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Introduction
Esophageal cancer (EC) is a malignant tumor that has a sig-
nificant incidence and fatality rate. In 2020, there were 604 100 
new cases and 544 076 deaths of EC worldwide.1 This ranks 
EC as the seventh most common cancer by incidence and the 
sixth deadliest malignancy. China, in particular, bears a high 
burden of EC, with more than 90% of cases being esophageal 
squamous cell carcinoma (ESCC).2 In 2020, China reported 
324 000 new cases and 301 000 deaths from EC, accounting for 
~55% of the global figures.1,3 Despite advancements in multi-
modal therapies such as surgical procedures, chemotherapy, 
radiotherapy, and targeted therapy, the overall 5-year survival 

rate for EC is still less than 20%.4 Hence, it is crucial to identify 
novel prognostic signatures to assess individualized survival 
risk for patients with ESCC.

Mounting evidence suggests that the microbiome of the 
esophagus, along with inflammation and their interaction, play 
a crucial role in promoting EC.5 It is estimated that 25% of all 
malignant tumor cases worldwide can be attributed to long-
term infection and inflammation.6 Porphyromonas gingivalis (P. 
gingivalis), a significant pathogenic bacterium associated with 
local immune inflammatory responses in long-term periodonti-
tis, has garnered attention in recent years due to its close asso-
ciation with various malignant tumors.7,8 Porphyromonas 
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ABSTRACT

Background: Our previous research showed that Porphyromonas gingivalis (P. gingivalis) infection can activate the inflammatory signal-
ing pathway and promotes the malignancy development of esophageal squamous cell carcinoma (ESCC). However, the prognostic signifi-
cance of inflammatory response-related genes (IRRGs) in P. gingivalis-infected ESCC requires further elucidation. Hence, our study 
constructed a prognostic signature based on P. gingivalis and IRRGs to forecast the survival of patients with ESCC, which may provide 
insight into new treatment options for ESCC patients.

Methods: Differentially expressed genes (DEGs) were identified in P.gingivalis-infected and P.gingivalis-uninfected ESCC cell by RNA 
sequencing. A risk model was constructed and validated using the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) 
database by using univariate Cox regression analysis, LASSO, and the multivariate Cox regression analysis. Kaplan-Meier analysis was car-
ried out to compare the overall survival (OS) between high-risk and low-risk groups. Single-sample gene set enrichment analysis was used 
to analyze the immune cell infiltration. The Genomics of Drug Sensitivity in Cancer database was used to predict drug sensitivity.

Results: There were 365 DEGs between the P.gingivalis-infected and P.gingivalis-uninfected groups. Four genes including DKK1, ESRRB, 
EREG, and RELN were identified to construct the prognostic risk model (P = .012, C-index = 0.73). In both the training and validation sets, 
patients had a considerably shorter OS in the high-risk group than those in the low-risk group (P < .05). A nomogram was established using 
the risk score, gender, and N stage which could effectively forecast the prognosis of patients (P = .016, C-index = 0.66). The high-risk group 
displayed lower immune infiltrating cells, such as activated dendritic cells, type 2 T helper cells, and neutrophils (P < .05). A total of 41 drugs, 
including dactinomycin, luminespib, and sepantronium bromide, had a significant difference in IC50 between the 2 subgroups.

Conclusion: We demonstrated the potential of a novel signature constructed from 4 P. gingivalis-related IRRGs for prognostic prediction 
in ESCC patients.
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gingivalis has been found to be closely related to ESCC in 
recent years. In 2016, a study reported found that the infection 
rate of P. gingivalis in ESCC tissues (61%, 71%) were signifi-
cantly higher than adjacent normal tissue (12%, 12%) and nor-
mal esophageal mucosal tissue (0%, 1%) by immunohistochemistry 
(IHC) and polymerase chain reaction (PCR). In addition, the 
mean survival time of P. gingivalis-positive patients was signifi-
cantly lower than that of negative patients.9 Another study dis-
covered that serum P. gingivalis IgG and IgA antibody levels in 
ESCC patients were significantly higher than those in esophagi-
tis patients and healthy control group (P < .01). And high levels 
of P. gingivalis IgG or IgA antibodies are associated with poor 
prognosis in ESCC patients.10 Besides, there is enrichment of P. 
gingivalis in high-grade dysplasia and early ESCC, and over-
abundance of P. gingivalis was positively associated with inva-
sion depth, postendoscopic submucosal dissection stricture and 
local recurrence.11 Notably, patients with ESCC who were 
infected with P. gingivalis had poor chemotherapy responses 
and a significantly shortened 5-year survival rate following sur-
gical intervention.12,13 In conclusion, the above researches 
showed that P. gingivalis had a significant influence on the 
development and progression of ESCC, as well as its impact on 
the patient prognosis. Long-term inflammation is a key player 
in oncogenesis and tumor progression. Long-term inflamma-
tion induced by microbial infection significantly elevates the 
possibility of carcinogenesis by way of activating inflammatory 
signaling pathways and cytokines, stimulating cell proliferation, 
and inhibiting apoptosis.14 There is clear evidence that long-
term colonization of Helicobacter pylori, human papillomavirus, 
and hepatitis B virus can accelerate the progression of stomach 
carcinoma, cervical carcinoma, and hepatocellular carcinoma by 
inducing long-term inflammation.15 Wang et al16 indicated that 
nuclear factor (NF)-kappa BP65 promotes invasion and metas-
tasis of ESCC by regulating MMP9 and epithelial-mesenchy-
mal transition (EMT). Besides, up-regulation of interleukin 
(IL)-6/STAT3 signaling pathway promotes the occurrence of 
EC.17 Interleukin-6 is a cytokine that binds to gp130 through 
its receptor IL-6Rα, triggering the downstream pathway to 
activate important molecules such as SHP2, Ras-MAPK, 
STAT1, and STAT3.18 These pathways activate the ability of 
tumor cells to survive in the inflammatory environment and 
inhibit the effects of immunotherapy. Interleukin-6 can drive 
the proliferation of myeloid-derived suppressor cells (MDSCs), 
and the activation of STAT3 leads to the production of antia-
poptotic molecules, thus causing tumorigenesis.19 P. gingivalis 
has been proven to induce inflammation and promote the 
malignant progression of ESCC by activating STAT3, GSK3β, 
NF-κβ, and tumor growth factor (TGF)-β signaling path-
ways.8,20 In addition, the intratumoral P. gingivalis promotes the 
progression of pancreatic cancer by enhancing the secretion of 
neutrophilic chemokines and neutrophil elastase.21 The fibrino-
gen/albumin ratio, neutrophil/lymphocyte ratio, and platelet/
lymphocyte ratio, as markers of inflammation in circulating 

blood, have been shown to be associated with the prognosis of 
EC.22,23 Previous studies have reported models based on inflam-
matory responses for prognostic predictions in EC.24 This find-
ing suggested that inflammation has an impact on cancer 
prognosis and can serve as a promising therapeutic target. 
However, the role and prognostic significance of inflammatory 
response-related genes (IRRGs) in P. gingivalis-infected ESCC 
remain unclear.

We first constructed an IRRG prognostic signature by using 
The Cancer Genome Atlas (TCGA)-ESCC data set and the 
RNA-seq data of P. gingivalis-infected ESCC cells in this 
study. Then we validated its prognostic value using the 
GSE53622 data set. Thereafter, a nomogram was constructed 
to predict the survival of patients with ESCC. Simultaneously, 
we explored the relationship between IRRGs and immune 
function, genetic mutation analysis, immunotherapy, and drug 
susceptibility. Our findings have the potential to improve com-
prehension of the prognostic mechanisms and provide novel 
and valuable biomarkers for treating patients of ESCC. The 
flowchart of this study is exhibited in Figure 1.

Materials and Methods
Cell culture, bacteria strain, and cell infection

The ESCC cell line Kyse-140 (BNCC351870, BeNa Culture 
Collection, China) was cultured at 37°C with 5% CO2 in 
RPMI-1640 medium (PM150110, Procell, China) supple-
mented with 10% fetal bovine serum (164210-500, Procell, 
China). P. gingivalis ATCC 33277 was donated by the 
University of Louisville and was cultured at 37°C under anaer-
obic conditions consisting of 85% N2, 10% H2, and 5% CO2 in 
Brain Heart Infusion (BHI) broth medium (237500, Becton 
Dickinson, USA) containing 0.1% Hemin and 0.1% Vitmin 
K1. The optical density of bacterial solution was measured at 
600 nm by spectrophotometer with a value of 1.0 correspond-
ing to 1 × 109 CFU/ml. Then centrifuge the bacterial solution 
at 12 000 g for 5 minutes, and remove the supernatant. 
Resuspend the P. gingivalis bacterial precipitate in 1 ml phos-
phate-buffered saline (PBS) and add it to Kyse-140 cell culture 
medium. Finally, cells were inoculated with P. gingivalis at a 
multiplicity of infection (MOI) of 20 for 24 hours at 37°C in 
5% CO2.

Data sources

In this study, we performed transcriptome sequencing of Kyse-
140 cells between P. gingivalis-infected and P. gingivalis-unin-
fected in the GENEWIZ Biotechnology Corporation. The 
TCGA-ESCC data set containing 80 tumor specimens and 11 
normal specimens with clinical information and survival infor-
mation (Table 1) available was sourced from the TCGA data-
base (https://www.cancer.gov/ccg/). Moreover, we used the 
GSE53622 data set was achieved from the Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/

https://www.cancer.gov/ccg/
http://www.ncbi.nlm.nih.gov/geo/


Kong et al	 3

geo/), containing 60 tumor samples and 60 control samples, as 
an external validation data set (Table 1). In addition, 3074 
IRRGs were gathered from the GeneCards online database 
according to a score threshold >5. Furthermore, the 
IMvigor210 data set containing 298 cohort data of immuno-
therapy for bladder urothelial carcinoma (BLCA) was obtained 
from the IMvigor210 database.

Acquisition analysis and enrichment analysis of 
crossover genes

Differentially expressed genes (DEGs) between the P. gingi-
valis-infected and P. gingivalis-uninfected group were identi-
fied using the DESeq2 (v1.36.0) R package (P < .05).25 

Moreover, DEGs between ESCC and normal samples in the 
TCGA-ESCC data set were identified by the same method. 
To visualize the DEGs, we generated heat maps and volcano 
maps for the P. gingivalis-infected versus P. gingivalis-unin-
fected groups, and tumor versus normal groups were plotted by 
the heatmap (v0.7.7) and ggplot2 (v3.3.0) R packages, respec-
tively.26 Furthermore, we performed an intersection analysis to 
identify genes that were common between the DEGs in the 
self-sequencing data, DEGs in the TCGA-ESCC data set, 
and the set of IRRGs. In addition, to acquire understanding of 
the biological functions and signaling pathways associated with 
these crossover genes, we performed gene ontology (GO) func-
tional enrichment analysis using the clusterProfiler (v3.8.1) R 
package with a significance threshold of P < .05.27

Figure 1.  Flowchart of the present study.

http://www.ncbi.nlm.nih.gov/geo/
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Construction and verif ication of the prognostic 
model

The Cancer Genome Atlas-ESCC data set was classified into 
a training set and an internal validation set using a 1:1 ratio, 
and the GSE53622 served as an external validation set. First, 
the univariate Cox regression analysis was performed on the 
above crossover genes to screen the candidate genes (P < .2).28 
Then, the LASSO algorithm was executed on candidate genes 
acquired through the univariate Cox regression analysis (fam-
ily = Cox). When constructing the model, the genes with coef-
ficients of the variables retained in the model with the smallest 
Partial-likelihood deviance were selected; these genes were 
used to construct the multivariate cox model, and when con-
structing the multivariate cox model, the models were scored 
using the STEPWISE algorithm. The genes retained in the 
highest scoring model were selected as the key genes, and the 
highest scoring model was the final risk scoring model used. A 
stepwise approach was then performed to optimize the model 
and identify prognostic genes. This process resulted in the crea-
tion of a risk model of prognostic genes.

To divide samples into high- and low-risk groups, the risk 
score for each sample was computed using the expression levels 
of these prognostic genes. The risk score was computed  
according to the median value of risk as follows: (risk 

score = 
�

n
coef genei * genei� � � expression( )). In addition, the 

prognostic model underwent evaluation and verified in all 3 
data sets. The Kaplan-Meier (K-M) survival curve and receiver 

operating characteristic (ROC) curve (1-, 2-, and 3-year sur-
vival predictions) were plotted, respectively. Ultimately, based 
on the prognostic genes, principal component analysis (PCA) 
analysis was conducted based on the prognostic genes in the 3 
data sets, offering insights into the relationships and patterns 
within the data.

Independent prognostic analysis

First, the univariate Cox regression analysis was implemented 
on the risk score and clinical features such as tumor pathologic 
T-M-N, stage, gender, and age. Then, the variables obtained by 
the univariate Cox regression analysis were used to create the 
multivariate Cox model. The proportional hazards (PH) 
hypothesis test was implemented to verify the validity of the 
Cox model. Furthermore, according to the above prognostic 
model, a nomogram for forecasting survival rates of patients 
with ESCC (1-, 2-, and 3 year survival rates) was created. 
Finally, we drew a calibration curve to verify the effectiveness 
of the above model.

Differential expression analysis and enrichment 
analysis

Differentially expressed genes between the 2 risk subgroups 
were acquired by the DESeq2 (v1.36.0) R package (P < .05 
and|log2FC| > 2).25 To explore the associated biological func-
tions and signaling pathways of the above DEGs, the GO and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) func-
tional enrichment analyses were performed using the cluster-
Profiler (v3.8.1) R software package (adjusted P < .05).27

Genetic mutation analysis

The mutation analysis of prognostic genes in the TCGA-
ESCC data set was conducted using the maftools (v2.12.0) R 
package.29 The mutual exclusion and co-occurrence of the 
most common top 25 mutant genes were analyzed using the 
CoMEt algorithm.

Analyses of immune characteristics

To further explore the immune infiltration environment of 
ESCC, the CIBERSORT algorithm was performed on the 
samples in the TCGA-ESCC data set. This algorithm esti-
mates the abundance of 22 different immune cell types, allow-
ing for a comparison of immune cell populations between the 
2 risk subgroups. In addition, in the TCGA-ESCC data set, 
the differential immune cells between the 2 risk subgroups 
were computed and compared by ssGSEA algorithm and 
Wilcoxon test method, respectively. The risk score was com-
puted using the expression of prognostic genes in the 
IMvigor210 data set. The best cut-off threshold for risk score 
classification was calculated using the surv-cutpoint function, 

Table 1.  Clinicopathological characteristics of ESCC patients in TCGA 
and GEO cohort.

Variables TCGA-ESCC GSE53622

Tumor sample 80 60

Normal sample 11 60

Age (median, range) 57 (36-90) 60 (39-81)

Gender  

  Male 69 (86.3%) 48 (80%)

  Female 11 (13.7%) 12 (20%)

Stage  

  I 6 (7.5%) 4 (6.7%)

  II 47 (58.8%) 30 (50.0%)

  III 22 (27.5%) 26 (43.3%)

  IV 3 (3.7%) 0

  Unknown 2 (2.5%)  

Survival status  

  Alive 55 (68.7%) 27 (45.0%)

  Dead 25 (31.3%) 33 (55.0%)
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resulting in the classification of samples into high-risk and 
low-risk groups. Finally, we conducted a K-M survival analysis 
between the 2 risk subgroups to evaluate the prognostic value 
of the risk score in predicting patient survival.

Drug sensitivity prediction

The IC50 of chemical drugs for patients with ESCC was fore-
casted according to the cell line expression profile and gene 
expression profile in GDSC online database (https://www.can-
cerrxgene.org/). The Oncopredict tool was used to compute the 
IC50 of common chemotherapy and molecular-targeted drugs in 
patients with ESCC. Besides, the Wilcoxon test method was 
used to analyze the IC50 of chemical drugs with remarkable dif-
ferences in sensitivity between the 2 risk subgroups.

Statistical analysis

All the analyses were implemented in the R (v4.2.0) package 
and the related public databases. The Wilcoxon rank-sum test 
was used for comparison between 2 groups. Cox and Lasso 
regression analysis were used to reduce the dimension of 
model-related risk IRRGs and construct a polygenic prognos-
tic risk model. Kaplan-Meier survival curves are plotted and 
log-rank test was conducted between different subgroups. 
Receiver operating characteristic curves were constructed for 
predicting survival at 1, 2, and 3 years. A 2-sided P < .05 was 
considered statistically significant.

Results
Identif ication of IRRGs DEGs of P. gingivalis-
infected ESCC

In our study, we identified 365 DEGs in the self-sequencing 
data set, including 217 up-regulated and 148 down-regulated 
genes between the P. gingivalis-infected group and the P. gingi-
valis-uninfected group (Figure 2A, Supplementary Table 1). 
Moreover, within the TCGA-ESCC data set, we found 9817 
DEGs between the tumor and normal samples, of which 4989 
were up-regulated and 4833 were down-regulated (Figure 2B, 
Supplementary Table 2). The respective expression of these 
DEGs was shown in heat maps (Figure 2C and D). In addi-
tion, 3074 IRRGs were gathered from the GeneCards online 
database according to a score threshold >5. According to the 
intersection of DEGs in the self-sequencing data set, DEGs in 
the TCGA-ESCC data set, and the set of IRRGs, 66 crossover 
genes were identified using a Venn map (Figure 2E). According 
to the enrichment analysis, crossover genes were primarily 
linked to biological processes like “epidermis development,” 
“skin development,” and “cytokine-mediated signaling path-
way” in GO terms (Figure 2F, Supplementary Table 3).

Construction of risk models

There were 7 candidate genes including TNFRSF12A, REEP1, 
DKK1, FOXN1, ESRRB, EREG, and RELN (Figure 3A). A 

total of 6 candidate prognostic genes (TNFRSF12A, DKK1, 
FOXN1, ESRRB, EREG, and RELN) were identified by the 
LASSO algorithm (Figure 3B). According to the multivariate 
Cox regression analysis, 4 prognostic genes including DKK1, 
ESRRB, EREG, and RELN were screened out. Notably, the 
expressions of DKK1, ESRRB, and EREG negatively related to 
the prognosis, while RELN exhibited the opposite pattern 
(Figure 3C). A prognostic signature for patients with ESCC was 
constructed based on the expressions of these 4 prognostic genes 
and their Cox regression coefficient (β). The risk score was com-
puted as follows: Riskscore = (–0.33617 × DKK1 expres-
sion) + (–0.57111 × ESRRB expression) + (–0.27303 × EREG 
expression) + (0.319031 × RELN expression). The prognostic 
model’s performance was assessed, demonstrating a C-index of 
0.73, which was substantially higher than the C-index of the 
individual genes (Figure 3D). This indicates that the model has 
a strong predictive ability for patient prognosis.

Validation of the prognostic risk model

The risk scores of high- and low-risk groups were significantly 
different across these 3 data sets, (P < .05). Moreover, the num-
ber of deaths increased in all 3 data sets with an increased in 
the risk score. The expression of prognostic genes in the 3 data 
sets was displayed in the heat maps (Figure 4A to C). The 
expression of DKK1, ESRRB, and EREG were elevated in the 
low-risk group, whereas RELN was decreased. The accuracy of 
predicting 1-, 2-, and 3-year survival prognosis was evaluated 
using the time ROC curve and area under the curve (AUC) 
value. The results showed that the AUCs of the ROC curves 
were all exceeded 0.6 in both the training set and external vali-
dation set, indicating that the created risk model could effec-
tively predicted the survival rates of patients with ESCC 
(Figure 4D to F). Next, we plotted a confusion matrix for risk 
grouping versus survival status, which showed an accuracy of 
0.5823, a sensitivity of 0.7750, and a specificity of 0.3846 
(Supplementary Figure 1). Furthermore, K-M analysis indi-
cated that there was a remarkable difference in the prognosis of 
patients with ESCC between 2 risk subgroups, with the high-
risk group having significantly worse outcomes than those in 
the low-risk group in all 3 data sets (P < .05) (Figure 5A to C). 
Finally, there were obvious differences in the patterns of gene 
expression among the 2 risk subgroups in the 3 gene sets, sup-
porting the notion that the prognostic genes could effectively 
distinguish between these 2 risk subgroups (Figure 5D to F).

The nomogram for overall survival prediction

We found that risk score, pathologic N, and gender were all con-
nected with the survival and prognosis of patients with ESCC 
(Figure 6A). Meanwhile, the model’s overall performance was 
assessed, yielding a P value of .0165 and a C-index of 0.66 
(Figure 6B), indicating a significant overall association with sur-
vival outcomes and a moderate level of predictive accuracy. The 
PH hypothesis test showed that neither the individual covariates 

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
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nor the global test were statistically significant (P > .05). 
Therefore, the Cox model conformed to the PH assumption 
(Figure 6C). Moreover, a nomogram for survival forecasting in 
patients with ESCC (1, 2, and 3 years) was created based on risk 
score, pathologic N, and gender. The nomogram estimates the 
overall survival (OS) by adding up the points assigned to each 
parameter based on the provided scale. The risk score was found 
to have a substantial contribution to prognosis (Figure 6D). 
Finally, a calibration curve was plotted to assess the effectiveness 
of the nomogram. The curve indicated that the nomogram 
model had favorable prediction ability (Figure 6E).

Functional enrichment analysis of DEGs in high- 
and low-risk groups

There were 205 DEGs between the 2 risk subgroups (Figure 
7A, Supplementary Table 4). The expression of DEGs is shown 
in the heat map (Figure 7B). According to the GO analysis, 
DEGs between the 2 risk subgroups are mainly involved in the 
xenobiotic metabolic process, cellular response to xenobiotic 
stimulus, and retinoid metabolic process in biological processes. 
For cellular components, DEGs were enriched in components 
like the integral component of the synaptic membrane, an 
intrinsic component of the synaptic membrane, and an integral 
component of the postsynaptic membrane. For molecular func-
tions, the DEGs were linked to activities such as carboxylic 

ester hydrolase activity, monocarboxylic acid binging, and glu-
tathione transferase activity. The KEGG pathways enrichment 
analysis results indicated that the DEGs between the 2 risk 
subgroups were primarily participated in chemical carcinogen-
esis-receptor activation, metabolism of xenobiotics by 
cytochrome P450, drug metabolism-cytochrome P450, chemi-
cal carcinogenesis-DNA adducts, and drug metabolism-other 
enzymes (Figure 7C to F, Supplementary Table 5-6).

Genetic mutation analysis in high- and low-risk 
groups

From the TCGA-ESCC data set, the proportion of missense 
mutations was the highest among the mutation types, and the 
top 10 mutated genes were TP53, TTN, KMT2D, CSMD3, 
NFE2L2, NOTCH1, MUC16, FLG, PIK3CA, and DNAH5 
(Figure 8A). It was found that TP53 had the highest mutation 
rate amongst all genes in both subgroups. In the high-risk 
group, mutations in NFE2L2, CSMD3, and MUC16 were 
most prevalent. In contrast, in the low-risk group, DNAH5, 
KMT2D, and MUC17 had a higher mutation rate (Figure 8B). 
Notably, KMT2D and TP53 exhibited mutual exclusivity, 
meaning these 2 genes were less likely to co-occur in the same 
patient, in the low-risk group. In addition, certain genes such as 
FAT3 and TTN, COCH, and SACS, exhibited obvious co-
occurrence, suggesting that mutations in these gene pairs were 

Figure 2.  Identification of candidate IRRGs. (A) the volcano plot of DEGs between P. gingivalis-infected and P. gingivalis-uninfected ESCC cells. (B) The 

volcano plot of DEGs in the TCGA-ESCC data set. (C) The clustering heat map of the DEGs between P. gingivalis-infected and P. gingivalis-uninfected 

ESCC cells. (D) The clustering heat map of the DEGs in the TCGA-ESCC data set. (E) The Venn diagram to identify DEGs. (F) Representative results of 

GO analyses in TCGA.
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more likely to appear together in the same patient, in the low-
risk group. Furthermore, no genes showed obvious mutual 
exclusion in the high-risk group, but there was an obvious co-
occurrence between MUH13 and FLG, as well as between 
MUH13 and ELAPOR2 (Figure 8C and D).

Analyses of immune characteristics in high- and 
low-risk groups

The abundance of immune cells in the 2 subgroups was displayed 
in Figure 9A. The results showed remarkable differences in 3 
immune cells (activated dendritic cells [DCs], type 2 T helper 

cells, and neutrophils) among the 2 risk subgroups (Figure 9B). 
The composition of these immune cells was found to be more 
abundant in the low-risk group compared with the high-risk 
group. The IMvigor210 data set was used to analyze the relation-
ship and predictive power of risk score for programmed death 
ligand 1 (PD-L1) immune efficacy. There was little difference in 
the number of patients with stable disease between the 2 sub-
groups; however, the number of patients with ESCC with partial 
remission and complete remission in the high-risk group was sig-
nificantly higher (Figure 9 C). We also found a statistical signifi-
cance in survival prognosis between the 2 subgroups, and the 
lower risk scores had poorer OS (P = 0.029) (Figure 9D).

Figure 3.  Screening of prognostic genes and construction of prognostic models. (A) The prognostic genes identified by univariate analysis in the TCGA 

cohort. (B) LASSO coefficient profiles and selection of the number of genes by LASSO analysis. (C) The 4 target genes identified by multivariate Cox 

regression analysis. (D) The C-index value of the prognostic model and prognostic gene.
*P < .05.
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Drug sensitivity prediction in high- and low-risk 
groups

The analysis identified 41 drugs with a statistical difference in 
IC50 values between the 2 risk subgroups. Notably, drugs such as 
sepantronium bromide, dactinomycin, and luminespib all exhib-
ited lower IC50 values in the low-risk group (P < .001) (Figure 
9E). On the whole, low-risk groups were more susceptible to 
sepantronium bromide, dactinomycin, and luminespib which 
means these patients may have a more favorable response to these 
drugs, potentially leading to improved treatment outcomes.

Discussion
Esophageal cancer is a malignant tumor with high mortality. 
With the advancement of medical technology, a variety of 

treatment methods have been improved for ESCC. However, we 
often cannot accurately forecast the effectiveness of ESCC treat-
ment because of lack reliable biomarkers. Numerous studies have 
indicated that P. gingivalis and inflammation response play a 
crucial role in the pathophysiology and malignant progression of 
ESCC, which is associated with patient prognosis.5,9 However, 
the role of P. gingivalis and IRRGs as prognostic predictors for 
ESCC remains to be elucidated. Thus, it is particularly critical to 
explore accurate biomarkers for predicting prognosis of P. gingi-
valis-infected ESCC patients. In this study, we first constructed 
and verified a prognostic gene signature composed of P. gingi-
valis and inflammation-related DEGs, namely DKK1, ESRRB, 
EREG, and RELN. This signature serves as an independent risk 
factor to forecast the prognosis of patients with ESCC. 
Furthermore, we established straightforward and user-friendly 

Figure 4.  Validation and evaluation of risk models in both the TCGA and GEO cohorts. (A to C) The distribution of the risk scores (top), survival status 

(middle), and expression heat map of the 4 IRRGs (bottom). (D to F) The time ROC curve for OS.
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prognostic nomogram model to assist in forecasting the 1-, 2-, 
and 3-year OS, which may contribute to the clinical treatment of 
patients with ESCC. Although the prognostic model established 
in this study through the cell models in vitro is not representative 
of the microenvironment in vivo, previous studies have con-
firmed that P. gingivalis infection cells in vitro can affect the 
tumor microenvironment and promote the development of 
tumors.12,13,30

Previous research has established the roles of these 4 prog-
nostic genes in cancer progression. DKK1 encodes a secreted 
protein that is an antagonist of the Wnt/b-catenin signaling 
pathway, which is participate in tumor progression and is 

overexpressed in numerous human tumors.31,32 DKK1 is 
closely linked to prognosis and has been identified as a possi-
ble diagnostic and prognostic indicator for ESCC.33,34 Recent 
research has evidenced that DKK1 stimulates cancer cell pro-
liferation by activating the PI3K-AKT pathway.35 Furthermore, 
DKK1 has been demonstrated to sustain the tumor stemness 
of EC cells through ALDH1A1/SOX2 axis.36 ESRRB, a 
nuclear transcription factor, controls self-renewal and pluripo-
tency of embryonic stem cells.37 Studies have discovered that 
ESRRB is associated with tumor progression of breast and 
prostate cancers.38,39 In addition, ESRRB accelerates the 
growth of carcinoma cells in vitro and in vivo by repressing the 

Figure 5.  High and low risk group survival analysis and PCA validation. (A to C) Kaplan-Meier curves for OS in the high- and low-risk groups. (D to F) 

PCA plot in the high- and low-risk groups.
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TGF-β pathway by transactivating SMAD7.40 Our study rep-
resents the first discovery of ESRRB as a prognostic biomarker 
for ESCC, although further studies are warranted to elucidate 
its prognostic significance and its underlying mechanisms in 
patients with ESCC. EREG, a ligand for the estimated glo-
merular filtration rate (EGFR) family, contributes to processes 
including angiogenesis, vascular remodeling, cell proliferation, 
and inflammation.41 Previous studies have noted that EREG 
is typically low or absent in most human tissues but is found 
to be over-expressed in various tumors.42 EREG has been 

involved in promoting the invasion of EC, formation of 
spheres, reorganization of actin, and lung metastasis by acti-
vating FAK and Src.43 RELN is a well-known large extracel-
lular matrix glycoprotein expressed primarily in brain 
development, where it regulates neuronal migration, adhesion, 
and positioning.44 However, recent investigations have shown 
abnormal expression patterns of RELN in various cancers.45 
RELN is a critical negative regulator during TGF-β1-induced 
cell migration of Kyse-30 cells and is inhibited through the 
TGF-β pathway via Snail regulation at the transcriptional 

Figure 6.  The nomogram constructed in the TCGA-ESCC cohort. (A) Forest plots for univariate cox regression analysis. (B) Forest plots of independent 

prognostic model. (C) PH hypothesis test. (D) The nomogram for predicting OS. (E) Calibration curves for the nomogram.
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level.46 Our study found high expressions of DKK1 and EREG 
and low expressions of ESRRB and RELN in patients with 
ESCC, which was consistent with the above studies. Therefore, 

it is speculated that DKK1, ESRRB, EREG, and RELN serve 
as key regulatory factors in the carcinogenic process of P. 
gingivalis.

Figure 7.  GO and KEGG analyses using the DEGs between the high- and low-risk groups. (A) Volcano plots of the DEGs. (B) The heat map of DEGs. (C 

and D) GO enrichment analysis based on DEGs. (E and F) KEGG enrichment analysis based on DEGs.
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Then, we would like to further analyze the underlying 
mechanism of IRRGs in P. gingivalis-infected ESCC. The 
findings from KEGG and GO analyses indicated that DEGs 
primarily participated in processes such as the chemical car-
cinogenesis-receptor activation, metabolism of xenobiotics by 
cytochrome P450, drug metabolism-cytochrome P450, chemi-
cal carcinogenesis-DNA adducts. For instance, CYP2C9 par-
ticipates in the metabolism of tumor drugs and exogenous 
carcinogens, which suppresses the invasion and migration of 
ESCC by reducing the levels of HDAC.47 Similarly, CYP1A1 
is involved in the oxidative conversion of xenobiotics, whereas 
its metabolic reactions may unintentionally result in the pro-
duction of highly reactive compounds, which can form DNA 
adducts, thereby promoting mutagenesis and carcinogenesis.48 
The findings suggested that P. gingivalis could affect the 
changes in the ESCC metabolic pathway by regulating IRRGs.

Numerous pieces of evidence have demonstrated that the 
tumor immune microenvironment plays a crucial role in car-
cinogenesis. The results showed that the immune state was 

significantly different between the low- and high-risk patients 
with ESCC. Notably, immune-infiltrating cells were more 
abundant in the low-risk group, with heightened levels of acti-
vated DCs, type 2 T helper cells, and neutrophils. This suggests 
that immune regulation may be inhibited in the high-risk group, 
contributing to a worse prognosis in patients with ESCC. 
Dendritic cells are specialized antigen-presenting immune cells, 
which have a crucial function in the immune response against 
cancer.49 Furthermore, research has indicated that increases in 
the number of DCs can improve immune function and extend 
the survival time of patients with EC.50 Dendritic cells can kill 
tumor cells by stimulating the proliferation of T cells, ultimately 
inhibiting tumor cell proliferation and metastasis.51 Type 2 T 
helper cells have an important influence on type-2 immune 
responses and enhance the production of antibody against 
extracellular tissue.52 Research has shown the infiltration level 
of type 2 T helper cells is positively correlated with OS in 
patients with ESCC without chemotherapy after surgery, with 
higher infiltration levels of these cells associated with longer 

Figure 8.  Genetic mutation in high- and low-risk groups of patients with ESCC. (A) An overview of genetic mutations. (B) The waterfall plot of genetic 

mutation features. (C) Co-occurrence and mutual exclusion of mutated genes in the low-risk group. (D) Co-occurrence and mutual exclusion of mutated 

genes in the high-risk group.
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OS.53 However, in the context of long-term inflammation, type 
2 T helper cells have been associated with tumor promotion by 
provoking humoral immune responses and interfering with the 
recruitment and activation of cytotoxic T lymphocytes in 
tumor.54 Neutrophils, often considered the first line of defense 
against inflammations and infections,55 can adopt differential 
states of activation and differentiation in various tumor con-
texts. They can polarize into either an anti-cancerous (N1) type 
or a cancer-promoting (N2) type.56 A recent research identified 
that MPO + neutrophils infiltrating the tumor were associated 

with a positive prognosis for ESCC.57 When TGF-β is not pre-
sent, the N1 neutrophils secrete more immune activating 
cytokines and chemokines, with lower levels of arginase, and 
exhibit an improved capacity to eliminate cancerous cells in 
vitro and in vivo.58 In summary, the immune cells above are 
potentially involved in the regulation of immune response in 
EC development and are thought to be beneficial for survival, 
consistent with the observations of our current study. Notably, 
our research identified a decrease in the proportion of type 2 T 
helper cells, activated DCs, and neutrophils in high-risk patients 

Figure 9.  Immune characterization correlation analysis and drug susceptibility prediction. (A) Immune cell abundance map of each sample. (B) The 

boxplots of immune infiltration analysis. (C) Comparison of efficacy of immunotherapy between the 2 groups. (D) Kaplan-Meier curves of the OS in 

external validation data sets. (E) Sensitivity to dactinomycin, luminespib, and sepantronium bromide shown in the box plot.
*P < .05; **P < .01.
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with P. gingivalis infection. Therefore, it is speculated that P. 
gingivalis may weaken the antitumor immune response of the 
body by inhibiting the above immune cell infiltration. This 
could potentially be a significant factor contributing to the 
unfavorable prognosis of high-risk patients.

Finally, we further analyzed the drug sensitivity for ESCC 
according to the GDSC database. We discovered that the low-risk 
group was susceptible to chemotherapy drugs, for example, sepan-
tronium bromide, dactinomycin, and luminespib. Sepantronium 
bromide (YM155), a survivin suppressant, has been demonstrated 
to enhance the radiation sensitivity of ESCC cells by suppressing 
radiation-induced senescence and promoting apoptosis.59 In addi-
tion, YM155 improves radiosensitization by disrupting the G2 
checkpoint and inhibiting homologous recombination repair in 
ESCC.60 Luminespib, an HSP90 inhibitor, exhibits a strong anti-
proliferative effect for ESCC, hinting at it may become a new 
choice for the treatment of ESCC.61 Therefore, the results of our 
study may hold promise in guiding decisions related to immuno-
therapy and chemotherapy, with the potential to inform clinical 
treatment strategies for patients with ESCC.

Our research has some limitations. First, for data selection 
bias, matching and sensitivity analyses can be further used in 
the future to reduce possible selection bias in the database. 
Then by comparing the results with external validation, the 
impact of selection bias on the findings can then be assessed 
and the generalizability, and reliability of the results can be 
improved. Second, our study was retrospectively analyzed, and 
the outcomes were only verified using the TGCA and GEO 
data sets, which requires more prospective studies and a large 
cohort of clinical tissue samples to validate the identified sig-
natures and assess their relevance to immunity, prognosis, and 
resistance. In the future, our team keep on to explore this field. 
Finally, though P. gingivalis is related to the occurrence and 
development of ESCC, and the infection rate of P. gingivalis is 
about 60% due to individual differences and the influence of 
tumor microenvironment on micro-organisms. Hence, we 
established the prognostic model only for ESCC patients with 
P. gingivalis infection.

Although there are some limitations in our study, this does 
not affect the value of this study. First, the effect of IRRGs on 
the prognosis of P. gingivalis-infected ESCC patients has 
never been reported. Second, the predictive model is beneficial 
for more accurately predicting the prognosis of P. gingivalis-
infected ESCC patients and improving the survival rate of 
patients. In the future, we can conduct more detailed microbi-
ome analysis for patients with different subtypes of ESCC, as 
well as more in-depth studies combined with clinical data to 
verify the association between oral microbes and ESCC. In 
brief, our study not only reveals their role in ESCC but also 
lays the foundation for the early diagnosis and precision medi-
cine of tumor.

Conclusions
In conclusion, we successfully developed a new predictive 
model for patients with ESCC, leveraging 4 IRGGs with 

prognostic significance. Moreover, our research also assessed 
the potential of the risk model to predict infiltration of immune 
cells and sensitivity to chemotherapy, thereby enhancing its 
clinical utility and providing potential biomarkers for clinical 
therapeutic strategies.
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