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Abstract: Medial vascular calcification is common in chronic kidney disease (CKD) and is closely
linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific
properties and actively augment vascular calcification. Various pro-inflammatory mediators are
able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of
periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples.
As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore,
periostin augmented the effects of β-glycerophosphate on the expression of pro-calcific markers and
aggravated the calcification of VSMCs. A periostin treatment was associated with an increased β-
catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were
ameliorated by WNT/β-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvβ3-
blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced
the effects of β-glycerophosphate on the expression of pro-calcific markers and the calcification
of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared
with healthy controls. These observations identified periostin as an augmentative factor in VSMC
calcification. The pro-calcific effects of periostin involve integrin αvβ3 and the activation of the
WNT/β-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of
vascular calcification in CKD patients.

Keywords: vascular calcification; vascular smooth muscle cells; phosphate; periostin; chronic kidney
disease; β-catenin

1. Introduction

Medial vascular calcification is a multifaceted and regulated process frequently ob-
served in chronic kidney disease (CKD) and is associated with cardiovascular outcomes [1].
Hyperphosphatemia in CKD has been associated with pro-inflammatory and pro-calcific
effects in the vasculature [2]. These effects are partly mediated by vascular smooth mus-
cle cells (VSMCs), which can undergo a phenotypical alteration and change the vascular
environment to favor the deposition of calcium and phosphate [2]. The development of
pro-calcific VSMCs is orchestrated by complex signaling pathways [3]. A variety of pro-
inflammatory signaling molecules have been shown to modulate pro-calcific pathways in
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VSMCs and augment their calcification [4]. Interference with pro-inflammatory mediators
may prevent the development of vascular calcification [5].

Periostin is a matricellular protein involved in bone remodeling, cardiovascular differ-
entiation, tumor growth and metastasis as well as inflammation [6]. To mediate its effects,
periostin binds to integrins, especially ανβ3 [7]. In addition to integrins, discoidin domain
receptor-1 was shown to be a putative periostin receptor [8]. Periostin is expressed in
osteocytes and is considered to play an important role in bone homeostasis [9], but it is
also expressed in various other tissues [10]. Periostin expression can be upregulated in
various pathological conditions [11] and has been associated with atherosclerotic valve
disease [12]. In vascular tissue, the upregulation of periostin was observed in VSMCs
after a balloon injury in rats [13]. The upregulation of periostin in neointima formation
occurs in conjunction with the upregulation of αvβ3 and αvβ5 integrins [14]. Periostin-
deficient mice showed a reduced development of atherosclerotic lesions and inflammatory
responses with an ApoE-deficient background [15]. VSMC migration is stimulated by
periostin, an effect involving an interaction with integrins ανβ3 and ανβ5 [16]. Hypoxia,
a known stimulator of VSMC calcification [17], upregulates periostin expression in pul-
monary arterial VSMCs [18]. An increased periostin expression has been observed in the
calcifying vasculature of uremic rats [19] and a role of periostin in VSMC calcification has
been suggested [20]. In addition to the vasculature, periostin has been linked to renal
fibrosis in CKD [21]. After a unilateral ureteral obstruction, the renal periostin expression
is upregulated and a periostin deficiency ameliorates renal fibrosis [22]. On the other hand,
periostin improved renal ischemia/reperfusion injuries in mice [23]. Urinary periostin was
further suggested as a marker of a renal injury in type 2 diabetes mellitus [24]. Furthermore,
serum periostin has been investigated as a biomarker [11]. As examples, higher serum
periostin levels were observed in patients with an ossification of the posterior longitudinal
ligament [25] or coronary artery calcifications [20].

Thus, periostin may be an important factor in VSMC calcification during CKD. There-
fore, in this study we investigated the function of periostin and its mechanisms during
VSMC calcification.

2. Materials and Methods
2.1. Cell Culture

Primary human aortic VSMCs (HAoSMCs), commercially obtained from Fisher Sci-
entific (Vienna, Austria) and Sigma Aldrich (Vienna, Austria), were routinely cultured as
previously described [5,26]. The cells were used in experiments up to passage 12. The
HAoSMCs were treated for 24 h (mRNA expression and protein abundance) or 7 days
(ALP activity) with 100 ng/mL recombinant human periostin (stock in PBS, R&D Systems,
Abingdon, UK) [20,27], 2 mM β-glycerophosphate (Sigma Aldrich, Vienna, Austria) [28],
1 nM LGK974 (stock in DMSO, Cayman Chemical, Ann Arbor, MI, USA) [29], 10 µM
XAV939 (stock in DMSO, Cayman Chemical, Ann Arbor, MI, USA) [30], 10 µM PRI-724
(stock in DMSO, Selleckchem, Planegg, Germany) [31] and 1 µg/mL anti-integrin αvβ3
antibody (ab78289, Abcam, Cambridge, UK) [32] or mouse IgG (R&D Systems, Abingdon,
UK). The HAoSMCs were treated with equal amounts of the vehicle as a control. HAoSMCs
were transfected with 10 nM POSTN (ID: s20888) or negative control (ID: 4390843) siRNA
using a siPORT amine transfection reagent (all from Fisher Scientific, Vienna, Austria) [33].
For the calcification experiments, the HAoSMCs were treated for 11 days with 10 mM
β-glycerophosphate and 1.5 mM CaCl2 (Sigma Aldrich, Vienna, Austria) as a calcification
medium [34]. For the long-term treatments, fresh media with agents were added every two
to three days.

2.2. RNA Isolation and RT-PCR

The total RNA was isolated using a Trizol reagent (Fisher Scientific, Vienna, Austria).
The synthesis of cDNA was performed with Superscript III Reverse Transcriptase and
oligo(dT)12–18 primers (Fisher Scientific, Vienna, Austria) [26] as well as RT-PCR using iQ
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Sybr Green Supermix (Bio-Rad Laboratories, Vienna, Austria) and the following human
primers (Fisher Scientific, Vienna, Austria) [28,35–37]:

ALPL fw: GGGACTGGTACTCAGACAACG;
ALPL rev: GTAGGCGATGTCCTTACAGCC;
CBFA1 fw: GCCTTCCACTCTCAGTAAGAAGA;
CBFA1 rev: GCCTGGGGTCTGAAAAAGGG;
GAPDH fw: GAGTCAACGGATTTGGTCGT;
GAPDH rev: GACAAGCTTCCCGTTCTCAG;
MMP2 fw: TACAGGATCATTGGCTACACACC;
MMP2 rev: GGTCACATCGCTCCAGACT;
MSX2 fw: TGCAGAGCGTGCAGAGTTC;
MSX2 rev: GGCAGCATAGGTTTTGCAGC;
PIT1 fw: GGAAGGGCTTGATTGACGTG;
PIT1 rev: CAGAACCAAACATAGCACTGACT;
POSTN fw: GCTATTCTGACGCCTCAAAACT;
POSTN rev: AGCCTCATTACTCGGTGCAAA;
WNT3A fw: AGCTACCCGATCTGGTGGTC;
WNT3A rev: CAAACTCGATGTCCTCGCTAC;
WNT7A fw: CTGTGGCTGCGACAAAGAGAA;
WNT7A rev: GCCGTGGCACTTACATTCC.

The relative mRNA expression was calculated using the 2−∆∆Ct method with GAPDH
as the housekeeping gene, normalized to the control group.

2.3. Protein Isolation and Western Blotting

Total proteins were isolated using an ice-cold Pierce IP lysis buffer (Fisher Scientific,
Vienna, Austria) supplemented with complete protease and a phosphatase inhibitor cocktail
(Fisher Scientific, Vienna, Austria) [36,38]. The protein concentration was determined by a
Bradford assay (Bio-Rad Laboratories, Vienna, Austria). Equal amounts of protein were
incubated in Roti-Load1 Buffer (Carl Roth, Karlsruhe, Germany) at 100 ◦C for 10 min and
then separated on SDS-PAGE gels and transferred to PVDF membranes. The membranes
were incubated with primary rabbit anti-β-catenin (1:1000, #8480, Cell Signaling, Frankfurt
am Main, Germany) or rabbit anti-GAPDH (1:1000, #2118, Cell Signaling, Frankfurt am
Main, Germany) antibodies at 4 ◦C overnight and with a secondary anti-rabbit HRP-
conjugated antibody (1:1000, Cell Signaling, Frankfurt am Main, Germany) at RT for 1 h.
The membranes were stripped in a stripping buffer (Fisher Scientific, Vienna, Austria) at
RT. Bands were detected with an ECL detection reagent (Fisher Scientific, Vienna, Austria)
and quantified using ImageJ software ((NIH, MD, USA, 1.52n). The data were shown as
the ratio of the total protein to GAPDH, normalized to the control group [38,39].

2.4. ALP Activity Assay

ALP activity in the cell lysates was determined by using a colorimetric ALP assay
kit (Abcam, Cambridge, UK). The protein concentration was determined by a Bradford
assay (Bio-Rad Laboratories, Vienna, Austria). The data were shown normalized to the
total protein concentration and to the control group [38,40].

2.5. Determination of Calcification

The HAoSMCs were fixed with 4% paraformaldehyde/PBS and stained with 2%
Alizarin Red (pH 4.5) [39]. The calcification was shown as a red stain. To determine the
calcium content, the HAoSMCs were decalcified in 0.6 M HCl at 4 ◦C overnight and then
the total proteins were isolated using a 0.1 M NaOH/0.1% SDS buffer and quantified by a
Bradford assay (Bio-Rad Laboratories, Vienna, Austria). The calcium content was measured
with a QuantiChrom Calcium assay kit (BioAssay Systems, Hayward, CA, USA). The data
were shown normalized to the total protein concentration [39,41].
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2.6. Human Samples

A patient cohort of healthy controls and CKD patients with a measurement of serum
calcification propensity determined by a one-half maximal transition time (T50) of in vitro
transformation from primary to secondary calciprotein particles using a Nephelostar Plus
nephelometer (BMG Labtech, Ortenberg, Germany) was previously described in detail [34].
The serum periostin levels were determined using a human Periostin DuoSet ELISA kit
(#DY3548B, R&D Systems, Abingdon, UK) and a DuoSet Ancillary Reagent Kit 2 (R&D
Systems, Abingdon, UK).

2.7. Statistics

The data were shown as scatter dot plots and arithmetic means ± SEM. The normalized
data were presented as arbitrary units (a.u.). N represented the number of independent
experiments performed. The normality was determined using a Shapiro–Wilk test. Non-
normal datasets were transformed (log, sqrt or rec) prior to the statistical testing to provide
normality. For two groups, statistical testing was performed using an unpaired two-tailed
t-test or a Mann–Whitney U test. For the multiple group comparison, statistical testing
was performed using a one-way ANOVA with a Tukey (homoscedastic data) or a Games–
Howell (heteroscedastic data) post hoc test and a Kruskal–Wallis test with a Steel–Dwass
post hoc test (non-normal data). For the correlation analysis, a Spearman correlation was
performed. A p < 0.05 was considered to be significant.

3. Results

The first experiments investigated whether periostin directly impacted the phosphate-
induced calcification of VSMCs in vitro. As shown by Alizarin Red staining and the
measurement of the calcium content, the calcification of the HAoSMCs induced by the
calcification medium was significantly aggravated in the presence of the recombinant
human periostin protein (Figure 1). Moreover, the periostin treatment alone was sufficient
to significantly upregulate the osteogenic marker expression and activity in the HAoSMCs,
as shown by an increased mRNA expression of MSX2, CBFA1 and ALPL (Figure 2A–C) as
well as the ALP activity (Figure 2D). The effects of β-glycerophosphate on the osteogenic
marker expression and ALP activity in the HAoSMCs were augmented by an additional
treatment with periostin. Thus, periostin triggered pro-calcific effects and aggravated the
calcification of the HAoSMCs.
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Figure 1. Periostin aggravates phosphate-induced calcification of HAoSMCs. (A) Alizarin Red stain-
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Figure 1. Periostin aggravates phosphate-induced calcification of HAoSMCs. (A) Alizarin Red
staining in HAoSMCs treated with a control (CTR) or calcification medium (Calc.) without or
with additional treatment with recombinant human periostin (POSTN). Calcified areas: red staining.
(B) Calcium content in HAoSMCs treated with a control (CTR) or calcification medium (Calc.) without
or with additional treatment with recombinant human periostin (POSTN). ** p < 0.01; *** p < 0.001
(significant difference versus CTR group); † p < 0.05 (significant difference versus Calc. group).
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Figure 2. Periostin increases osteogenic signaling and augments osteoinduction promoted by phos-
phate in HAoSMCs. (A–C) Relative mRNA expression of MSX2 (A), CBFA1 (B) and ALPL (C) in
HAoSMCs treated with control (CTR) or β-glycerophosphate (Pi) without or with additional treat-
ment with recombinant human periostin (POSTN). (D) Normalized ALP activity in HAoSMCs treated
with control (CTR) or β-glycerophosphate (Pi) without or with additional treatment with recombi-
nant human periostin (POSTN). ** p < 0.01; *** p < 0.001 (significant difference versus CTR group);
† p < 0.05; †† p < 0.01 (significant difference versus Pi group).

To elucidate the mechanisms involved in the pro-calcific effects of periostin in the
HAoSMCs, the potential role of the WNT/β-catenin pathway as a mediator was investi-
gated. The addition of periostin to the cell culture medium significantly upregulated the
WNT7A and WNT3A mRNA expression and β-catenin protein abundance in the HAoSMCs
(Figure 3A–C). Furthermore, the mRNA expression of MMP2 and PIT1, β-catenin target
genes with key roles in VSMC calcification, was significantly higher in the periostin-
exposed HAoSMCs than in the control HAoSMCs (Figure 3D,E). An additional treatment
of HAoSMCs with WNT/β-catenin pathway inhibitors (LGK974, which inhibits WNT post-
translational acylation; XAV939, which stimulates β-catenin degradation; or PRI-724, which
blocks the interaction of the coactivator CBP with β-catenin) all significantly suppressed
periostin-induced MMP2, PIT1 and the osteogenic marker mRNA expression (Figure 4).
Taken together, the pro-calcific effects of periostin in the HAoSMCs were mediated, at least
partly, by the WNT/β-catenin signaling pathway.
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Figure 3. Periostin increases WNT/β-catenin signaling in HAoSMCs. (A,B) Relative mRNA expres-
sion of WNT7A (A) and WNT3A (B) in HAoSMCs treated with control (CTR) or recombinant human
periostin (POSTN). (C) Representative Western blots and normalized β-catenin protein expression
in HAoSMCs treated with control (CTR) or recombinant human periostin (POSTN). (D,E) Relative
mRNA expression of MMP2 (D) and PIT1 (E) in HAoSMCs treated with control (CTR) or recombinant
human periostin (POSTN). ** p < 0.01; *** p < 0.001 (significant difference versus CTR group).
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XAV939 (XAV) or PRI-724 (PRI). * p < 0.05; ** p < 0.01 (significant difference versus CTR group);
† p < 0.05; †† p < 0.01; ††† p < 0.001 (significant difference versus POSTN group).

Further experiments explored the role of integrin αvβ3, a receptor of periostin, in the
pro-calcific effects of periostin in the HAoSMCs. To this end, the HAoSMCs were exposed
to periostin in the presence and absence of an integrin αvβ3-blocking antibody. As a result,
the increased mRNA expression of WNT7A, WNT3A, MMP2, PIT1 and osteogenic markers
upon periostin exposure was significantly inhibited in the presence of the integrin αvβ3
antibody (Figure 5), suggesting that the periostin-induced activation of WNT/β-catenin
signaling and its pro-calcific effects in the HAoSMCs involved integrin αvβ3.

To further explore whether endogenous periostin played a role in the phosphate-
induced osteogenic phenotypical switch and calcification of the HAoSMCs, the periostin
expression was suppressed by silencing using small interfering RNA (siRNA). As shown
in Figure 6A, the POSTN mRNA expression was significantly reduced in the POSTN
siRNA-transfected HAoSMCs than in the negative control siRNA-transfected HAoSMCs.
The phosphate treatment significantly upregulated the POSTN mRNA expression in the
negative control siRNA-transfected HAoSMCs. Moreover, the silencing of periostin sig-
nificantly blunted the phosphate-induced WNT7A, WNT3A, MMP2, PIT1 and osteogenic
marker mRNA expression (Figure 6B–H) as well as the ALP activity (Figure 6I) in the
HAoSMCs. In accordance, a knockdown of periostin significantly reduced the phosphate-
induced calcification of the HAoSMCs (Figure 7). Thus, endogenous periostin participated
in phosphate-induced osteogenic signaling and calcification of the HAoSMCs.

Further pilot experiments explored a possible association between the serum periostin
levels and serum calcification propensity (T50). The periostin levels were determined in the
serum from healthy volunteers, patients with known CKD and hemodialysis patients [34].
As shown in Figure 8A, the serum periostin levels were not significantly changed in the
CKD patients (p = 0.4375), but were significantly higher in the hemodialysis patients
compared with the healthy volunteers. The serum periostin levels inversely correlated
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with the T50 (Figure 8B), suggesting that increased periostin levels were associated with
calcification propensity.
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HAoSMCs. In accordance, a knockdown of periostin significantly reduced the phosphate-
induced calcification of the HAoSMCs (Figure 7). Thus, endogenous periostin participated 
in phosphate-induced osteogenic signaling and calcification of the HAoSMCs. 

Figure 5. Treatment with integrin αvβ3 antibody blunts periostin-induced WNT/β-catenin and
osteogenic signaling in HAoSMCs. (A–G) Relative mRNA expression of WNT7A (A), WNT3A (B),
MMP2 (C), PIT1 (D), MSX2 (E), CBFA1 (F) and ALPL (G) in HAoSMCs treated with control (CTR) or
recombinant human periostin (POSTN) and with mouse IgG as control or integrin αvβ3 antibody
(αvβ3Ab). * p < 0.05; ** p < 0.01; *** p < 0.001 (significant difference versus CTR group); † p < 0.05;
†† p < 0.01; ††† p < 0.001 (significant difference versus POSTN group).
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signaling in HAoSMCs. (A–H) Relative mRNA expression of POSTN (A), WNT7A (B), WNT3A (C),
MMP2 (D), PIT1 (E), MSX2 (F), CBFA1 (G) and ALPL (H) in HAoSMCs transfected with negative
control siRNA (N.si) or POSTN siRNA (POSTNsi) and treated with control or β-glycerophosphate
(Pi). (I) Normalized ALP activity in HAoSMCs transfected with negative control siRNA (N.si) or
POSTN siRNA (POSTNsi) and treated with control or β-glycerophosphate (Pi). * p < 0.05; ** p < 0.01;
*** p < 0.001 (significant difference versus N.si group); † p < 0.05; †† p < 0.01; ††† p < 0.001 (significant
difference versus N.si + Pi group).
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Figure 7. Silencing of periostin reduces phosphate-induced calcification of HAoSMCs. (A) Alizarin
Red staining in HAoSMCs transfected with negative control siRNA (N.si) or POSTN siRNA (POSTNsi)
and treated with control (CTR) or calcification medium (Calc.). Calcified areas: red staining.
(B) Calcium content in HAoSMCs transfected with negative control siRNA (N.si) or POSTN siRNA
(POSTNsi) and treated with control (CTR) or calcification medium (Calc.). * p < 0.05 (significant
difference versus N.si group); †† p < 0.01 (significant difference versus N.si + Calc. group).
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periostin (POSTN) concentrations and serum calcification propensity measured as calciprotein particle
maturation time (T50). The p-value is indicated in the figure.

4. Discussion

The current results further support a critical role of periostin in vascular calcification.
The effects of periostin involve integrin αvβ3 activation and the WNT/β-catenin pathway.
In our model, exposure to β-glycerophosphate upregulated the periostin expression in
human aortic VSMCs. Although the mechanisms and effects differ between calcifying
VSMCs and osteoblasts, an upregulated periostin expression was observed in both cell types
during VSMC calcification and osteoblast differentiation [42]. Furthermore, an upregulated
periostin expression was observed in calcifying dermal fibroblasts [43], calcified human
aortic valves [44], atherosclerotic plaques [45] and left ventricular tissues of rats with
chronic renal failure [46]. In rats, the left ventricular periostin expression was increased by
angiotensin 2 or vasopressin, known stimulators of vascular calcification [3,46,47]. Periostin
expression in the kidney has also been reported in CKD [21]. Periostin supplementation is
able to augment calcification whilst the silencing of endogenous periostin can ameliorate
calcification in human aortic VSMCs. This suggests a functional relevance of periostin
in vascular calcification during CKD. Notably, the effects of periostin may differ during
embryonic development [48].

The WNT/β-catenin pathway is apparently required for the pro-calcific effects of
periostin in VSMCs. Periostin has previously been implicated as an activator of the WNT/β-
catenin pathway [49,50]. WNT3A and WNT7A stimulate β-catenin [51] and are associated
with vascular calcification [52]. β-catenin has emerged as a critical pathway augmenting
VSMC calcification [2,3,53] and regulates the expression of osteogenic transcription factor
CBFA1/RUNX2 [29], matrix metalloproteinase 2 (MMP2) [54] and the sodium-dependent
phosphate cotransporter PIT1 [55]. An increased β-catenin expression was reported dur-
ing the osteogenesis of mesenchymal stem cells [50]. In accordance, β-catenin and the
osteogenic differentiation of mesenchymal stem cells were impaired by a periostin knock-
down [56]. Pharmacological interference with the WNT/β-catenin pathway blocks the
stimulating effects of periostin on the mRNA expression of CBFA1, MMP2 and PIT1. Thus,
the pro-calcific effects of periostin are partly mediated by β-catenin.

The pro-calcific effects of periostin further involved integrin αvβ3, as suggested by
the inhibition of the periostin-induced osteogenic marker expression in VSMCs by the
αvβ3-blocking antibody. Integrin αvβ3 antibodies have previously been used to block the
effects of periostin or other agonists [16,57–59]. In accordance, integrin αvβ3 contributes
to the stimulating effect of periostin on VSMC migration [16]. The expression of αvβ3 in
human aortic atheromas is associated with the plaque burden and inflammation [60]. In
valvular interstitial cells, integrin αvβ3 is associated with pro-calcific effects [61]. In VSMCs,
calcification is promoted by fibronectin, which can also bind to integrin αvβ3 [62,63].
However, integrin αvβ3 also binds osteopontin, which may act as an inhibitor of VSMC
calcification [64,65]. The effects of osteopontin may be mediated by directly blocking
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hydroxyapatite growth [65]. Although the current observations suggest a role of integrin
αvβ3 in the pro-calcific effects of periostin, the involvement of other receptors or pathways
cannot be ruled out. Furthermore, the current study was limited in the readouts with
in vitro observations with primary human vascular smooth muscle cells. The artificial
conditions and primary cells used in the cell culture experiments could affect the observed
results and may not necessarily exactly reflect the alterations in the vasculature, especially
during uremic conditions. Clearly, further studies in vivo are required to verify the effects
of periostin and the therapeutic potential of its inhibition in the vasculature.

The uremic environment with hyperphosphatemia induces a pro-inflammatory state,
which is considered to be a key mechanism for accelerated calcification in CKD [2]. Multiple
inflammatory mediators have been linked to the pro-calcific environment in CKD [2,4,36].
Periostin has been connected with vascular and renal inflammatory processes [15,21,22,24]
and, therefore, may be an important aspect in the complex signaling pathways of vascular
calcification. The current observations are indicative of a functional role of periostin in
CKD-associated vascular calcification. Although our pilot study was observational and
has limitations, the observation of serum periostin levels in the hemodialysis patients and
the association of periostin with the serum calcification propensity support a putative
relevance of periostin in CKD. The serum calcification propensity has emerged as a novel
cardiovascular risk factor [66] and has been linked to coronary artery calcification severity
and progression in CKD patients [67]. Furthermore, the serum calcification propensity has
been associated with mortality in CKD [68], patients with ischemic heart failure [69] and
the general population [70]. However, a causal link between periostin and the calcification
propensity cannot be made based on the current observations. The serum calcification
propensity reflects the sum of pro- and anti-calcific mechanisms in the serum at a given
time, but does not necessarily reflect the calcification burden per se [67]. Further studies
are required to confirm and extend the association of periostin with vascular calcification
in CKD patients.

In conclusion, the current observations described a pro-calcific effect of periostin
in human VSMCs. This effect apparently involved the activation of integrin αvβ3 and
β-catenin to induce the upregulation of the osteogenic marker expression in VSMCs. The
silencing of periostin ameliorated the VSMC calcification, suggesting a putative therapeutic
benefit of periostin inhibition in CKD; however, further studies in vivo and in CKD patients
are warranted.
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