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RESEARCH LETTER

Genetically Predicted Pulse Pressure and Risk 
of Abdominal Aortic Aneurysm: A Mendelian 
Randomization Analysis
Stephen Burgess , PhD; Julio A. Chirinos , MD, PhD; Scott M. Damrauer , MD; Dipender Gill , BMBCh PhD

Pulse pressure (PP), the difference between systolic 
blood pressure (SBP) and diastolic blood pressure 
(DBP), arises due to pulsatile ejection of blood from 

the left ventricle. Previous observational studies have 
identified an inverse association of PP with aortic diame-
ter,1 and positive associations of PP with aortic wall stiff-
ness and thickness.2 However, it is not known whether 
these associations reflect a causal effect of PP on the 
risk of abdominal aortic aneurysm (AAA), an effect of 
the aorta on PP, a shared cause, or confounding from 
environmental factors.

Here, we investigated the relationship between PP 
and AAA risk using 2-sample Mendelian randomization, 
which employs genetic variants specifically related to an 
exposure to define subgroups of the population with dif-
ferent average levels of the exposure. The independent 
segregation of alleles at conception means these geneti-
cally defined subgroups should not differ systematically 
with respect to confounding variables, creating a natural 
experiment analogous to a randomized trial.

First, to investigate the relationship between PP 
and risk of AAA independent of other BP measures, 
we performed multivariable Mendelian randomization 
using the inverse-variance weighted method.3 In our 
main analysis, PP and mean arterial pressure are the 
exposures and AAA is the outcome. In secondary analy-
ses, we consider SBP and DBP respectively with PP as 
exposures in multivariable analyses. AAA events were 
identified in UK Biobank, a population-based cohort 
of UK residents aged 40 to 69 at baseline, based on 
electronic heath records. Genetic associations with 

AAA were estimated in 367 586 European ancestry 
participants (1094 AAA cases) by logistic regression 
adjusting for age, sex, and 10 principal components of 
genetic ancestry (to account for potential population 
stratification). As genetic instruments for BP traits, we 
selected 258 uncorrelated variants previously associ-
ated with BP at a genome-wide level of significance 
in the International Consortium for Blood Pressure4 
excluding UK Biobank participants. Genetic associa-
tions with BP measures were obtained by meta-anal-
ysis of study-specific estimates estimated using linear 
regression in 299 024 European ancestry participants 
from the International Consortium for Blood Pressure 
with UK Biobank participants excluded.

Second, to explore the association of genetically pre-
dicted AAA risk with BP measurements, we performed 
univariable Mendelian randomization analyses with AAA 
risk as the exposure and BP measures as the outcome. 
This investigates the relationship between liability to 
AAA and BP.3 As instruments for AAA, we considered 
24 uncorrelated variants associated with AAA risk at a 
genome-wide level of significance.5 For these analyses, 
genetic associations with BP measures were estimated 
in UK Biobank using linear regression adjusting for age, 
sex, and 10 principal components.

All data are publicly available at http://dx.doi.
org/10.6084/m9.figshare.17912192. UK Biobank has 
approval from the North West Multicentre Research Eth-
ics Committee.

Considering the effect of BP on AAA, genetically pre-
dicted mean arterial pressure was positively associated 
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with AAA risk (estimates are scaled to a 5 mm Hg increase 
in the BP trait; odds ratio [OR], 1.55 [95% CI, 1.21–
2.00]; P=0.008), whereas genetically predicted PP was 
inversely associated (odds ratio, 0.64 [95% CI, 0.46–0.89]; 
P=0.0006). Similar findings were observed in multivariable 
analyses for SBP and PP, and DBP and PP (Figure). In sex-
stratified analyses, inverse associations with PP were similar 
in magnitude for males and females, although less precise 
in females with 95% CIs overlapping the null (Figure).

Considering the effect of AAA risk on BP measures, 
genetically predicted AAA risk was inversely associ-
ated with PP, with a 0.19 mm Hg (95% CI, 0.08–0.29; 
P=0.0006) reduction per unit increase in the log-odds 
of AAA. An inverse association was also observed with 
SBP (0.17 mm Hg [95% CI, 0.02–0.32]; P=0.024) but 
not with DBP (−0.01 mm Hg [95% CI, −0.10 to 0.07]; 
P=0.76) or mean arterial pressure (0.05 mm Hg [95% CI, 
−0.05 to 0.15]; P=0.34).

This Mendelian randomization study advances on pre-
vious epidemiological investigations to provide evidence 
supporting a bidirectional inverse relationship between PP 
and AAA risk, consistent with a shared cause. Increased 
stiffness of the aortic wall may underlie this, by raising PP 
(due to higher SBP and lower DBP) but decreasing risk 
of AAA (due to less distension of the aortic wall). Another 
explanation is a threshold effect for case classification, 
where AAA classification is less likely in individuals with 
smaller aortas because diagnosis is based on absolute 
rather than relative diameter. However, estimates were 
similar in males and females, despite sex differences in 
aorta size. Limitations of our investigation are that we did 
not have data on lumen diameter, were not able to assess 
specific AAA causes, and findings may not relate equally 
to all AAA subtypes. A further limitation is power, particu-
larly for the female-specific analysis.

Our study provides important mechanistic insights about 
the relationship between PP and the risk of AAA. It sug-
gests an inverse relationship between PP and AAA risk but 
one that is likely driven by a common underlying mechanism 
rather than a direct inverse causal effect of PP on AAA risk.
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0.1 0.2 0.5 1.0 2.0 3.0

Mean arterial pressure 1.55 (1.21, 2.00)

Pulse pressure 0.64 (0.46, 0.89)

Systolic blood pressure 1.55 (1.20, 2.00)

Pulse pressure 0.48 (0.30, 0.76)

Diastolic blood pressure 1.55 (1.21, 1.99)

Pulse pressure 0.74 (0.56, 0.97)

Estimate (95% CI)Combined:

0.1 0.2 0.5 1.0 2.0 3.0

Mean arterial pressure 1.51 (0.79, 2.87)

Pulse pressure 0.53 (0.23, 1.24)

Systolic blood pressure 1.59 (0.83, 3.05)

Pulse pressure 0.37 (0.11, 1.22)

Diastolic blood pressure 1.46 (0.77, 2.78)

Pulse pressure 0.62 (0.31, 1.27)

Estimate (95% CI)Women:

0.1 0.2 0.5 1.0 2.0 3.0

Mean arterial pressure 1.56 (1.19, 2.05)

Pulse pressure 0.65 (0.46, 0.93)

Systolic blood pressure 1.55 (1.18, 2.03)

Pulse pressure 0.49 (0.30, 0.81)

Diastolic blood pressure 1.57 (1.20, 2.05)

Pulse pressure 0.76 (0.56, 1.02)

Estimate (95% CI)Men:

Figure. Associations between genetically predicted blood pressure measures and abdominal aortic aneurysm from 3 separate 
multivariable Mendelian randomization analyses using combined and sex-stratified genetic associations with abdominal aortic 
aneurysm risk.
Estimates (95% CI) represent the odds ratio for disease per 5 mm Hg increase in genetically predicted levels of the blood pressure trait. 
Separate multivariable analyses were performed for 3 choices of exposure variables: mean arterial pressure and pulse pressure; systolic blood 
pressure and pulse pressure; and diastolic blood pressure and pulse pressure. Abdominal aortic aneurysm (AAA) was defined from hospital 
episode statistics and death certificates using International Classification of Disease coding (Ninth Edition: 441.3 or 441.4, Tenth Edition 
I71.3 or I71.4) or hospital procedure coding (Office of Population Censuses and Surveys code: L19.4 or L19.5).




