorbic acid is water-soluble and is easily
excreted in urine, it rarely accumulates to toxic levels in tissues
and plasma. At high intakes, the most common symptoms are
gastrointestinal issues resulting from the osmotic effect of high
concentrations of unabsorbed ascorbic acid, such as diarrhea
and nausea (18). In the small intestinal tract, the total fluid
volume reaches a maximum of ∼94mL (19). Using the optimal
concentration of ascorbic acid at 12.5 mg/mL, the amount of
ascorbic acid required (∼1,175mg) to saturate the peak fluid
volume is still substantially below the tolerable upper intake
level of ascorbic acid for adults at 2,000 mg/day (18). Even after
compensating for ascorbic acid that is ultimately absorbed in the
small intestine, the amount of ascorbic acid required to reach the
maximum inhibitory activity is unlikely to be toxic in human
applications. Meanwhile, it is practical to achieve such optimal
dose of vitamin C via daily dietary intake or supplementation. For
dietary sources, one serving of fruit or vegetable could contain
up to 400mg of vitamin C, and supplements typically contain
100–2,000mg per capsule. By applying such dietary strategy, the
recommended dietary allowance (RDA) of vitamin C could also
be easily achieved, which is 90 mg/day for adult men and 75
mg/day for adult women (20). This again suggests the practicality
and applicability of ascorbic acid as a dietary strategy for the
prevention and treatment of hyperglycemia.

Effect of Cooking
Starch digestibility is dependent on the activity of digestive
enzymes as well as the characteristics of the starch itself, such as
the botanical source and degree of gelatinization (21). Although
the above results have confirmed the inhibitory effect of ascorbic
acid on the in vitro digestion of raw starches, it is important
to verify that such effect is present in forms of starch that
would realistically be consumed in human diet, i.e., subjected to
cooking. Accordingly, based on the results obtained from raw
starches, we further studied the effects of ascorbic acid with
concentrations of 3.125 and 12.5 mg/mL on the digestion of
cooked HAMS and PS (Figure 2).

Heating starch in the presence of water, i.e., cooking, results
in gelatinization of starch. This process causes the disruption and
swelling of starch granules, leaching of amylose into the water,
and the loss of molecular order in amylopectin. Upon heating,
water enters the amorphous regions and then disrupts the
crystalline regions. These changes are accompanied by swelling
of the granules, which will contribute to the eventual collapse of
the granules to form a paste if the water content is high enough
(22). Consequently, the starch is more readily accessible and
susceptible to enzymatic digestion (23). This outcome is reflected

FIGURE 2 | Resistant starch contents in high amylose maize starch (HAMS)

and potato starch (PS), presented as a proportion of total starch, with the

presence of ascorbic acid with concentrations of 3.125 and 12.5 mg/mL upon

cooking. Error bars show standard deviation; n = 2. Significant differences

among treatments are denoted by different letters (a > b, p < 0.05).

by the relatively low RS content for the cooked starches, which is
23.13 and 0.26% for HAMS and PS, respectively, as compared to
52.81 and 70.83% in their raw forms. PS was more susceptible to
gelatinization as compared to HAMS, which could be due to its
lower gelatinization temperature, which is 59–68◦C as compared
to 125◦C for HAMS (24, 25). This result is consistent with other
reports that the gelatinization of starch results in significant
reductions of RS contents in canna, rice, and potato starches
(5, 26, 27).

Similar to the results observed for raw starches, ascorbic
acid with a concentration of 3.125 mg/mL did not present
any inhibitory effect on starch digestion, while 12.5 mg/mL of
ascorbic acid resulted in significant increases in the RS contents
in both HAMS and PS, although the effects were rather modest
as compared to those in raw starches. For cooked HAMS, the RS
content was increased to 37.39% (p < 0.05) in the presence of
ascorbic acid, whereas that of cooked PS was only increased to
0.63% (p < 0.05). Such modest enhancement could be explained
by the destruction in the starch molecular packing order caused
by gelatinization, which could not be recovered or altered in any
way by the presence of ascorbic acid. This also indicates that
ascorbic acid can only act on the digestive enzymes, but not the
substrate, to resist enzymatic hydrolysis (11). Therefore, as the
susceptibility of starch granules to enzymatic hydrolysis increases
after cooking, fewer digestive enzymes are needed, resulting in
the less potent inhibitory effect of ascorbic acid against starch
digestion as compared to what was observed in raw starches.
In addition, the modest effect could be attributed to the high
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moisture content of the cooking condition. After gelatinization,
starch may undergo a process called retrogradation, in which
the disordered amylose and amylopectin molecules re-associate
into crystallized structures. Retrograded starch contributes to
increased RS contents because the more ordered arrangement
results in slower enzymatic digestion (28). The storage of
gelatinized starch facilitates this process, but the water content
plays a major role in the extent to which the starch retrogrades.
More specifically, retrogradation for maize starch only occurs
when the water content is between 20 and 90% (28). In our
study, the moisture content of the gelatinized starch was ∼97%,
as the starches were suspended in the buffer solutions while being
cooked, thereby rendering retrogradation unlikely. This could
possibly lead to the low RS content after cooking even with the
addition of ascorbic acid.

CONCLUSION

The inhibitory effect of ascorbic acid on simulated in vitro
starch digestion, as evidenced by increased contents of RS, was
demonstrated in this study. Our results indicated the dose-
dependent response of such inhibitory effect, and that the optimal
level of ascorbic acid is practical and achievable via daily food
or supplement intake and unlikely to result in toxicity in human
body. Furthermore, in the tested cooking condition, the RS
contents were significantly increased in the presence of ascorbic
acid, although to a modest extent. This evidence suggests that
ascorbic acid can be broadly applied to realistic starch systems.
The inhibitory ability was most potent in the case of raw
starch, and the slighter impact on cooked starch is likely the

result of gelatinization with a high water content. Thus, future
studies illustrating the inhibitory effect of ascorbic acid on starch

cooked in relatively drier conditions are warranted to determine
the effects of retrogradation on starch digestibility. Given that
ascorbic acid has already been established as an essential nutrient,
this study supports its further utilization as a promising agent in
glycemic modulation.
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