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Abstract

Objective. Define and contrast acute pain trajectories vs. the aggregate pain measurements, summarize appropriate
linear and nonlinear statistical analyses for pain trajectories at the patient level, and present methods to classify indi-
vidual pain trajectories. Clinical applications of acute pain trajectories are also discussed. Setting. In 2016, an expert
panel involving the Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and
Networks (ACTTION), American Pain Society (APS), and American Academy of Pain Medicine (AAPM) established
an initiative to create a pain taxonomy, named the ACTTION-APS-AAPM Pain Taxonomy (AAAPT), for the multidi-
mensional classification of acute pain. The AAAPT panel commissioned the present report to provide further details
on analysis of the individual acute pain trajectory as an important component of comprehensive pain assessment.
Methods. Linear mixed models and nonlinear models (e.g., regression splines and polynomial models) can be ap-
plied to analyze the acute pain trajectory. Alternatively, methods for classifying individual pain trajectories (e.g., us-
ing the 50% confidence interval of the random slope approach or using latent class analyses) can be applied in the
clinical context to identify different trajectories of resolving pain (e.g., rapid reduction or slow reduction) or persist-
ing pain. Each approach has advantages and disadvantages that may guide selection. Assessment of the acute pain
trajectory may guide treatment and tailoring to anticipated symptom recovery. The acute pain trajectory can also
serve as a treatment outcome measure, informing further management. Conclusions. Application of trajectory
approaches to acute pain assessments enables more comprehensive measurement of acute pain, which forms the
cornerstone of accurate classification and treatment of pain.
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Introduction

In 2016, an expert panel involving the Analgesic,

Anesthetic, and Addiction Clinical Trial Translations,

Innovations, Opportunities, and Networks (ACTTION),

American Pain Society (APS), and American Academy of

Pain Medicine (AAPM) established an initiative to create

a pain taxonomy, named the ACTTION-APS-AAAPM

Pain Taxonomy (AAAPT), for the multidimensional clas-

sification of acute pain, defined as pain lasting up to 7

days after the inciting event [1, 2]. Accurate pain mea-

surement is the cornerstone of the AAAPT classification

of acute pain [1] and the AAAPT identifies “temporal

trajectories (i.e., characteristic changes in a given pain
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measure over time during the acute phase)” as one of the

common features of acute pain. Measurement of the tem-

poral trajectory of pain is therefore essential for compre-

hensive assessment, accurate diagnosis, and a tailored

approach to the treatment of acute pain [1]. Thus, the

AAAPT panel commissioned the present report to pro-

vide further detail on analysis of the individual acute

pain trajectory.

Traditionally, acute pain typically has been measured

by using a single pain intensity rating with varying

lengths of recall (e.g., pain intensity in the past 24 hours

or pain in the past 7 days) or by using multiple pain rat-

ings that are presented as an aggregate pain measurement

score to reflect the magnitude or severity of acute pain

(e.g., average or highest pain during the acute recovery

period) [3]. Although this approach provides a simple

summary of the magnitude of pain intensity, there are ob-

vious limitations, including the loss of understanding of

the temporal course of pain intensity, which is a key di-

mension of the pain experience. With the ubiquity of

electronic medical records and internet-enabled devices,

it is now increasingly common and feasible to measure

the intensity of acute pain at multiple time points in clini-

cal and research contexts, in both the inpatient and out-

patient settings. This provides an opportunity to apply

more sophisticated statistical analysis methods examin-

ing the acute pain trajectory at the patient level, to glean

a nuanced understanding of the pain experience and how

it evolves over time.

The aims of this article are therefore to 1) define and

contrast acute pain intensity trajectories vs. traditional

aggregate pain intensity measurements, 2) summarize

appropriate linear and nonlinear statistical analyses for

pain trajectories at the individual patient level, and 3)

present methods to classify individual pain trajectories.

Finally, the application of pain trajectory approaches to

other dimensions of pain recovery and the clinical utility

of incorporating pain trajectories in pain assessment are

discussed. Based on the AAAPT definitions and intent,

the present article focuses on acute pain trajectories dur-

ing the first week after surgery or the initiating event,

with the goals of informing future AAAPT working

groups that may use the taxonomy to develop diagnostic

criteria for acute pain conditions and informing future

acute pain research, including clinical trials.

Analysis of Pain Trajectory

A pain trajectory is defined as a longitudinal representa-

tion showing dynamic changes in an individual patient’s

pain measures over time [4, 5]. By making strict assump-

tions and using simple statistical models, as few as three

pain measurements can be sufficient to create a pain tra-

jectory for a patient [4, 6]. Intuitively, though, pain

measurements taken from more than three occurrences

allow greater flexibility in both the statistical modeling

and what can be learned about an individual patient’s

pain scores over time [6]. For example, in the postsurgi-

cal context, pain intensity assessments collected on the

numerical rating scale (NRS; 0–10) are typically obtained

as standard of care in recovery immediately after surgery,

frequently during the first 24 hours after surgery, and sev-

eral times a day for the duration of the inpatient stay. In

an acute postsurgical pain study, a pain trajectory can be

created from these repeated assessments of a patient’s

pain intensity over several postoperative days (PODs).

In addition to being treated as a continuous variable,

pain intensity ratings can also be categorized as mild,

moderate, or severe pain, or they can be classified as re-

solved vs. nonresolved. These parameters can then be

modeled as binary or ordinal outcomes over time [7].

Cut points for pain intensity vary by patient population

and pain condition, and there is no standard cutoff across

all pain studies [7, 8]. For example, in the acute postoper-

ative setting, cutoff points of 0–2 for mild pain, 3–4 for

moderate pain, and 5–10 for severe pain on a 0–10 NRS

have been proposed on the basis of pain-related interfer-

ence [8]. There are also varying definitions of pain resolu-

tion in the literature [7, 9, 10]. Althaus et al. defined pain

resolution after surgery as when the individual patient’s

slope term and the associated confidence limits were neg-

ative (i.e., pain intensity is improving) [9]. On the other

hand, Downie et al. defined resolution of acute low back

pain to have occurred when pain intensity reached a

score of �1 on a 0–10 NRS (i.e., minimal pain) [7].

Using an aggregate measure (e.g., average pain, high-

est pain) entails simpler statistical analysis and provides

simpler interpretations. However, an individual’s pain

trajectory is more than just a single number. Analysis of

the entire trajectory of pain over time provides additional

information on the pattern of pain experience and can

also increase the precision of the pain measurement.

Griffioen et al. analyzed acute pain measurements after

lower-extremity injury both as the average of pain inten-

sity scores during hospitalization (up to 60 hours) and as

pain trajectories derived from these same scores [11].

Example trajectories from four patients with similar av-

erage pain intensity scores (5.17 to 5.25 on the 0–10

NRS) and corresponding pain trajectories are presented

in Figure 1. As shown, one of the patients experienced

improvement in pain (pain intensity reduced from 7 to 3)

within 40 hours after admission, whereas another

patient’s scores increased dramatically (1 to 8), and two

patients’ scores did not change. Simply using an average

pain intensity score yielded similar scores across patients,

thereby categorizing the four patients as having similar

pain experiences. This averaging masks the individual

patient’s rate and direction of change in pain scores, as

well as the duration of acute pain [4]. In contrast, analyz-

ing the data longitudinally allows for addressing addi-

tional questions, such as: 1) How do an individual

patient’s acute pain scores change over time? 2) Does ev-

ery patient experience a similar pain trajectory, or do the

trajectories of pain differ substantially among patients
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[6]? 3) Can the differences in these changes in pain trajec-

tories over time be predicted? 4) On the basis of the tra-

jectory of acute pain intensity in the hospital or during

the first week, can the changes in pain scores from 1 week

to 1 month be predicted [6]?

There are multiple statistical analysis approaches to

analyzing the pain trajectory longitudinally to account

for within-subject correlation. A simple method is to fit a

separate ordinary least squares (OLS) regression line on

each subject and use the resulting intercepts and slopes

from the model in a follow-up analysis. However, analyz-

ing the slopes from this model ignores within-subject var-

iability in pain intensity scores and does not factor other

independent variables, such as a patient’s age and sex,

into the analysis. Repeated-measures analysis of vari-

ance, multivariate analysis of variance, and generalized

estimating equations are other statistical methods used in

analyzing longitudinal data, but they are generally not

appropriate for estimating individual pain trajectories be-

cause they focus on estimating population-level mean

patterns rather than individual-level pain patterns. In ad-

dition, they generally require every person’s pain inten-

sity to be assessed at the exact same time points. A linear

mixed model (LMM) for normally distributed data, on

the contrary, is an appropriate way to analyze longitudi-

nal pain data to obtain patient-level pain trajectories and

allow for irregularly spaced measurement times. The gen-

eralized LMM can be implemented for non–normally dis-

tributed data, such as count data (Poisson mixed models)

or dichotomous data (logistic mixed models). The com-

ments in the present article focus specifically on normally

distributed data, although much of the commentary

could be generalized to generalized LMMs.

Trajectory analyses have been used in the acute and

chronic pain literature in recent years, with the most

commonly used methods being mixed-effect models [4,

5, 12–20] and latent class models [7, 9, 21–29]. The fol-

lowing section focuses on the linear mixed-effects model

(also referred to as linear mixed-effects regression, vari-

ance components models, multilevel models, hierarchical

linear models, mixed models, or two-stage models) for

application to the intensity of acute pain, and it outlines

ways the linear mixed-effects model can be used to an-

swer pain-related research questions of interest. Readers

are referred to Singer and Willett [6], Hedeker and

Gibbons [30], Fitzmaurice, Laird, and Ware [31], or

Long [32] for more details on the range of longitudinal

data analysis methods with mixed models.

Linear Mixed Models

LMMs are used to estimate both the between-patient and

within-patient information, which makes them more

suitable for studying the intensity of acute pain where

pain intensity is measured repeatedly over time [33]. A

mixed model by definition contains both fixed and ran-

dom effects [34]. The fixed effects are generally used to

measure the population-level between-subject effects,

and the random effects are generally used to measure the

subject-specific effects [33]. For an acute postsurgical

pain study, a population intercept can be interpreted as

the initial pain intensity level during the first day of sur-

gery (or average pain threshold). A population slope term

refers to the average pain trajectory path over time [4,

12]. However, when the pain intensity measurements are

collected from multiple patients at multiple time points,

the data contain both between-patient and within-patient
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Figure 1. Pain trajectories for individuals with similar mean pain scores after lower-extremity injury. Each line depicts a participant’s
pain trajectory, and although each mean pain score is similar, the pain trajectory is different, demonstrating that patients with simi-
lar mean pain scores can have decreasing pain (negative trajectory), stable pain (flat trajectory), or increasing pain (positive trajec-
tory). Reprinted from [11] with permission from Elsevier.
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information. To obtain subject-specific trajectories, a

random intercept for subject and a random effect for

time should be included in the model, which are some-

times referred to as random intercept and slope models.

An example of an LMM for pain intensity score yit from

patient i at recorded time t is written as follows:

yit ¼ b0 þ b1timeit þ b2Xit þ b0i þ b1itimeit þ eit; (1)

where b0 and b1 are intercept and slope terms, respec-

tively, for the population; b2 is the regression coefficient

for any covariate X variable that may be included in the

model (such as age and sex of the patient); b0i is the ran-

dom intercept for patient i, and b1i is the random slope

for patient i. The variable timeit is the time of assessment

(such as baseline, POD1, . . ., POD7 after surgery), and

within-subject variance is captured by the random mea-

surement error term, eit � Nð0; r2
e Þ.

The random effects are each assigned a distribution to

follow. It is expected that there are individuals who will

report more pain intensity and individuals who will re-

port less pain intensity than the average person in the

population. To account for these individual-specific dif-

ferences, reflected by how far each individual deviates

from the average and what the variance is between the

individuals, it is assumed that the differences between in-

dividual pain assessment scores at baseline (time¼0) fol-

low a normal distribution with mean 0 (half are above

average and half are below average) and variance r2
0

(how spread out scores are at baseline); b0i � N 0;r2
0

� �
.

It is also assumed that some individuals have steeper or

shallower trajectories than average. Pain resolution, espe-

cially after surgery, may change as a function of time,

and the rates of resolution vary randomly among individ-

uals [35]. Therefore, a normal distribution with mean 0

(some slopes are steeper and some are shallower) and

variance r2
1 (how spread out the differences in slopes are)

is again assumed; b1i � N 0;r2
1

� �
. The correlation be-

tween subject-specific intercept and subject-specific slope

is specified by q. It may be the case that resolution of

acute pain is faster for those patients with higher pain in-

tensity scores during the first postoperative assessment

and the resolution is slower for those patients with lower

pain intensity scores at the initial assessment. This would

be captured with a negative correlation between the in-

tercept and the slope.

The flexibility of LMMs allows for their use with hier-

archical linear modeling. The advantage of using hierarchi-

cal linear modeling is that it can facilitate some more

pragmatic analyses, where patients may receive different

pain medications throughout their hospital stay given their

reported pain intensity and the treatment protocol. For ex-

ample, the LMMs may be written to incorporate multiple

correlated outcomes, such as reductions in acute pain in-

tensity and in opioid consumption, or to accommodate

time-varying covariate information. More details on hierar-

chical linear models can be found in Singer and Willett [6].

Subject-Specific Trajectories
A random intercept allows patients to have their own

baseline pain intensity levels, which can be calculated

from Equation 1 by adding together the population inter-

cept and the subject-specific random intercept: b0 þ b0i.

The random slope is included to allow each individual to

have his or her own trajectory of pain because some peo-

ple will have steeper curves than others, as computed by

summing the population slope and the subject-specific

random slope: b1 þ b1i. Each intercept and slope can be

modeled as a function of other measurements (e.g., sex,

existing chronic pain, or current opioid consumption)

[6], with the end goal of estimating each patient’s level of

pain and the dynamic response to the surgical trauma

and stressors. Using a mixed-effects model for such longi-

tudinal data assumes that patients respond to the surgery

uniquely, and therefore the spread in pain intensity scores

not only comes from the between-patient differences but

also depends on a specific patient’s variation in response

to surgery and related trauma (within-patient differences)

[33, 36]. In Figure 2, the left panel shows an example of

a random intercept model, and the right panel shows an

example of a random intercept and slope model fit to the

same data from two individuals. The random intercept

model only shifts the individual-specific intercept (pain at

the time of initial assessment) up or down. Although it

captures much of the within-subject correlation, it may

not adequately capture the true trajectory. The random

intercept and slope model, on the other hand, does cap-

ture the individual-specific pain trajectories, both in

terms of initial pain and the pain change over time. In

Figure 2A, it may look like patient 1 had a higher pain in-

tensity score than patient 2 at baseline, but the rate of im-

provement in pain was the same for both patients.

However, in Figure 2B, it can be seen not only that the

baseline pain intensity scores were different, but also that

the improvement in pain was faster for the first patient.

Predicted Random Effects
The values for the individual-specific random effects b0i

(random intercept) and b1i (random slope) are predicted

by using model-based best linear unbiased predictors,

which are also known as empirical Bayes estimates.

These empirical Bayes estimates are weighted averages of

1) the OLS regression estimate of a regression model fit

only to that individual’s pain intensity scores and 2) the

population-level estimate fitting a population-level re-

gression model that ignores individual trends. In

Figure 3, four hypothetical patient scenarios are shown,

with 3 to 7 pain intensity measurements taken at differ-

ent time points during PODs 1 through 7. For example,

in Figure 3A, pain intensity was measured on PODs 1, 2,

and 7, whereas in Figure 3D, pain was measured on each

of the 7 PODs. The OLS line (dotted line) shows a regres-

sion line fit to the severity of pain from a single individ-

ual, which provides the best-fitting growth function for
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an individual but ignores all available covariate informa-

tion (e.g., patient’s age and sex). The solid line provides a

population-level estimate that includes covariates but

ignores the subject-specific trends. Note that the solid

line is the same for all four patient scenarios. The dashed

line is the resulting model estimated weighted average be-

tween the other two curves (empirical Bayes). The more

pain assessments at multiple time points an individual

Figure 3. Four hypothetical patient scenarios with 3 to 7 postoperative pain measurements demonstrating predicted random
effects. Dotted line: an OLS regression fitted only to the subject’s pain assessments but ignoring all available covariate information.
Solid line: a population-level estimate including covariates but ignoring the subject-specific trends. Dashed line: the model esti-
mated weighted average of the individual-specific line and the population-averaged line (empirical Bayes).

Figure 2. Pain trajectories fitted by LMMs. Depicted in (A) are the trajectories for two individuals resulting from a random intercept
LMM. Given the same data points for two individuals, the lines in (B) are the trajectories resulting from a random intercept and ran-
dom slope model.
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has, and the less within-subject variability in pain inten-

sity scores, the closer the model predicted line will be to

the subject-specific OLS line. Readers interested in more

detail on this approach can refer to textbooks on longitu-

dinal data analysis [6, 30–32].

LMM Example
Bayman et al. conducted a prospective observational

study with 112 patients undergoing thoracic surgery [3,

37]. Patients were enrolled 1 week before their thoracic

surgery and were followed up for 6 months. Pain inten-

sity scores were collected �1 week before surgery, daily

during the first 3 PODs, and at 3 and 6 months after sur-

gery. Preoperative pain intensity scores were collected in

this study, but they were mostly equal to 0, resulting in

no variance at the intercept. Accordingly, 334 pain

assessments on PODs 1, 2, and 3 from 112 individuals

were included in this example. The LMM included fixed

effects for PODs 1 to 3, type of surgery (thoracotomy vs.

video-assisted thoracoscopic surgery [reference group]),

and an interaction between POD and type of surgery, as

well as a random intercept and random slope for subject.

No significant main effect of type of surgery (bb ¼ 0:19,

t110 ¼ 0:27, P¼ 0.79) and no interaction between POD

and type of surgery (bb ¼ 0:20, t110 ¼ 0:68, P¼ 0.50)

were found. The time effect (POD) was significant

(bb ¼ �1:10, t95 ¼ �7:08, P< 0.0001). On average, the

slope for thoracotomy was –0.90 (standard

deviation¼ 0.81, range¼ –3.09 to 0.50), and the slope

for video-assisted thoracoscopic surgery was –1.10 (stan-

dard deviation¼ 0.78, range¼ –2.97 to 1.11). In other

words, patients undergoing video-assisted thoracoscopic

surgery experienced a slightly faster change in pain, but

this effect was not significant (i.e., nonsignificant interac-

tion between POD and type of surgery). The correlation

between the slope and intercept was –0.64, indicating

that those patients with higher initial pain intensity

scores had faster decreases in pain over time.

Nonlinear Models

Although a linear trend can be a reasonable assumption

for the pain trajectory, many situations call for the ability

to include other nonlinear trajectory shapes. Ways to in-

clude nonlinear trajectories in the model, including re-

gression splines, polynomial fits, and other less frequent

approaches, will be briefly summarized.

Regression Spline
A regression spline can be used to change the trajectory

at a specific point in time, known as a knot. The idea is

that there is a linear trend up until some prespecified

point in time, and then the linear trend will change. In

the acute postoperative pain setting, pain intensity scores

may not be linear during the first 7 days, and the time of

epidural removal and time of discharge may be important

points when pain scores may shift. By including a regres-

sion spline, the model will include slopes both before and

after the knot. Just as in a traditional linear model, the

slope measures the rate of change in pain, and a different

rate after each knot can be included [38]. A regression

model with a single spline could capture a patient’s pain

reduction with an initial straight line up until the first

knot and another straight line for the remaining PODs

assessed. In the acute pain context, this may capture an

initial rapid decrease followed by a subsequent slower

recovery.

Regression Spline Example
In an example taken from the chronic pain literature,

Axen and Bodin used text messages to collect weekly

pain intensity scores for 6 months from patients with low

back pain [39]. On the basis of the pain measurements

from the first 18 weeks and using a single knot, they

grouped patients into four clusters (Figure 4). It can be

seen from this figure that knots are placed at different

time points for different clusters. For example, for the 51

patients who are represented with dashed lines and

circles, pain intensity scores reduced dramatically during

the first 5 weeks, and improvement was slower for the

remaining 13 weeks. On the other hand, for the 16

patients who are represented with solid line and triangles,

pain reduction happened slowly during the first 10 weeks

and tended to increase slightly between weeks 10 and 18.

Polynomial Models
Another approach to measuring changes in pain trajec-

tory is polynomial trends in time. Polynomial fits include

quadratic functions, cubic functions, and more. With a

polynomial fit, a general curve pattern in the pain trajec-

tory can be fitted very well. For example, Kannampallil

et al. analyzed the acute pain trajectories of 7,762

patients receiving inpatient care who presented with an

initial pain intensity score of >4 (0–10 NRS) [5]. They

fitted a polynomial curve for the pain intensity data dur-

ing the first 2 PODs. Both the observed data with geo-

metric smoothing and the polynomial regression model

curve fitted to the same dataset are presented in Figure 5.

It can be seen from this figure that the line with polyno-

mial fit (dashed line) better shows the fluctuation of the

pain intensity scores over time than does the geometric

smoothing. In general, a polynomial model works well to

capture pain intensity scores that do not follow a straight

line over time. A critical downside to polynomial fits is

that the variables (linear and quadratic terms) are highly

correlated with each other, which impacts the estimation.

One alternative approach is to use orthogonal polyno-

mials [30]. These are designed to model the structure of

polynomials, but the linear and quadratic terms are no

longer correlated. The primary downside to polynomials

is that the coefficients themselves are largely

uninterpretable.
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Figure 4. Pain trajectories of low back pain patients from four clusters were presented with a single knot per group. Reprinted from
[39] under Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

Figure 5. Pain scores (7,762 encounters) of 5,418 hospitalized adult inpatients admitted with pain scores >4 with geometric smooth-
ing (red solid lines) and fitted curve from polynomial regression model (blue dashed line). X-axis is the time since the initial pain
measurement (days). Y-axis is the pain score (0–10 NRS). Reprinted from [5]. The Creative Commons license does not apply to this
content. Use of the material in any format is prohibited without written permission from the publisher, Wolters Kluwer Health, Inc.
Please contact permissions@lww.com for further information.
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Other Nonlinear Approaches
One can also consider fractional transformations on the

time variables, known as fractional polynomials [32].

They provide additional shape for nonlinear trends, with

far fewer terms than polynomials. This is particularly im-

portant when there are a small number of pain assess-

ments. Fractional polynomials are also useful when a

curve appears to plateau.

Other options would be to use nonlinear mixed mod-

els [40], which fit specific nonlinear functions to the data

and include random subject effects on each parameter in-

volved with the nonlinear functions. Examples are expo-

nential functions or sigmoidal functions, and two

possible functions are the Gompertz curve or a four-

parameter logistic function. Bayesian models might also

be considered for longitudinal growth curves. Different

modeling options, with advantages and disadvantages,

are presented in Table 1.

Considerations for Linear and Nonlinear
Models

Residual Correlation
Linear and nonlinear mixed models capture within-

subject correlation through the inclusion of the random

effects. However, it is possible that additional correlation

needs to be accounted for, as pain assessments collected

from the same patient close together in time are often

more highly correlated than are measurements taken fur-

ther apart in time [41]. The mixed-effects model allows

modeling the variance structure in addition to the ran-

dom effects and therefore has more flexibility than the

fixed-effect model. A common option would be the

autoregressive errors of order one, where the correlation

between measurements decays exponentially with time.

For example, two pain intensity scores measured 1 day

apart have correlation q, and 2 days apart they would

have a correlation of q2, and so on.

Model Selection
Here, the focus is on the selection of random effects

rather than the more common use of model selection for

choosing fixed effects, as performed in traditional regres-

sion modeling. There are various ways to decide on the

number of random effects to include in the model [31,

42]. One common approach is to begin with no random

effects and then add random effects one at a time or to

begin with a model with maximum random effects and

reduce them one at a time. The comparisons at each step

are typically between nested models and performed with

a likelihood ratio test. This procedure can lead to prema-

ture stopping or result in comparisons of interest that are

not nested and thus unable to be compared with likeli-

hood ratio tests. Alternatively, best-subsets approaches,

Table 1. Approaches to summarizing multiple pain assessments per patient

Model Advantages Disadvantages

Fixed-effects model • Estimating the overall pain trajectory at the popula-

tion level.
• Only information about the between-patient

relationship.
• Yields estimates of the population intercept (initial

pain level during the first day of surgery) and popula-

tion slope (average pain recovery path over time for

the average patient).

• Does not allow subject- specific estimates.
• Does not allow inferences on within-patient level.

Linear mixed-effects models • Designed to estimate both the between-patient and

within-patient information.
• Accounts for the within-subject correlation due to re-

peated pain scores from the same subjects.
• Using random intercept allows patients to have their

own baseline pain levels.
• Using random slope allows individuals to have their

own trajectories of pain.
• Subjects do not have to be measured at the same time

points.

• An assumption of linear trajectory may not be

reasonable.

Regression spline • Allows changing the trajectory at a specific point in

time using knots.

Polynomial trends in time • General curve pattern in the pain trajectory is fitted

very well by using quadratic or cubic functions or

higher-order terms.

• Variables are highly correlated with each other,

which impacts the estimation.

Orthogonal polynomial • Designed to model the structure of polynomials. • The coefficients are largely uninterpretable.

Fractional transformations • Provide additional shape for nonlinear trends when

there are a small number of pain assessments.
• Useful when a curve appears to plateau.

• Need to decide what the transformation “a” value

is.

Nonlinear models • Better-fitted curves that are not straight over time or

that reach a threshold and level off.

• Difficult to obtain reliable estimates as the number

of parameters increases beyond two.

Bayesian models • Can be used in any of the aforementioned scenarios.
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such as Mallow’s Cp, Akaike’s information criterion, the

corrected Akaike’s information criterion, and Schwarz’s

Bayesian criterion, permit greater flexibility by compar-

ing non-nested models and do not rely on performing re-

peated significance tests. The information criterion

approaches are calculated as the maximum likelihood

score, but they penalize the score for models that include

too many effects, making the model too complex, and

are shown to better preserve Type I error than do likeli-

hood ratio tests [42]. The process for choosing the opti-

mal random effects is as follows: First, a model that has

the maximum number of fixed effects along with the ran-

dom effects of interest is fitted. Then, other models with

the same fixed effects and a different set of random

effects are fitted. After fitting models with the various

sets of random effects, the model that yields the lowest

information criterion value is chosen as the final and

best-fitting model.

Missing Data
The context of acute pain intensity is particularly prone

to irregularly collected or missing data. An additional

benefit of using the LMM is that subjects’ pain scores are

allowed to be missing at different time points, and thus

these models provide better efficiency. LMMs have the

assumption that data are Missing at Random. For a pain

study, this assumption can be illustrated with the exam-

ple of a patient whose pain intensity is measured daily

during the first 3 PODs, at 1-week follow-up, and at 2-

week follow-up, but the patient missed a 10-day follow-

up. The LMM assumes a straight line connecting the six

follow-up data points and that the missing day 10 pain

intensity assessment would fall in line with the trajectory

computed from the other five observed data points. It is

recommended that, at a minimum, baseline differences

between subjects with and without missing data need to

be tested. If baseline differences exist, the model may

yield biased results.

Classification of Individual Pain Trajectories

Individual pain trajectories can be classified with differ-

ent methods. One simple approach is to use the random

slope term from individual regression models and sort

them into decreasing, stable, and increasing pain groups,

as recommended by Chapman et al. [4]. Other

approaches are to use latent class analyses (LCA) or la-

tent transition analyses (LTA). These three methods are

introduced in the following section.

Chapman: 50% Confidence Interval of Random

Slope
Depending on the goals of the study, clinicians or

researchers may want to classify patients into pain trajec-

tory groups, such as decreasing pain intensity, stable pain

intensity, and increasing pain intensity. Chapman et al.

[4] proposed using 50% confidence intervals (CI) for

each patient’s random slope term to create such clusters

[4]. When both limits of the CI are negative, subjects can

be classified in the decreasing pain intensity (negative

slope) group; when both limits are positive, they are clas-

sified in the increasing pain intensity (positive slope)

group. The remaining patients are classified in the stable

pain intensity (flat slope) group.

Chapman has applied this approach in a number of

clinical populations in both the inpatient and outpatient

settings, including in postoperative patients and patients

presenting with acute pain to the emergency room [4, 43,

44]. For example, Chapman et al. measured 6 days of

pain intensity scores of 502 patients undergoing elective

surgery [4]. Patients were then classified on the basis of

their random slope terms, as defined above. Mean trajec-

tory scores were plotted for all 502 patients, as well as

for patients in the decreasing pain (n¼ 314, 63%), stable

pain (n¼ 127, 25%), and increasing pain (n¼ 61, 12%)

intensity groups, as presented in Figure 6. In addition,

Chapman et al. reported intercept and slopes for each

group of patients, as presented in Table 2. Without the

classification of these three pain trajectories (Figure 6D),

Figure 6. Contrasting patterns of postoperative pain. (A)

depicts the mean postoperative trajectory for all patients. (B)

shows the mean trajectory for those patients classified as hav-
ing decreased pain. (C) displays the mean trajectory for those
patients who had stable pain over 6 days. (D) demonstrates the
mean trajectory for those patients who had increasing pain
over 6 days. Reprinted from [4] with permission from Elsevier.
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it may be concluded that patients experienced improve-

ment in pain intensity during the 6 days after elective sur-

gery. In addition, on average, the severity of pain

decreased by 0.31 6 0.45 units (0–10 NRS) per day dur-

ing the 6 days (see slope for the whole sample in Table 2).

However, breaking patients down into three groups on

the basis of trajectories reveals key differences among the

groups. For example, for patients in the decreasing pain

group, the initial pain was higher (intercept:

6.05 6 2.11), but they experienced more rapid reduction

over time (slope: –0.58 6 0.32). Patients in the stable

pain group had an initial pain score of 5.20 6 2.06, and

it did not change during the 6 PODs. On the other hand,

for 12% of the patients, pain was initially reported as

4.02 6 2.07 and increased 0.41 6 0.24 units per day dur-

ing the next 6 days [4]. Chapman et al. [4] also compared

the standard error of the mean from 1) average pain from

6 days, 2) intercept of the pain trajectory, and the 3) slope

of the pain trajectory. They reported that the pain trajec-

tory analyses fit the data better than did the point esti-

mate of pain (average pain) in terms of a smaller

standard error of the mean [4].

Others have subsequently applied Chapman’s ap-

proach to classify acute pain trajectories [45]. For exam-

ple, Althaus et al. studied acute pain trajectories for 245

patients undergoing elective surgery [9]. Daily pain inten-

sity assessments were collected starting the day before

surgery and during the first 5 PODs. Using the latent

growth curve modeling and following Chapman’s [4] rec-

ommendations, Althaus et al. created individual pain tra-

jectories and classified patients into the decreasing,

stable, and increasing pain intensity groups.

Relationships were then examined among acute pain tra-

jectories, chronic pain status, and psychosocial factors.

These authors demonstrated that both the patient-

specific intercept and slope of postoperative pain trajec-

tory were independently associated with postsurgical

pain at 6 months [9].

Latent Class Analyses
Another way to identify groups on the basis of pain tra-

jectories is to use LCA. The basic premise of LCA is the

grouping of individuals into unobserved subgroups.

Suppose that an LMM had been fitted and individual

acute pain intensity curves were determined. Assume the

interest is to statistically determine individuals with quick

pain reduction, medium pain reduction, or slow to no

pain reduction. A latent variable would be included for

group membership, and individuals would be classified

into one of those growth groups. In contrast to

Chapman’s approach, which predetermines the number

of clusters to three, the number of clusters with the latent

class growth curve analysis can be variable and selected

on the basis of the statistical methods comparing models

with different numbers of potential clusters. Generally,

three to eight potential clusters are tested [7]. The num-

ber of clusters can be decided for a combination of statis-

tical measures, such as likelihood-ratio statistics (G2),

Akaike’s information criterion, and Schwarz’s Bayesian

criterion. However, clinical interpretation (i.e., do the

trajectory patterns make sense clinically?) and model par-

simony must also be considered [46]. The Bayesian

framework is a natural way to perform these latent class

growth models because of the hierarchical complexity of

the data [47–49].

LCA Example
Latent class growth curve analyses for repeated pain in-

tensity measurements have been used to classify acute

pain trajectories after hip arthroplasty [28]. Page et al.

[28] created pain trajectories for movement-evoked pain

intensity ratings measured every 4 hours during the first 5

PODs, as secondary data analysis of daily pain intensity

data collected as part of a drug trial. Patients were clus-

tered into four acute postoperative pain trajectories.

Patients in these four clusters presented with distinct pat-

terns of pain intensity in the initial period after surgery

and of subsequent rates of change in pain intensity. For

example, patients in one cluster were characterized by

low to moderate pain intensity in the initial period,

which remained constant until POD 5. On the other

hand, patients in another cluster had severe pain intensity

in the initial period but experienced a quick decrease for

the rest of the observation period. Subsequently, the

authors reported that the acute pain trajectory group was

associated with pain intensity and anxiety at 6 weeks but

not at 6 months. For examples of the application of LCA

to chronic pain, see Downie et al. [7], Page et al. [20],

Kongsted et al. [26], Toyoda et al. [27], Kongsted et al.

Table 2. Acute postoperative pain trajectories after elective surgery. Reprinted from Chapman et al. [4].

Group N Sample (%) Intercept Mean 6 SD Slope Mean 6 SD

Whole sample 502 100% 5.59 6 2.20 –0.31 6 0.45

Decreasing pain 314 63% 6.05 6 2.11 –0.58 6 0.32

Stable pain 127 25% 5.20 6 2.06 –0.04 6 0.14

Increasing pain 61 12% 4.02 6 2.07 0.41 6 0.24

SD¼ standard deviation.

Mean pain trajectories are provided for three groups on the basis of the classification of random slope, as well as for the whole sample
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[50], Axen and Leboeuf-Yde [51], Dunn et al. [21], and

Morze et al. [24].

Latent Transition Analyses
Another statistical analysis approach that can be used for

repeated pain measurements is the LTA [46]. In addition

to the questions that can be addressed with the LCA,

LTA enables other questions to be addressed, such as: 1)

Is there a change between different pain resolution clus-

ters over the assessment time? 2) If a patient is in a slow

pain resolution state during the first 3 PODs, what is the

probability that the patient will be in the same cluster at

POD 4, or what is the probability that the patient will

transition to a quick resolution state [46]?

The selection of the number of clusters in LTA is simi-

lar to that in LCA and can be made with Akaike’s infor-

mation criterion and Schwarz’s Bayesian criterion

statistics and based on the model parsimony [46]. In ad-

dition to latent status prevalence (e.g., 20% of the

patients in the first cluster, 30% in the second cluster)

and item-response probabilities for each latent status

[52], transition probabilities from one latent status to the

next are calculated in LTA. Using LTA to assess the tran-

sition of the latent status at discharge (i.e., the acute pain

period) to the status at a 2-week follow-up visit (i.e., the

subacute pain period) can increase understanding of pain

resolution vs. persistence [1]. Applying LTA to assess

pain cluster status at 3 months to 6 months after surgery

may be useful for understanding the development and

maintenance of chronic pain.

Selection of the Approach to Acute Pain

Trajectory Classification
The approach to pain trajectory classification described

by Chapman et al. [4] can be applied in a clinical setting

to inform treatment decisions, as outlined below. For the

classification of individual pain trajectories in the re-

search context, it is recommended that LCA be per-

formed with various numbers of clusters. Then, an

informed decision about the number of clusters can be

made by the statistical model selection methods, instead

of simply using three clusters as per the method of

Chapman et al. For example, in the LCA study by Page

et al. described previously, patients were classified into

four clusters [28]. In three of the four clusters, pain inten-

sity scores decreased during the first 5 PODs. Using

Chapman’s three-cluster approach [4], these three clus-

ters would be included in the decreasing pain category.

However, initial pain (intercept) and slope of pain resolu-

tion were different in these three clusters. In the study by

Page et al., patients in Cluster 1 reported low-to-

moderate pain intensity in the initial period and had a

steady decline over the first 5 PODs. On the other hand,

patients in Cluster 2 reported severe pain intensity during

the initial period and quick and steady pain resolution

over time. Patients in Cluster 3 reported stable pain

intensity during the first 2 PODs and a rapid decrease

during PODs 3 to 5. Using LCA therefore provides more

statistical flexibility. If, in addition to creating clusters,

the interest is in the transition from one cluster to the

other, then LTA, instead of LCA, should be used. The

LTA model may be more appropriate for transitions

from one cluster in the acute or subacute phase to an-

other cluster in the chronic pain stage. Different methods

of classifying individual pain trajectories are summarized

in Table 3.

Other Considerations

Sample Size
Studies exploring the statistical power and sample size

for trajectory models are limited, and it is generally rec-

ommended that a simulation study be performed to de-

termine power and sample size when such models are

used. Hertzog et al. [53] applied the method of Satorra

and Saris [54], using simulations to test the statistical

power of latent growth models. Hertzog et al. considered

multiple scenarios under different effect sizes (in terms of

slope correlation of 0 to 1.0), number of repeated meas-

urements (3 to 20), and growth curve reliability (0.5 to

0.99) for the sample sizes of 200 and 500 patients. The

growth curve reliability was defined as the ratio of vari-

ance, determined by the latent growth curve to total vari-

ance [53]. These authors reported that a high growth

curve reliability is needed to reach high statistical power,

even for large sample sizes (n¼ 500) and four or five re-

peated measurements. For example, with five repeated

measurements when the growth curve reliability is 0.91,

a sample size of 500 patients would permit detection of

an effect size (slope correlation) of 0.4 with 80% power.

The statistical power increases as the sample size, effect

size, number of repeated measures, and growth curve re-

liability increase [53]. Nylund et al. [55] also showed

that the sample size of 500 would be sufficient to detect

correct number of latent classes. In contrast, Henson

et al. [56] showed that a sample size of 500 did not pro-

vide enough statistical power to identify the true number

of latent classes. For more information on studies explor-

ing the statistical model for trajectory models using simu-

lation, readers are directed to recent works by Gudicha

et al. [57], Park et al. [58], Dziak et al. [59], and Wolf

et al. [60].

Timing of Pain Assessments
In both clinical and research settings, repeated acute pain

measurements for individual patients may vary in num-

ber and timing. For example, in a postoperative acute

pain study, patients may have varying timing and fre-

quency of pain intensity assessments, which are influ-

enced by a number of factors, including type of surgery,

time of day, and frequency of medication administration.

The mixed-effects model provides the flexibility of
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having unevenly spaced time points, as well as a different

number of measurements per patient [6]. The goal of the

trajectory approach to multiple pain assessments is not to

yield a single summary pain rating but to create a longi-

tudinal trajectory of pain for each patient. Therefore, the

timing of the pain assessments does not need to be the

same for pain trajectory analyses [12]. More frequent

measurements are recommended when rapid, nonlinear

changes are expected [6]. This is in line with having more

frequent pain assessments during the earlier PODs, when

patients are in hospital with acute pain and receiving

pain treatments, and having less frequent pain assess-

ments after discharge.

Confounding Variables
There are multiple sociodemographic and clinical factors

identified in prior research that should be considered as

potential confounding variables in the evaluation of the

acute pain trajectory. The initial pain level and the ensu-

ing pain trajectory may differ depending on the sociode-

mographic and clinical factors for an individual. Several

acute postoperative studies have examined potential

associations of initial pain level and pain trajectory with

demographic factors (sex, age), premorbid pain (preoper-

ative pain intensity, underlying pain conditions) and opi-

oid use, and surgical factors (anatomic location of

surgery) [12, 17]. Although findings are mixed in the lit-

erature, female patients [9, 17] and patients receiving

chronic opioids [12] demonstrated a higher acute pain in-

tercept. Pain trajectories after a wide range of inpatient

surgeries were shown to decrease more rapidly in youn-

ger patients and to differ by anatomic location of the sur-

gery [17]. Effects of demographic variables,

comorbidities (e.g., premorbid pain and opioid use), and

acute medical and surgical variables may differ depend-

ing on the population and context and should be

considered as potential confounding factors (i.e.,

between-subjects fixed-effects variables) in analysis of

the pain trajectory.

The Trajectory of Recovery

Although the scope of this article is focused on the trajec-

tory of acute pain intensity, in isolation it provides an in-

complete depiction of recovery. It is crucial to consider

other pain dimensions alongside the acute pain intensity

trajectory to provide a comprehensive understanding of

trajectories of “recovery.” The AAAPT multidimensional

taxonomy includes the term “trajectory” both in

Dimension 2: Common Features (i.e., “temporal

trajectory” of acute pain) and in Dimension 4: Impact/

Functional Consequences (i.e., “the recovery trajectory”)

[1]. To evaluate the trajectory of functional recovery,

acute pain-related physical function can be assessed at

multiple time points, in addition to pain intensity meas-

urements [61]. Approaches discussed in the present arti-

cle can also be applied to these assessments of function/

impact to evaluate the recovery trajectory.

It has also been proposed that postoperative opioid

consumption should be analyzed in conjunction with

acute pain intensity, specifically to assess analgesic effect

in treatment trials for acute pain [62]. For example,

Silverman et al. developed a composite score as an inte-

grated assessment of pain intensity and opioid consump-

tion [63]. Similar approaches to those outlined in the

present article can be applied to analyze the trajectory of

opioid consumption and to cluster patients on this vari-

able separately or jointly with acute pain intensity.

Daoust et al. created 14-day pain trajectories after emer-

gency department visits for 372 patients [64]. Using a

group-based trajectory modeling approach, they identi-

fied six distinct pain trajectories, finding that pain

Table 3. Approaches to classification of individual pain trajectories

Method Advantages Disadvantages References

Chapman: 50% CI of random slope • Can be more easily applied to

patient data in clinical settings

to inform decision making.

• There might be more than three

trajectories.
• Under the decreasing pain

group, there might be quick res-

olution or slow resolution

trajectories.

Chapman et al. [4].

Latent class analyses (LCA) • Allows variable number of

clusters.
• Number of clusters is decided

on the basis of the statistical

measures and model

interpretability.

• Does not allow making infer-

ences for transitions between

clusters.

• Downie et al. [7]
• Dunn et al. [21]

Latent transition analyses (LTA) • In addition to the LCA model,

LTA also allows the inferences

for the transitions between

clusters over time.
• Transition probabilities from

one latent status to the next can

be calculated.

Collins & Lanza. [46]
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trajectory status was associated with patterns of opioid

consumption. Higher opioid consumption may be associ-

ated with higher pain intensity, or conversely, higher opi-

oid consumption may reduce the severity of pain and

mask the potential pain experience. It is therefore impor-

tant to consider both opioid consumption and severity of

pain in acute pain trajectory modeling.

Clinical Implications

Comprehensive pain assessment, which includes the tem-

poral trajectory of pain, forms the basis of the diagnosis

and treatment of acute pain [1]. Assessment of the longi-

tudinal course of acute pain therefore has important

implications for clinical decision-making. Understanding

the pattern of pain may aid in the diagnosis of the pain

condition and reveal exacerbating and alleviating factors,

thereby informing mechanism-based treatment selection.

Anticipated pain trajectory can inform the treatment

schedule and duration and thus enable better tailoring of

acute pain treatment to anticipated symptom recovery.

Once treatment is initiated, measuring the pain trajectory

can serve as a treatment outcome measure to quantify the

effectiveness of treatments and interventions for acute

pain, informing further management of the patient.

Numerous studies have used electronic medical

records data to examine acute pain trajectories [17, 28].

For example, using existing pain intensity assessments in

the medical record during the first 24 hours after nonam-

bulatory surgery, Tighe et al. created postoperative pain

trajectories based on sex, age groups (21 to 39, 40 to 64,

and �65 years), and type of surgery [17]. The authors

showed a consistent effect of age on postoperative pain

trajectories and concluded that older patients may ini-

tially report lower postoperative pain scores but have a

slower rate of pain resolution [17]. Similarly, in the emer-

gency department setting, classification of the individual

patient’s trajectory of acute pain as stable, decreasing, or

increasing (as discussed previously) can inform discharge

planning and duration of pain treatment [43]. Chapman

et al. suggested that to inform an individualized treat-

ment approach, acute pain trajectory status should be in-

cluded in the assessment and medical records of patients

evaluated for acute pain [43]. Although research studies

have leveraged medical record data to examine acute

pain trajectories, incorporation of this information into

clinical care will require providing visual trajectory repre-

sentations that are interpretable to clinicians and avail-

able in real time to guide individual patient care. This

tailoring of acute pain treatment to match treatment

needs, rather than the one-size-fits-all approach currently

used, may also help curtail the high volume of unused

opioids, which form a reservoir for potential diversion

and misuse. Nonimproving or worsening acute pain may

also indicate a need for ongoing monitoring beyond the

acute phase.

Pain trajectory patterns in the subacute phase (i.e., be-

yond 7 days but less than 3 months) further impact clini-

cal decision-making. Assessment of subacute pain

trajectories can identify patients with ongoing treatment

needs, optimize resource allocation, and detect early pat-

terns of recovery that may indicate the emergence of pain

persistence [9, 65]. Monitoring the pain trajectory into

the subacute period to distinguish rapid or expected pat-

terns of pain resolution from slower resolution (i.e.,

slower improvement or worsening pain) can identify

patients who may benefit from intensive rehabilitative

treatment. This can guide clinicians in treatment stratifi-

cation—for example, matching more intensive physical

and psychological therapies to these patients who dem-

onstrate slower recovery.

Limitations and Future Directions

The AAAPT provides guidelines for the classification of

acute pain and chronic pain, both of which include an as-

sessment of pain trajectory [1]. While recognizing that

acute and chronic pain fall along a continuum, the

AAAPT adopted time-based definitions for acute and

chronic pain, with pain lasting up to 7 days (with prolon-

gation up to 30 days occurring commonly) defined as

acute pain, pain extending past 90 days referred to as

chronic pain, and pain falling between these two phases

referred to as subacute pain [1]. However, because of the

poor mechanistic understanding of subacute pain, it has

not been defined, classified, or characterized [1]. By defi-

nition, the subacute period is when the transition from

acute to chronic pain occurs, and it is therefore a key pe-

riod for understanding the mechanisms underlying this

transition [65]. For most, the subacute period is a critical

period of resolution of pain and a return to normal sen-

sory processing. However, for others, this may be the

point when processes that promote the persistence of

pain manifest [35]. Research examining pain trajectories

into the subacute period may enhance understanding of

mechanisms that promote persistence and mechanisms

that promote resolution of pain. Indeed, the federal pain

research strategy, released in 2017, highlighted research

to enhance understanding of mechanisms promoting pain

persistence and resolution as a top priority [66].

Research is needed examining the performance of the

acute pain trajectory in individualized pain assessment

and treatment, as well as in populations beyond postop-

erative pain. The federal pain research strategy identified

a need for research determining optimal acute pain as-

sessment parameters to optimize individualized acute

pain management [66].

Conclusion

In conclusion, the application of trajectory approaches to

acute pain measurements provides insight into the tem-

poral course of pain, a key dimension of the acute pain

Acute Pain Trajectory 545



experience, enabling more comprehensive characteriza-

tion of acute pain. This allows for accurate classification

of pain and thus targeted treatment of pain.
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