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Abstract: Tea-oil tree (Camellia oleifera Abel.) is a unique woody edible oil species in China. An-
thracnose is the common disease of Ca. oleifera, which affected the production and brought huge
economic losses. Colletotrichum fructicola is the dominant pathogen causing Ca. oleifera anthracnose.
The gene CfSET1 was deleted and its roles in development and pathogenicity of C. fructicola were
studied. Our results show that this protein participated in the growth, conidiation, appressorium
formation, and pathogenicity of this fungal pathogen. Our results help us understand the mecha-
nisms of pathogenesis in C. fructicola and suggest CfSet1 as a potential target for the development of
new fungicide.
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1. Introduction

Tea-oil tree (Camellia oleifera) is native to China, and has been cultivated for more than
2300 years, mainly for its high-quality cooking oil. However, the fungal disease anthracnose
has caused a serious yield reduction in the seeds of tea-oil trees. Anthracnose typically
results in a 10~30% reduction in tea oil each year, and the severely affected areas often
experience more than a 50% of loss of tea oil [1]. Previous studies have demonstrated that
Colletotrichum fructicola is the dominant pathogen causing Ca. oleifera anthracnose [2].

Histone methylation and acetylation modification are two common mechanisms of
post-translational modification. Zhang et al. [3] have previously revealed that a histone
acetyltransferase CfGcn5 regulates growth, development, and pathogenicity in the anthrac-
nose fungus C. fructicola on tea-oil trees. However, the function of histone methylation in
C. fructicola remains unknown. In fungi, methylation is involved in a variety of biological
processes, such as development, substrate utilization, and pathogenicity. In Saccharomyces
cerevisiae, histone 3 lysine 4 methylation (H3K4me) requires H3K4 methyltransferase (com-
plex of proteins associated with Set1 (COMPASS)) which is composed of SET1/KMT2
and other proteins [4]. Dallery et al. [5,6] previously demonstrated that H3K4 trimethyla-
tion by CclA encoding one COMPASS subunit regulates development, pathogenicity, and
secondary metabolism in C. higginsianum.

Here, we investigated the biological function of H3K4 methyltransferase CfSet1 in C.
fructicola, which orchestrates growth, development, and pathogenicity.

2. Materials and Methods
2.1. Test Strain

The wild-type (WT) strain, CFLH16, was isolated from a tea-oil tree field and identified
in the China Ministry of Education key laboratory for non-wood forest cultivation and con-
servation. It represents the dominant genotype of the main species C. fructicola responsible

J. Fungi 2022, 8, 363. https://doi.org/10.3390/jof8040363 https://www.mdpi.com/journal/jof

https://doi.org/10.3390/jof8040363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://doi.org/10.3390/jof8040363
https://www.mdpi.com/journal/jof
https://www.mdpi.com/article/10.3390/jof8040363?type=check_update&version=1


J. Fungi 2022, 8, 363 2 of 7

for anthracnose in tea-oil trees. The CfSET1 deletion mutants and complemented strains
were obtained as described below in this research.

2.2. CfSet1 Sequence Analysis

The Set1 protein (NP.011987.1) of S. cerevisiae was used as a query to search for its homolog
in the C. fructicola genome database by BLASTP. In addition, Set1 proteins in Colletotrichum
camelliae, Colletotrichum aenigma, Beauveria bassiana, Neonectria ditissima, Fusarium poae, Col-
letotrichum siamense, Verticillium nonalfalfae, and S. cerevisiae were acquired from the NCBI
database (https://www.ncbi.nlm.nih.gov/, accessed on 22 January 2022). The phylogenetic
tree showing the relationships among Set1 proteins from these species was constructed by
MEGA 7.0 programs using a neighbor-joining method with 1000 bootstrap replicates.

2.3. Generation of CfSET1 Deletion and Complemented Strains
2.3.1. Obtaining of CfSET1 Deletion Strains

Based on the principle of homologous recombination, the genomic DNA of wild-type
strain CFLH16 was used as a template to amplify the upstream and downstream coding
region of CfSET1 by polymerase chain reaction (PCR) with primer pairs for Set1-1F/Set1-2R
and Set1-3F/Set1-4R (about 1 kbp), respectively. The hygromycin phosphotransferase gene
(HPH) fragment (about 1.4 kb) was amplified using Hyg-F/Hyg-R primers. Then, the upper
and lower arms and HPH fragments were used as templates, and the CfSET1 gene deletion
fragment was amplified by over-lap PCR using Set1-1F/Set1-4R primers. The recombinant
deletion fragment was transformed into the protoplasts of the wild-type strain of C. fructicola
by polyethylene glycol (PEG) method [7]. The hygromycin-resistant transformants were
screened by PCR amplification with in-gene primer pair Set1-7F/Set1-8R and out-of-arm
primer pair Set1-5F/H885R and verified by electrophoresis. The transformants that could
not amplify the target band with primers Set1-7F/ Set1-8R but amplified the target band
with primers Set1-5F/H885R were CfSET1 deletion mutants. Through screening, we will
identify ∆Cfset1 mutants.

2.3.2. Obtaining Complemented Strains of CfSET1 Deletion Mutant

The promoter and coding genes of CfSET1 were amplified by PCR using the primers
Set1-9F/Set1-10R and Set1-11F/Set1-12R. The GFP gene fragment was amplified using
primers GFPF/GFPR. The target gene fragment was amplified by PCR fusion using primers
Set1-9F/Set1-12R. The promoter-GFP-target gene fragment was amplified with PCR con-
nection using Set1-9F/Set1-12R primers. The PCR product was purified and co-transferred
with linear pYF11 plasmid into yeast XK-125 competent cells to form the pYF11::CfSET1-
complemented vector. The yeast cells were spread on SD-Trp solid plates for screening and
incubated for 3 days at 28 ◦C under dark conditions. Using transformed yeast as a template,
primers Set1-9F/GFPR were used for PCR identification of positive clones. Validated yeasts
were cultured in liquid YPD medium in a shaker for 12 h. The successfully transformed
plasmids were extracted and transferred into competent cells of Escherichia coli JM109.
The transformed E. coli cells were spread on LB plates and cultured at 37 ◦C under dark
conditions for 3 days and then transferred into liquid LB medium. The E. coli plasmids were
extracted from the liquid culture and verified using primer Set1-9F/GFPR and sequenced.
The plasmids with correct sequence for genetic complementation were transferred into
∆Cfset1-20 protoplasts of C. fructicola by the PEG method. The transformants that could
grow on media containing bleomycin were verified by green fluorescence examination.
Through screening, we will identify the complemented strains. All primers used in this
work are listed in Table 1.

https://www.ncbi.nlm.nih.gov/
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Table 1. Primers used in this study for amplifying related gene fragments.

Primer Primer Sequence (5′→3′) Purpose

Set1-1F GCAGCCAAGGCTTGTATGAA amplify CfSET1 5′ flank sequence
Set1-2R TTGACCTCCACTAGCTCCAGCCAAGCCCGTGAGGTGTATCTGTCTCT amplify CfSET1 5′ flank sequence
Set1-3F CAAAGGAATAGAGTAGATGCCGACCGTCCTGATCGCTTCTTTCCGG amplify CfSET1 3′ flank sequence
Set1-4R GCTATCAGATAAAGTCCCGT amplify CfSET1 3′ flank sequence
Set1-5F TGAGCCTACAATATCACGAC validation of CfSET1 gene deletion
H855R GCTGATCTGACCAGTTGC validation of CfSET1 gene deletion
Set1-7F TGCCTACCGACTTCAAGCTG amplify CfSET1 gene sequence
Set1-8R GGTCCAAACTGCCGATCTCA amplify CfSET1 gene sequence
Set1-9F ACTCACTATAGGGCGAATTGGGTACTCAAATTGGTTACTAGGCCTGCCAGAGCAGC amplify complemented sequence

Set1-10R CCTCGCCCTTGCTCACCATCGTGAGGTGTATCTGTCTCT amplify complemented sequence
Set1-11F GCATGGACGAGCTGTACAAGATGACCCGCCAACCGTCGGC amplify complemented sequence
Set1-12R CACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCACTTAGTTGAGGAATCCCTTGC amplify complemented sequence

GFPF ATGGTGAGCAAGGGCGAGG amplify GFP gene sequence
GFPR CTTGTACAGCTCGTCCATGC amplify GFP gene sequence
Hyg-F CTCTATTCCTTTGCCCTCG amplify HPH gene sequence
Hyg-R GCTGATCTGACCAGTTGC amplify HPH gene sequence

2.4. Phenotypic Assays of the CfSet1 Deletion Mutants

The biological phenotypes of CFLH16, the ∆Cfset1-20 mutant, the ∆Cfset1-28 mutant,
and the complemented ∆Cfset1/SET1 strains were measured for growth and development,
appressorium formation, and pathogenicity. Three replicates of each strain were used for
each phenotype assay and the experiment was repeated three times.

2.4.1. Growth Rate Determination

Agar blocks (Φ = 8 mm) containing mycelia of strains CFLH16, the ∆Cfset1-20 mutant,
the ∆Cfset1-28 mutant, and ∆Cfset1/SET1 were cultured in the plates of potato dextrose
agar (PDA) (dextrose: Sinopharm Chemical Reagent Co., Ltd. in Shanghai, China; agar:
Life Sciences) for 3 days, and colony diameters were measured.

2.4.2. Asexual Conidia Assays

Mycelia of strains CFLH16, the ∆Cfset1-20 mutant, the ∆Cfset1-28 mutant, and ∆Cfset1/
SET1 were cultured in liquid shaking PDB for 3 days. Then, conidiation was quantitatively
determined and conidia morphology was observed under microscope.

2.4.3. Appressorium Formation and Penetration Assays

The conidia of strains CFLH16, the ∆Cfset1-20 mutant, the ∆Cfset1-28 mutant, and
∆Cfset1/SET1 were washed three times with sterile water, and the concentration of spore
suspension was adjusted to approximately 1 × 105 spores/mL. Then, 10 µL of spore
suspension was incubated on the center of hydrophobic slides at 28 ◦C for 16 h. Similarly,
10 µL of spore suspension was incubated on the inner epidermis of white onion at 28 ◦C
for 5 days. Then, the rates of appressorium formation and appressorial invasion were
statistically analyzed.

2.4.4. Pathogenicity Assays

Mycelial blocks of strains CFLH16, ∆Cfset1-20, ∆Cfset1-28, and ∆Cfset1/SET1 (Φ = 8 mm)
were inoculated onto the abaxial edge of unwounded tea-oil tree leaves. The inoculated
leaves were incubated in darkness at 28 ◦C with 100% humidity for 4~5 days and then
photographed. The sizes of the lesions were measured.

3. Results and Discussion
3.1. Identification and Phylogenetic Tree Analysis of CfSet1

Based on the ScSet1 protein (NP.011987.1) of S. cerevisiae, a homologous protein was
identified in the C. fructicola genome by BLASTP analysis and named CfSet1 (XP_007274068.1).
The protein consists of 1270 amino acids. The core SET domain of the protein was sur-
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rounded by pre-SET (N-SET) and post-SET domains on both sides. The protein also contains
six unknown structural domains (Figure S1a in Supporting Information).

Phylogenetic analysis revealed that CfSet1 shared a high amino acid sequence identity
with that of Ca. camelliae (identify: 97.8%) and a low but significant sequence identity
with S. cerevisiae Set1 (identify: 50.9%) (Figure S1b in Supporting Information). This result
indicates that Set1 proteins are well conserved among the analyzed fungi.

To address the function of the CfSet1 protein, we obtained two CfSTE1 gene deletion
mutants ∆Cfset1-20 and ∆Cfset1-28, which were confirmed by diagnostic PCR analysis. In
addition, we also obtained the complemented strain ∆Cfset1/SET1 with a wild-type CfSTE1
gene. These and the green fluorescent protein (GFP)-encoding gene were fused together and
transformed into the ∆Cfset1-20 background strain (Figure S2 in Supporting Information).

3.2. CfSet1 Is Involved in Vegetative Growth and Asexual Reproduction of C. fructicola

To examine the role of CfSet1 in vegetative growth, the growth rate of ∆Cfset1-20
and ∆Cfset1-28 on PDA were investigated and compared with those of CFLH16 and
∆Cfset1/SET1. Both ∆Cfset1-20 and ∆Cfset1-28 grew significantly slower than CFLH16
and ∆Cfset1/SET1 (average diameter: CFLH16: 4.77 cm, ∆Cfset1-20: 2.45 cm, ∆Cfset1-28:
2.52 cm, ∆Cfset1/SET1: 4.55 cm) (Figure 1a,b). The results reveal that SET1 is a significant
contributor to vegetative growth in C. fructicola.
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Figure 1. Vegetative and reproductive growth as well as appressorium formation of C. fructicola.
(a) Growth rate of mutants ∆Cfset1-20 and ∆Cfset1-28 were significantly reduced. (b) Statistical
analysis of the colony diameter. (c) Conidial morphology of ∆Cfset1 mutants were larger and
more spherical than CFLH16 and ∆Cfset1/SET1. (d) Conidiation of mutant strains ∆Cfset1-20 and
∆Cfset1-28 were significantly reduced. (e) Appressorium formation of mutant strains ∆Cfset1-20 and
∆Cfset1-28 were significantly reduced. (f) Statistical analysis of the rate of appressorium formation
on hydrophobic slides. (g) The biotrophic hyphae of mutant strains ∆Cfset1-20 and ∆Cfset1-28 were
significantly reduced. Green arrows: appressorium (AP). Black arrows: biotrophic hyphae (BH).
(h) Statistical analysis of appressorial penetration rate. Double asterisks indicate that each mutant
has significant differences with wild-type and complemented strains (p < 0.01).
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Asexual conidia play an important role in fungal infection [8]. In the present inves-
tigation, we analyzed the conidiation of mutant strains ∆Cfset1-20 and ∆Cfset1-28. We
found that the conidia in ∆Cfset1 mutants were larger and more spherical than CFLH16 and
∆Cfset1/SET1 (Figure 1c). Furthermore, fewer conidia were produced than the wild-type
and complemented strains (Figure 1d). Together, the results show that a loss of SET1
affected conidia morphology and significantly reduced spore-producing ability.

These findings indicate that CfSet1 is involved in vegetative growth and asexual
reproduction in C. fructicola.

3.3. CfSet1 Is Required for Appressorium Formation and Penetration of C. fructicola

To understand the role of CfSet1 in appressorium formation and penetration, the
appressorium of strains ∆Cfset1-20 and ∆Cfset1-28 was investigated. We found that the
rate of appressorium formation of ∆Cfset1-20 was only 17% and ∆Cfset1-28 was 22.5%
(Figure 1e,f). We further investigated the appressorium-mediated penetration on onion
epidermis and found that most ∆Cfset1 appressoria failed to penetrate epidermal cells,
and that only the few penetrated appressoria produced BH. Our statistics show that
the appressorial penetration rate of ∆Cfset1-20 was only 6.7% and ∆Cfset1-28 was 7.3%
(Figure 1g,h). Both ratios were significantly reduced from those formed by strains CFLH16
and the ∆Cfset1/SET1. These results indicate that CfSet1 is required for appressorium
formation and penetration of C. fructicola.

3.4. CfSet1 Is Important for Pathogenicity of C. fructicola

The appressorium formed by conidium is a pivotal structure for host infection by plant
fungal pathogens. Our results show that the CfSET1 gene participated in appressorium
formation in C. fructicola, so we investigated the pathogenicity of more representative
mutant strains. After four days, the mutant strain ∆Cfset1-28 caused a lesion area with
an average diameter of 0.15 cm on fresh tea-oil leaves (Figure 2a,b). The mutant strain
∆Cfset1-20 caused a lesion area with an average diameter of 0.3 cm on fresh tea-oil leaves
(five days, Figure 2c,d). Both lesion sizes were significantly smaller than those caused by
strains CFLH16 and ∆Cfset1/SET1. These results indicate that CfSet1 is important to the
pathogenicity of C. fructicola.

In this study, CfSet1, an H3K4 methyltransferase, was identified in C. fructicola and its
biological function was investigated. The COMPASS is conserved from yeast to multicellu-
lar eukaryotes, of which Set1 plays a vital role in plant pathogen. In S. cerevisiae, B. bassiana,
and Magnaporthe oryzae, SET1 gene deletion mutants showed a significant reduction in
mycelial growth rate [9–11]. In addition, Set1 plays an important role in conidiation and
conidial quality control in B. bassiana and M. oryzae [9–11]. Our findings show that the
loss of CfSET1 significantly reduced the growth rate and the spore-producing ability of
the ∆Cfset1 mutants, indicating that CfSte1 has a conserved function in regulating growth
and conidiation among fungi. Appressoria play a vital role in pathogen invasion during
host–pathogen interaction. For example, to infect rice plants, the blast fungus M. oryzae
produces appressoria, which rupture the leaf cuticle and allow fungal hyphae to invade
and colonize the host tissues [12]. The strongly reduced appressorium formation rate of the
∆Cfset1 mutants indicates that CfSet1 participated in appressorium formation, which might
forecast its roles in pathogenicity. Our results also indicate that CfSet1 is indeed important
for pathogenicity of C. fructicola, which is also supported by the results in B. bassiana and
M. oryzae [10,11]. Taken together, the ∆Cfset1 mutants showed low pathogenicity on tea-oil
leaves, which is mainly caused by decreased conidiation, appressorium formation, and
penetration. Furthermore, there are other potential mechanisms affecting pathogenicity
that need further investigation.
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Figure 2. Pathogenicity of CfSET1 gene-deleted mutants to tea-oil leaves. (a,c) The pathogenicity
of ∆Cfset1-20 and ∆Cfset1-28 was significantly weaker than both CFLH16 and ∆Cfset1/SET1. The
tested strains caused yellow-brown, irregular-shaped lesions on tea-oil leaves. CK: blank control.
(b,d) Statistical analysis among three strains for their lesion sizes on unwounded leaves. Dou-
ble asterisks indicate each mutant has significant differences with wild-type and complemented
strains (p < 0.01).

In summary, a S. cerevisiae ScSET1 homologous gene CfSET1 was identified and
disrupted from C. fructicola. Our analyses show that CfSET1 plays a key role in growth,
conidiation, appressorium formation, and pathogenicity, which should encourage further
exploration into the characterization of CfSET1. These results are useful for elucidating the
pathogenic molecular mechanisms of C. fructicola and for identifying a potential target for
the development of new fungicide.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jof8040363/s1. Figure S1: Phylogenetic analysis and domain
prediction of CfSet1. (a) The purple oval indicates the pre-SET (N-SET) domain, the brown pentagon
represents the core SET domain, the gray quadrilaterals represent post-SET, and the pink and
green boxes refer to six low-complexity regions. (b) The neighbor-joining tree was constructed
by MEGA 7.0 with 1000 bootstrap replicates. Figure S2: The green fluorescence of complemented
strain ∆Cfset1/SET1.
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