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We discuss the BCI based on inner tones and inner music. We had some success in the detection of inner tones, the imagined tones
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capacity and high transfer rates. Imagination of sounds or musical tunes could provide a multicommand language for BCI, as if
using the natural language. Moreover, this approach could be used to test musical abilities. Such BCI interface could be superior
when there is a need for a broader command language. Some computational estimates and unresolved difficulties are presented.
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1. Introduction

The recent impressive developments of brain computer inter-
faces, BCI, after initial great success, especially, by the group
of Babiloni [1–5], and earlier biofeedback achievements [6],
open room for optimism in diverse directions. Work on BCI
has been concentrated on motor imagery; here an alternative
direction is proposed, musical imagery [7, 8].

Just like an imagination of hand or finger movement
is related to changes in activity of the brain somehow
resembling those connected with the real movement, so
the process of mental hearing and comprehending music
is related to changes in brain activity somehow resembling
those occurring in the brain when listening to real physical
sounds of music. Such a cognitive process of auditory
imagery, of singing in the mind, is also called audiation;
audiation of music is analogous to thinking in a language.
We propose that it is possible to construct a BCI based on
the Inner Tones and Inner Music, that is, the BCI in which
discrimination of the imagined or inner tones is used as
the basic brain signal for the formation of the BCI set of
commands—musical language.

After partial success in the identification of inner tones,
as reported in [7, 9–13], in spite of encountering serious dif-
ficulties, we propose that more attention should be given to
the BCI based on the Inner Tones and Inner Music. We have
developed systems for the real-time acquisition and analysis
of unlimited number of EEG and other neural signals (in
banks of up to 64), in the acoustic and higher ranges, that is,
with diverse rates starting from 2 KHz, using mainly Inno-
vative Integration (http://www.innovative-dsp.com) DSP-
embedded systems (ADC64, M62/7, multiprocessor QUA-
TRO, Chico ). We experimented with recognition of inner
tones and have hundreds of recordings with 8-channel EEG,
with sampling rates 4–11 KHz. We concentrated mainly on
simple experiments. A subject was listening to a calibration
tone shortly, then started imagining the same tone, then
we had EEG registration for short time, 5–10 seconds. We
performed also experiments with simple melodies of external
or imagined origin. Our basic tool is Fourier real-time
analysis. Examples of the power spectra and spectrograms
of EEG recordings of externally played tones, exhibiting the
spectral lines corresponding to the played tones, are shown
in Figures 1 and 2.
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Figure 1: A part of a power spectrum of EEG recording of sequentially played tones d and a, marked the spectral line corresponding to the
tone a.

Figure 2: A power spectrum of EEG signal recording with simultaneously played tones c2 and g2, top left; its part containing c2 and g2
lines, left center; the spectrogram of the extracted portion of the spectrum, with prominent c2 and g2 lines, low left; the major part of the
spectrogram exhibiting some artifacts and other high-frequency features, right side. Low frequency—bottom; intensity—brightness coded;
time—recent at the right edge.
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With the inner tones, power spectra and spectrograms
are similar to the examples with external tones, but the
spectral lines corresponding to the individual tones and their
harmonics in the spectrograms are often less prominent or
closer to the noise level, hence harder to detect. The complete
spectra exhibit a number of features in the HF part of the
spectra, not corresponding to the produced inner tones.
However, we have positive evidence: in a significant number
of experiments (123 out of 147), spectral lines corresponding
to imagined inner tones were detected, while the lines
corresponding to the tones which were not imagined were
not detectable. The experiments with subjects lacking music
ability were negative: the tones they imagined were not
detectable as the presence of the spectral lines corresponding
to the calibration frequencies. We will present some examples
with successful extraction of inner tones; more details are
available in the mentioned reports. Our signal library and
software are available at http://www.matf.bg.ac.yu/∼aljosha
and http://www.gisss.matf.bg.ac.yu.

2. Method

The problem of detection of the inner tones can be seen
from two sides. One is when we know which the generated
inner tones are, whose traces we are detecting. More difficult
is the inverse problem: in the given spectra determine the
present inner tones. The complete solution of the former
will facilitate solution of the other, which is of importance
in the BCI as we propose it. More precisely, we will consider
simple tones, that is, those with constant frequency and
constant intensity, with a beginning and an end in time.
At the beginning all tones could be of the same (similar)
length. We call tonal sequence a sequence of simple tones.
In this way we omit some of common melodious patterns. A
spectrogram of a tonal sequence is a tonal spectrogram. Let
us consider a correspondence:

f : Ts −→ Sπ , (1)

that is, f is a correspondence between the space of tonal
sequences and the space of tonal spectrograms. For our
needs, let Sπ be the space of spectrograms of EEG recordings
with tonal stimuli of external origin or imagined. We know
that f cannot be a bijection (hence, the f −1 is not a func-
tion). However, if we make some restrictions/simplifications
on Ts, that will have the same effect as introducing an equiv-
alence relation in Ts, some sort of glue, identifying certain
spectra, which are similar with respect to some properties.
Instead of Ts, we will be dealing with its homomorphic
image. Then, after a reduction of nontonal spectral lines in
our EEG spectrograms, we might be able to determine the
inverse.

Our initial space Sπ consists of the spectrograms of
EEG recordings of acoustic stimuli, the tonal sequences, and
our basic task is to determine the original tonal sequences
from the corresponding spectrograms of EEG recordings.
Obviously, the recovery of a tonal sequence is reducible
to the sequence of the identifications of individual tones,
which simplifies the basic task. Precision constraints are well

known in techniques for long time; in the low part, the
tonal difference perception, that is, minimum the quarter
semitone, determines minimal spectral resolution of 1/4 Hz,
while the tonal coloring aliquots have to reach 16 to 20 KHz.
Thus, in standard acoustics we need vectors in our simplified
spectrograms of up to 80 K coordinates (e.g., the higher
quality acoustic standard in broad use is 96 KHz/24bit),
adding the number of recording inputs, which is here the
number of EEG/MEG electrodes. Hence, we are working in
the space whose dimension is beyond 80 000.

For the inner music-based BCI needs, when a subject
generates an inner tone, it should be detected and recognized
by the BCI. We will introduce simplifications which will
reduce this dimension substantially, downscale problem
complexity, and bring it closer to be feasible. The composi-
tion of all simplifications/restrictions on tonal sequences will
define the target homomorphic image of the space Ts. But
because the nature of music this dimension can hardly go
under 4 K. Hopefully, we can neglect a large number of these
coordinates at each moment, focusing our attention on the
very short subsequences. These are harmonic sequences of
individual tones, with <10 aliquots, which have the following
form:

〈λkkν | λkεR, kεN ∩ 10〉, for a basic frequency ν, (2)

or with fuzzification:

〈[λkkν− δ, λkkν + δ] | λkεR, kεN ∩ 10, δεR〉 (3)

and all have the same length in time. They would form very
simple manifolds in those large dimension spaces. Our task is
to detect and identify them. Recognition of individual tones
of a tonal sequence in the (acoustic) registration of loud
singing is simple. The similar task of recognition of an inner
(simple) tonal sequence is not so simple and has not been
achieved satisfactorily yet.

This approach has some attractive features and leads to
some difficulties that may limit its applicability for some
time. Generally, we can imagine whatever we can hear.
Especially musical contents consisting of consecutive tone
series and synchronous tones—intervals and accords. It is
simpler to imagine tones to sing mute what can be sung
aloud. Our initial restriction to (simple) tonal sequences will
be extended by restricting the frequency range to that of a
human voice. We have about two and half octaves available as
easily controllable (mute) inner tones, that is, the set of about
24 to 32 states. Talented singers control up to 4 octaves, or
48 states, while imaginable tonal interval expands to nearly
100. This gives an opportunity for generation of imagined
musical sequences—words, using alphabet of about 30 or
more elements.

Tonal sequences can be produced with similar speed
of spoken words. The constraints present in certain tonal
sequences roughly correspond to the set of unused sequences
in the spoken language. Roughly, with serial tones BCI we are
in the range of the verbal communication transfer rates and
information flow capacity. Using brain states corresponding
to intervals and accords would expand this capacity largely.
There are other living species communicating musically and
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Figure 3: An example of spectrogram feature profiles, magnification of details in the Figure 2, the local neighborhood of c2 and g2 (shown
up-787 Hz)—externally played on little organ; both tone profiles show the tonal time stability, but both have spectral width of 15 Hz, while
the frequency structure top is stable and reasonably narrow.
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Figure 4: Left side: spectrograms with 800 power spectra parts (frequency interval 500–550 Hz) of two EEG channels with the inner tone
c2, lower and middle; their dot product-left top-top view and the side view on the right side-giving the enhanced c2 in the composite
spectrogram, well discernible. Time duration 5 seconds.

there are natural languages with serious musical compo-
nents. In either case the development of richer musical
languages should follow and would be a nice challenge per se.

3. Computational Aspects

Computational aspects will be discussed further with a
simple example. Suppose we have two individuals, one
producing inner tones in the range c–c2, the other in the
range c1–c3 interval. Thus, each is using two octaves. With
the tuning fork a at 440 Hz, this gives frequency range 132–
1056 Hz for both individuals. Suppose that the shortest event
time duration corresponds to 1/16th in tempo moderato

(ornaments are performed at double and triple speed), which
is around 0.2 second.

The above values set the sampling rate at 2.2 K samples
or higher, just to record the first harmonics of the involved
tones. Actually the double rate would be necessary. A half
quarter tone resolution is needed, which at the lower end
of frequency interval gives required spectral resolution of
about 2 Hz. The FFT on the input 2 K time series should
then provide the desired spectral resolution. The 2 K input
FFT covers the time interval of nearly 0.5 second, usually
denoted as uncertainty time (because in that time interval
the time order is not directly observable from the spectra,
which is clear from basic calculations). That means that
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Figure 5: Top: Recording of Inner tone—a tuning fork a at 440 Hz, 8 EEG channels, spectral parts from 207 to 2078 Hz, marked 440–443 Hz
feature in the dot product of best responding 6 channel spectra with overall well extracted 440–443 Hz line. Lower: (accumulated) time
composite spectra—the dot product from the top part of the figure; time horizontal, frequency vertical, intensity coded by brightness.

approximately tone rhythmical values of 1/8th and longer
can be located precisely in time. Their amplitudes will be
presented correctly.

In order to resolve shorter rhythmic values and to
determine their proper amplitudes, which are essential in the
involved inner tones, we would need a recalculation of spec-

tra toward the recalibrated spectra, which can be done easily
for the restricted sorts of input tonal sequences, from the
obtained spectrograms—time spectra. However, it involves
time delay, which is hardly smaller than the time atom.

Suppose further that we have to deal only with the tonal
values from semitonal tempered (classical tonal) system.
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Figure 6: 1000 consecutive composite spectra—the dot products of the 6 best responding channels (as in the previous figure top view), the
side view, prominent a 440–443 Hz feature-spectral profile, time duration 5 seconds.

Figure 7: The comb-like tonal representation and its fuzzification are used for the design of the corresponding comb like filters, one for each
tone, which support the automatic spectrogram and composite spectrogram analysis using combing operators and subsequent matching
measurements within the strategy for the detection of inner tones.

At the beginning of BCI use, and at any moment after, a
calibrating scale can be played. Figure 3 shows how wide in
the spectrum could be the externally played tone in an EEG
spectrogram. A lot of usual songs satisfy these constrains and
simplify further our starting space of tonal sequences Ts for
BCI needs.

Extraction of inner tones may be done in two ways.
The first one is to train a neural network to recognize the
fingerprints of the inner tones. It can hardly avoid (some

sort of) spectrograms as initial objects. This approach is
fruitful and can provide easier way to recognize the inner
tones. We are experimenting with adaptations of neural
networks for speech recognition, developed with the Institute
for Applied Mathematics and Electronics (Yugoslav national
army/Serbian armed forces), [14].

Independently, we have developed a system with com-
ponents of the extractor that include open calculator, with
a number of operations on signals and spectra. The inner
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Figure 8: A power spectrum of the externally generated tone c1 on the left; right: the result of its combing with the c1 fuzzy-comb filter in
the procedure of measurement of linear dependence between the spectrograms with tonal patterns and the tonal fuzzy comb like filters. The
higher the linear dependence, the higher the volume, consequently, the better the matching of spectrogram with a tonal pattern.

Figure 9: Left: A (part of a) power spectrum of externally
sequentially played tones (d, a) (overlapped in the FFT epoch),
prominent line corresponding to the tone a; in the middle: the
same spectrum combed with the fuzzy comb for c1; right: the same
spectrum combed with the fuzzy comb for minor a. This illustrates
the response of combing with the wrong and proper matching
comb-like filter.

tone harmonics are present in the signals from different
electrodes. Activity recorded with an electrode is partly
local. The inner tones harmonics are of smaller magnitude
compared to the low frequency (LF) part of the EEG
spectra activity, but they are in the HF area. Often, they
are hardly discernible in their spectral neighborhood. The
spectra are locally linearly dependent in the coordinates with
harmonics of inner tones and locally linearly independent
in the frequency intervals where the local activity prevails.
This means that the composite spectrograms obtained with
the dot products of combinations of spectra from different
electrodes would enhance the everywhere present spectral
lines, which includes the inner tone harmonics, while the
spectral zones with prevailing local activity would be zeroed.
Some examples with nice spectral localization of inner tones
using these properties are presented in Figures 4, 5, and 6.

We have implemented comb-like filters and their fuzzi-
fications, corresponding to the tonal structures in (3), at
calibrating scale frequencies. These provide a way for an
automatic analysis of spectra and composite spectra based
on the combing operations and the afterward comparisons
with the tonal system-calibrated values, with measurement
of best matching, as illustrated with the examples in Figures
7, 8, and 9. This offers a simple strategy and algorithm
for the identification of inner tones. The comb-like filters

corresponding to the set of tones used for inner singing are
coordinate vise multiplied with the spectrograms or com-
posite spectrograms, ordering the outcomes by the maximal
volume. We have developed algorithms for the automatic
detection of spectrogram feature contours complementing
the combing operations.

Next needs are the parallel multiple resolution FFT
(which we have in fragments) for short event precise location
in time and separation of adjacent tones, feature frequency
instability compensation, and separation of tones and their
aliquots.

The tuning system should include a scanning of all
channels and a selection of those with better response, a
reduction of other HF features not related to external and
internal tones, based on the time length discrimination and
separation from the calibrating scale tones.

This approach could lead to the intelligent extractor
which would be aware of the detected inner tone. In order
to improve performance, both approaches can be combined
concurrently in parallel. For the further convergence, more
experimentation with higher resolution EEG would be
necessary. In this way, with proposed steps (some of which
are realized), reaching a number of simplifications and
partially answering the list of encountered problems, the BCI
based on inner tones and inner music would be cured of
some deficiencies and instability and will become closer to
real applications.

4. Discussion

Current BCIs are based on a discrimination of a few
commands only. The application of high-resolution EEG
in research on inner tones should strongly support further
developments of a multicommand system, at least for
musically gifted people. It could provide a tool to study
causes of musical perception deficiencies, determine and
locate problems shared by a large population. It could
provide better insight in the difference of musical processing
by music professionals and nontrained people, which is
highly interesting for cognitive and brain development
studies. A number of researchers are successfully involved
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in inner tones and music [8]. Especially interesting is the
recent success of Mick Grierson of Goldsmiths, University
of London, who demonstrated high-rate guessing of inner
tones with his BCI (reports with real-time show, BBC June
2008, forthcoming [15]). Precise positioning of electrodes
will reduce the current complexity of inner tone detection
problems with simplified automatic extraction of inner tones
and support evolution of the BCI based on inner music
[16]. We plan to expand our open system soon with a
spatiotemporal analysis and analysis of global trajectories in
the transformed space [17]. Other researchers are developing
the BCI based on HF EEG [18–20] and further proceeding
from biofeedback and with motor imagery-based BCI [20–
23].

The exciting MEG experiments with musical stimuli
presented by Andreas Ioannidis in his lecture at the NEU-
ROMATH’2007 workshop in Rome, December 2007, (system
and methods presented in [24]), with one millisecond
time resolution, demonstrated that a large number of very
fast switching interconnected centers are engaged in music
processing. This establishes serious hopes that inner music
could be subjected to much more sophisticated and sensitive
investigation. When we learn more details on mechanisms
of this interconnectivity, revealing delays and modulations
involved, we might get complementary powerful methods
applicable for the study of inner tones, which would result
in the improvement of certainty of inner tone detection and
representation of details.
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